JPH01222318A - System for controlling inverter of reactive power compensation device - Google Patents

System for controlling inverter of reactive power compensation device

Info

Publication number
JPH01222318A
JPH01222318A JP63049078A JP4907888A JPH01222318A JP H01222318 A JPH01222318 A JP H01222318A JP 63049078 A JP63049078 A JP 63049078A JP 4907888 A JP4907888 A JP 4907888A JP H01222318 A JPH01222318 A JP H01222318A
Authority
JP
Japan
Prior art keywords
inverter
compensation
reactive power
current
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63049078A
Other languages
Japanese (ja)
Other versions
JP2712239B2 (en
Inventor
Tomoshi Tada
多田 知史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63049078A priority Critical patent/JP2712239B2/en
Publication of JPH01222318A publication Critical patent/JPH01222318A/en
Application granted granted Critical
Publication of JP2712239B2 publication Critical patent/JP2712239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To sufficiently compensate a conventional reactive power as a whole by allotting respective objects of compensation to higher harmonic compensation and reactive power compensation with giving limitation and compensating respective objects of compensation. CONSTITUTION:A higher harmonic current detection part 11 and a reactive current detection part 14 are provided in a control circuit 7, and a high harmonic current ilh is inputted to a first inverter generation voltage operation part 12, whereby an inverter 5 is operated by the output voltage signal V1* and the action of PWM13. On the other hand, a reactive compensation current iq and a system voltage Va corresponding to a reactive compensation current are inputted to a second inverter generation voltage operation part 15 and an inverter 6 is operated by the output voltage signal V2* and the action of PWM16. Thus the control signals of respective inverters can independently be controlled without being reciprocally interfered, and efficient control is attained in accordance with inverter functions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、直列多重化電圧形インバータによる無効電力
補償装置において、各インバータの補償対象を限定する
ことにより電圧形インバータ制御の効率化を図る無効電
力補償装置のインバータ制御方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention aims to improve the efficiency of voltage-source inverter control by limiting the compensation target of each inverter in a reactive power compensation device using series multiplexed voltage-source inverters. The present invention relates to an inverter control method for a reactive power compensator.

[発明が解決しようとする課題] 無効電力補償装置により系統の変動を抑制する方式には
各種のものがあり、広く使用されるものに、対策母線に
接続されるリアクトル、あるいはコンデンサに流れる補
償無効電流をサイリスタで通電制御して、無効電力、又
はその変動分に対する補償をして対策母線の電圧変動を
抑制するものがあるが、最近上記構成の無効電力補償装
置にかえ、インバータを用いた人吉ffl無効電力補償
装置が実現しつつある。
[Problems to be Solved by the Invention] There are various methods for suppressing system fluctuations using reactive power compensators, and the widely used ones include the reactive power compensator that is connected to the countermeasure bus, or the reactive power that flows through the capacitor. There is a device that suppresses the voltage fluctuation of the countermeasure bus by controlling the current with a thyristor and compensating for the reactive power or its fluctuation, but recently Hitoyoshi, which uses an inverter, has replaced the reactive power compensator with the above configuration. ffl reactive power compensators are being realized.

インバータによるものは、前述のようなりアクドル設備
、コンデンサ設備を必要とせず、今後の進展が大きく期
待されている。このように、インバータを無効電力補償
装置に組み入れる場合、インバータを多重化することが
考えられている。
As mentioned above, inverter-based systems do not require accelerator equipment or capacitor equipment, and are highly expected to make further progress in the future. As described above, when incorporating an inverter into a reactive power compensator, it has been considered to multiplex the inverters.

しかし、多重化されたインバータにおいて、設置される
各インバータの制御の影響が他のインバータの運転に大
きく干渉するような構成であれば、その運転制御は不安
定なものとなる。
However, in the case of multiplexed inverters, if the control of each installed inverter is configured to significantly interfere with the operation of other inverters, the operation control will become unstable.

本発明は、直列多重化電圧形インバータによる無効電力
補償装置を解析し、高調波補償、無効電力補償に対して
、それぞれの補償対象を限定して分担させ、それぞれの
補償対象に対する補償を行うことにより、全体として本
来の無効電力補償を十分に実施できるようにしようとす
るものである。
The present invention analyzes a reactive power compensation device using a series multiplexed voltage source inverter, limits the compensation targets for harmonic compensation and reactive power compensation, and performs compensation for each compensation target. This is intended to enable adequate reactive power compensation as a whole.

[課題を解決するための手段] 第1図に本発明の装置の概略をブロック図で示す。[Means to solve the problem] FIG. 1 shows a schematic block diagram of the apparatus of the present invention.

1は系統電源で、2は系統インピーダンスを示す。10
は系統電源1に接続された負荷を示し、負荷10と系統
電源lとの間で、系統に並列に分路して第1の変圧器、
3の1次側を介して第1のインバータ5が接続され、変
圧器3の2次側と直列に第2の変圧器4の1次側が接続
され、その2次側に第2のインバータ8が接続される。
1 indicates the grid power supply, and 2 indicates the grid impedance. 10
indicates a load connected to the grid power supply 1, and between the load 10 and the grid power supply l, a first transformer is shunted in parallel to the grid,
A first inverter 5 is connected via the primary side of the transformer 3, a primary side of the second transformer 4 is connected in series with the secondary side of the transformer 3, and a second inverter 8 is connected to the secondary side of the second transformer 4. is connected.

これでインバータ5及び6は直列関係にある。7は制御
回路であり、fl制御回路7には系統電圧検出用PT8
よりの電圧信号及び負荷電流検出用のC70よりの電流
信号が入力し、制御回路7で第1のインバータ5及び第
2のインバータ6の発生電圧のための発生電圧信号が形
成される。
Inverters 5 and 6 are now in series relationship. 7 is a control circuit, and the fl control circuit 7 includes a PT8 for detecting system voltage.
A voltage signal from the C70 and a current signal from the C70 for load current detection are input, and a generated voltage signal for the voltage generated by the first inverter 5 and the second inverter 6 is formed in the control circuit 7.

制御回路7の概略はブロック図をもって第2図に示す。A schematic block diagram of the control circuit 7 is shown in FIG.

図示のように、負荷電流liを入力として高調波電流検
出部■及び受電点電圧Va及び負荷電流iを入力として
無効電流検出部14が設けられ、高調波電流検出部■よ
りの高調波電流iahは第1のインバータ発生電圧演算
部I2に入力し、その出力電圧信号Vlによりs PW
M13の動作によってインバータ5を運転する。
As shown in the figure, a harmonic current detector 14 is provided with the load current li as input, and a reactive current detector 14 with the receiving point voltage Va and load current i as input. is input to the first inverter generated voltage calculation unit I2, and the output voltage signal Vl causes s PW
The inverter 5 is operated by the operation of M13.

他方、無効補償電流に対応する無効電流tqと受電点電
圧(系統電圧) Vaが第2のインバータ発生電圧演算
部I5に入力して、その出力電圧信号v2により、PW
MlBの動作によってインバータ6を運転する。
On the other hand, the reactive current tq corresponding to the reactive compensation current and the receiving point voltage (system voltage) Va are input to the second inverter generated voltage calculation unit I5, and the output voltage signal v2 is used to calculate PW.
The inverter 6 is operated by the operation of MIB.

第2図から理解されるように、無効電力補償、特に基本
波成分の補償は第1図の第2のインバータ8により行う
。前記装置を含んだ系統の基本波等価回路は第3図(イ
)となる。無効電力を補償するのは、無効電流を補償す
ることに等しく、第2図に示すように、受電点電圧Va
と負荷電流ieから、その位相差により補償無効電流i
qを求める。
As understood from FIG. 2, reactive power compensation, especially compensation for the fundamental wave component, is performed by the second inverter 8 in FIG. 1. The fundamental wave equivalent circuit of a system including the above device is shown in FIG. 3(a). Compensating for reactive power is equivalent to compensating for reactive current, and as shown in FIG.
From the load current ie and the phase difference, the compensated reactive current i
Find q.

iqが流れた場合、等価回路から次式が求まる。When iq flows, the following equation can be found from the equivalent circuit.

Va = V2 + L    i q ==−−−=
=−(1)at ただし、Lは変圧器3と4の漏れインピーダンスに相当
の分路インダクタンスすなわち、第2のインバータθの
発生電圧信号v2を を第2図の第2のインバータ発生電圧演算部15で求め
てPWM動作によってインバータを運転すればよい。
Va = V2 + Liq ==---=
=-(1)at However, L is the shunt inductance equivalent to the leakage impedance of transformers 3 and 4, that is, the generated voltage signal v2 of the second inverter θ is calculated by the second inverter generated voltage calculation section in FIG. 15 and operate the inverter by PWM operation.

高調波電流補償は、第2図から理解されるように、第1
図のatのインバータ5により行う。前記装置を含んだ
系統の高調波等価回路は第3図(ハ)となる。高調波電
流には、負荷の性質、回路構成にもよるが% 5.7.
11.lトー次の高調波が存在するが、いま0次の高調
波補償を考える。第2図に示すように負荷電流ieを検
出し、例えばフーリエ変換等によって高調波電流1ah
n (添字nは高調波次数を表す、以下同じ)が得られ
るが1.その電流を用いてインバータ発生電圧信号(n
次分)Vanを次式で与える。
As can be understood from Fig. 2, harmonic current compensation is
This is done by the inverter 5 at in the figure. The harmonic equivalent circuit of a system including the above device is shown in FIG. 3 (c). Although it depends on the nature of the load and the circuit configuration, the harmonic current may vary by %5.7.
11. There are l-th order harmonics, but now let us consider zero-order harmonic compensation. As shown in Fig. 2, the load current ie is detected, and harmonic current 1ah is generated by, for example, Fourier transform.
n (the subscript n represents the harmonic order, the same applies hereinafter) is obtained, but 1. Using that current, the inverter generated voltage signal (n
(order) Van is given by the following formula.

Vln  ”  KnJ’1(Ihndt  、、++
++−〇但し、Kn : 4x” ・n” ・to” 
・L =−・−@fo:!本波周波数 (4)式で与えられるKnの逆数1 /K nは、分路
インダクタンスLに対して0次共振のL−C直列回路の
Cの値に等しい。
Vln” KnJ'1 (Ihndt,,++
++-〇However, Kn: 4x”・n”・to”
・L =-・-@fo:! The reciprocal of Kn given by the main wave frequency equation (4), 1/Kn, is equal to the value of C of the LC series circuit having zero-order resonance with respect to the shunt inductance L.

これより、0次に対する第1のインバータ5の電圧を(
3)式で与えることは、第3図(ハ)に示すように、イ
ンバータがL−C回路のコンデンサと等価な役割をする
と考えられる。よってn次高調波に対して同装置のイン
ピーダンスは零とみなされ、高調波が補償できる。
From this, the voltage of the first inverter 5 for the 0th order is (
As shown in FIG. 3(C), it is considered that the inverter plays an equivalent role to the capacitor of the LC circuit. Therefore, the impedance of the device is considered to be zero for n-th harmonics, and harmonics can be compensated for.

このことは、(3)、 (4)式を用いることによって
各欠品調波に対して成り立ち、インバータ出力電圧信号
V−は、第2図の第1のインバータ発生電圧演算部12
で、 Vi”=I:Vtn ” EK nJ’ i Q h n d t −・−−
■で求め、PWN動作によってインバータを運転すれば
よい。
This holds true for each out-of-stock harmonic by using equations (3) and (4), and the inverter output voltage signal V- is calculated by the first inverter generated voltage calculation unit 12 in FIG.
So, Vi”=I:Vtn” EK nJ' i Q h n d t −・−−
(2) and then operate the inverter using PWN operation.

[発明の効果] 本発明の方式によれば、各インバータの制御信号は干渉
し合うことなく、単独に制御でき、インバータ機能に応
じて効率のよい制御が行える。
[Effects of the Invention] According to the method of the present invention, the control signals of each inverter can be controlled independently without interfering with each other, and efficient control can be performed according to the inverter function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例をブロック図で示す。 第2図は、本発明の制御回路を示す。 第3図(イ)は基本波に対する等価回路を示し、同(ロ
)は高調波に対する等価回路を示し、同(ハ)は第1の
インバータの等価変換の説明図である。 1・・・系統電源、2・・・系統インピーダンス、3,
4・・・変圧器、5.6・・・第1.第2インバータ、
7・・・制御回路、8・・・PT19・・・CT、1G
・・・負荷。 算1図 廊2 図 那3 図 (口〕 (ハ)
FIG. 1 shows in block diagram form an embodiment of the invention. FIG. 2 shows a control circuit of the present invention. FIG. 3(A) shows an equivalent circuit for the fundamental wave, FIG. 3(B) shows an equivalent circuit for harmonics, and FIG. 3(C) is an explanatory diagram of equivalent conversion of the first inverter. 1...System power supply, 2...System impedance, 3,
4...Transformer, 5.6...1st. second inverter,
7...Control circuit, 8...PT19...CT, 1G
···load. Math 1 Zurou 2 Zuna 3 Diagram (mouth) (c)

Claims (1)

【特許請求の範囲】[Claims] (1)系統との並列分路中に、無効電力のみを補償する
第2のインバータと高調波電流のみを補償する第1のイ
ンバータを直列に接続して構成される無効電力補償装置
において、無効電力補償用インバータの出力電圧を決定
するインバータの発生電圧信号V_2^*は、第2のイ
ンバータ発生電圧演算部において、 V_2^*=V_a−L(d/dt)i_qで決定し、
高調波電流補償用インバータの出力電圧を決定するイン
バータの発生電圧信号V_1^*は、第1のインバータ
発生電圧演算部において、 V_1^*=ΣK_n∫(i_l_h_n)dtで決定
することを特徴とする高調波電流の補償を含む無効電力
補償装置のインバータ制御方式。 但し、V_a:系統電圧、L:分路インダクタンス、i
_q:補償無効電流、K_n:4π^2×n^2×f_
0^2×L、n:高調波次数、f_0:基本波周波数、
i_l_h_n:負荷電流i_l中の各次高調波電流
(1) In a reactive power compensator configured by connecting in series a second inverter that compensates only reactive power and a first inverter that compensates only harmonic current in a parallel shunt with the grid, The inverter generated voltage signal V_2^*, which determines the output voltage of the power compensation inverter, is determined by V_2^*=V_a-L(d/dt)i_q in the second inverter generated voltage calculation section,
The inverter generated voltage signal V_1^*, which determines the output voltage of the inverter for harmonic current compensation, is determined in the first inverter generated voltage calculation section by V_1^*=ΣK_n∫(i_l_h_n)dt. Inverter control method for reactive power compensator including harmonic current compensation. However, V_a: grid voltage, L: shunt inductance, i
_q: Compensation reactive current, K_n: 4π^2×n^2×f_
0^2×L, n: harmonic order, f_0: fundamental frequency,
i_l_h_n: Each harmonic current in load current i_l
JP63049078A 1988-03-01 1988-03-01 Inverter control method for reactive power compensator Expired - Fee Related JP2712239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63049078A JP2712239B2 (en) 1988-03-01 1988-03-01 Inverter control method for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049078A JP2712239B2 (en) 1988-03-01 1988-03-01 Inverter control method for reactive power compensator

Publications (2)

Publication Number Publication Date
JPH01222318A true JPH01222318A (en) 1989-09-05
JP2712239B2 JP2712239B2 (en) 1998-02-10

Family

ID=12821054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049078A Expired - Fee Related JP2712239B2 (en) 1988-03-01 1988-03-01 Inverter control method for reactive power compensator

Country Status (1)

Country Link
JP (1) JP2712239B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244388A (en) * 2011-07-12 2011-11-16 上海华艾软件有限公司 Reactive power compensation and filtering device with automatically adjustable inductance ratio
CN103259332A (en) * 2013-03-30 2013-08-21 国家电网公司 Protection, control, measurement and idle switch four-in-one device for transformer substation
CN106856325A (en) * 2015-12-09 2017-06-16 利思电气(上海)有限公司 400V low-voltage electric energy quality optimization external hanging devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856328A (en) * 2015-12-09 2017-06-16 利思电气(上海)有限公司 Low-voltage circuit terminal pressure regulation external hanging device and voltage adjusting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428712A (en) * 1987-07-24 1989-01-31 Mitsubishi Electric Corp Active filter device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428712A (en) * 1987-07-24 1989-01-31 Mitsubishi Electric Corp Active filter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244388A (en) * 2011-07-12 2011-11-16 上海华艾软件有限公司 Reactive power compensation and filtering device with automatically adjustable inductance ratio
CN103259332A (en) * 2013-03-30 2013-08-21 国家电网公司 Protection, control, measurement and idle switch four-in-one device for transformer substation
CN106856325A (en) * 2015-12-09 2017-06-16 利思电气(上海)有限公司 400V low-voltage electric energy quality optimization external hanging devices

Also Published As

Publication number Publication date
JP2712239B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
EP0254073B1 (en) Harmonic suppressing device
EP2160828B1 (en) Four pole neutral-point clamped three phase converter with zero common mode voltage output
EP0372109B1 (en) Reactive power controller
Lopez et al. Performance analysis of a hybrid asymmetric multilevel inverter for high voltage active power filter applications
JP6180641B2 (en) Power converter
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
EP1133043B1 (en) Controller for performing a decoupling control of a reactive series compensator
JP2842587B2 (en) Current oscillation compensation method and apparatus
JPH06261548A (en) Unbalance compensator for three phase/two phase converter
WO2017008245A9 (en) Transformer-less static synchronous series compensator and method therefor
KR101172603B1 (en) High Voltage Reactive Power Compensator using many single-phase inverters for arc furnace
JP3838093B2 (en) Grid interconnection power converter
JPH01222318A (en) System for controlling inverter of reactive power compensation device
EP1484833B1 (en) Method and apparatus to reduce distortion of currents feeding an AC/DC rectifier system
EP0353715B1 (en) Frequency changer
JPH10174291A (en) Inverter device linked to system
Çolak et al. Simulation of the DC Capacitor Voltage Controlled Single Phase Shunt Active Power Filters for Power Quality Improvement
JPH0775344A (en) Current loop control type pwm inverter
JP2003033039A (en) Controller for multiconnected self-commutated converters
JPH11225477A (en) Sine wave converter with filtering function
Abdusalam Harmonics Cancelation in 3-Phase 4-Wire System using Modified Reference Frame
Rahima et al. ENHANCE PERFORMANCE PREDICTIVE CURRENT CONTROL FOR ACTIVE POWER FILTER USING MULTILEVEL INVERTER
JPH09266631A (en) Power active filter having uninterruptible power supply function
CN113726191A (en) Fundamental wave control and harmonic compensation method and device of in-phase power supply device
JPH0382338A (en) Higher harmonic voltage suppressing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees