JPH01222289A - Method and device for visualizing mhd effect - Google Patents

Method and device for visualizing mhd effect

Info

Publication number
JPH01222289A
JPH01222289A JP4923288A JP4923288A JPH01222289A JP H01222289 A JPH01222289 A JP H01222289A JP 4923288 A JP4923288 A JP 4923288A JP 4923288 A JP4923288 A JP 4923288A JP H01222289 A JPH01222289 A JP H01222289A
Authority
JP
Japan
Prior art keywords
magnetic field
mhd
effect
electrodes
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4923288A
Other languages
Japanese (ja)
Inventor
Takashi Aoki
孝志 青木
Kiyoshi Aoyama
清 青山
Tomio Kato
富雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4923288A priority Critical patent/JPH01222289A/en
Publication of JPH01222289A publication Critical patent/JPH01222289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instructional Devices (AREA)

Abstract

PURPOSE:To visualize an MHD (Magnet-Hydro-Dynamic) effect by allowing an electric current to flow under the condition that a magnetic field words, decomposing water and allowing bubbles of hydrogen and oxygen to ascend. CONSTITUTION:An electrolytic water solution 2 of NaOH, etc. is put into a transparent case 1, and two pieces of electrodes 3, 4 are opposed to each other in the vertical direction. When a voltage is applied to the electrodes 3, 4 and a current is allowed to flow, oxygen or hydrogen is generated in accordance with whether the polarity of the electrode is positive or negative, and it becomes a thin line and ascends. When a magnetic field is applied thereto, the line is inclined. That is, the solution can be made simply since it will suffice that a small quantity of electrolyte of NaOH, etc. is added to water, and also, because of an electrolysis, as for a power source, a small battery is enough. In such a way, by using a simple method and device, an MHD effect (or Lorentz's force) can be visualized.

Description

【発明の詳細な説明】 [目的] ゲ この発明は、磁場が作用する下で、電流を流し水を分解
し水素と酸素の泡を上昇させて、MHD(Magnet
−Hydr6−Dynamic)効果を視覚的に見える
ようにした教育用実験方法および装置に間する。
[Detailed Description of the Invention] [Objective] This invention generates MHD (Magnetic HD) by passing an electric current under the action of a magnetic field to decompose water and raise hydrogen and oxygen bubbles.
-Hydr6-Dynamic) An educational experimental method and device that makes the effect visually visible.

毘見立韮I 電8i%学の基本法則の一つにフレミングの左手の法則
がある。これは左手の人指し指を磁場の方向に、中指を
電流の方向に会わせた時、両者に垂直な親指の方向に力
が働くというもので、この力はローレンツ力と呼ばれて
いる。この応用の一つに電磁推進船がある。これは磁場
が海底に向かうように配置し、そして直角に(つまり海
面を平行に)電流を流してやると、船は海水に対して後
方に力を及ぼすことになり、その反作用で船自体は前進
することになる。これはMHD(マグネトハイドロダイ
ナミック)効果ともよばれる。最近超電導技術の登場に
よって、非常に強い磁場が手に入るようになり、海洋工
学技術は新時代をむかえようとしている。
Bimitate Nira I One of the basic laws of electronic 8i% science is Fleming's left hand rule. This means that when you place your left hand's index finger in the direction of the magnetic field and your middle finger in the direction of the current, a force acts perpendicular to them in the direction of the thumb, and this force is called the Lorentz force. One application of this is electromagnetic propulsion ships. This means that if the magnetic field is placed so that it is directed toward the ocean floor, and a current is passed at right angles (that is, parallel to the sea surface), the ship will exert a backward force on the seawater, and the reaction will cause the ship to move forward. I will do it. This is also called the MHD (magnetohydrodynamic) effect. With the recent advent of superconducting technology, extremely strong magnetic fields have become available, and ocean engineering technology is entering a new era.

イ ニーn7 このようにMHD効果は応用面からも重要になりつつあ
るし、また電磁気宇の基本を学ばせる上でも重要である
。ところが、従来よりMHD効果を視覚的に眼で見える
ようにした教育用実験方法および装置は存在しなかった
。そこで、MHD効果を可視化した方法および装置を提
供しようとするものである。
Innie n7 In this way, the MHD effect is becoming important from an applied perspective, and is also important for helping students learn the basics of electromagnetism. However, until now, there has been no educational experimental method or device that makes the MHD effect visually visible. Therefore, the present invention aims to provide a method and apparatus that visualize the MHD effect.

[構成] 口*7..F 第1図は本発明のM HD効果方法および装置を説明す
る図である。第1図(a)は透明ケース1の中にN a
 OIfなどの電解質水溶液2を入れ、2本の電極3.
4を上下方向に対向させた構造である。電極3.4に電
圧をかけ電流を流すと電極の極性の正負に応し酸素又は
水素が発生し、細い線条となって上昇する。これに磁場
を第1図(b)のようにかけると線条が顛く。これここ
よってMHD効宋を目で見ることが可能となる。
[Composition] Mouth *7. .. F FIG. 1 is a diagram illustrating the MHD effect method and apparatus of the present invention. Figure 1(a) shows N a inside the transparent case 1.
Add an electrolyte aqueous solution 2 such as OIf, and connect two electrodes 3.
4 are vertically opposed to each other. When a voltage is applied to the electrode 3.4 and a current is passed, oxygen or hydrogen is generated depending on the polarity of the electrode, and rises in the form of a thin line. When a magnetic field is applied to this as shown in Figure 1(b), the streaks appear. This makes it possible to visually see the MHD effect.

第3図および第4図はそれぞれ本発明第1実施例および
第2実施例の説明図である。これらの区のように磁場を
かける方法は永久磁石を用いても、電磁石を用いてもよ
い。第4図では第3図の永久磁石とちがってE2を反転
して電流を逆に流せば簡単に磁場の向きを変えられる点
と磁場の強さが自由に変えられる点が便利である。第5
図および第6図は本発明第3実施例の斜視図である。2
木の電極は透明ケースの底面に上向きて平行に配設しで
ある。このようにすると磁場が存在しないときは各々の
電極から垂直上昇気泡線条が平行に発生する。磁場をか
けると図に示すように2本の線条は互いに反対方向に偏
る。
FIG. 3 and FIG. 4 are explanatory diagrams of a first embodiment and a second embodiment of the present invention, respectively. A method of applying a magnetic field as in these areas may be by using a permanent magnet or an electromagnet. Unlike the permanent magnet shown in Fig. 3, Fig. 4 is convenient in that the direction of the magnetic field can be easily changed by reversing E2 and the current flows in the opposite direction, and the strength of the magnetic field can be changed freely. Fifth
This figure and FIG. 6 are perspective views of a third embodiment of the present invention. 2
The wooden electrodes are arranged parallel to each other and facing upward on the bottom of the transparent case. In this way, vertically rising bubble lines are generated in parallel from each electrode when no magnetic field is present. When a magnetic field is applied, the two filaments are biased in opposite directions as shown in the figure.

1月 一電解質溶液の電解電流は、物質移動に依存している。January The electrolytic current of an electrolyte solution is dependent on mass transfer.

物質移動の仕方には(1)対流、(2)電気泳動、(3
)拡散の3種項が存在する。拡散は電極の極く近傍で起
こるものである。電極間電位差が電気泳動をひきおこす
のであるが、この泳動による電流は1つの電極からもう
一方の電極へと流れる。
Methods of mass transfer include (1) convection, (2) electrophoresis, and (3)
) There are three types of diffusion terms. Diffusion occurs in the immediate vicinity of the electrodes. The potential difference between the electrodes causes electrophoresis, and the electric current caused by this electrophoresis flows from one electrode to the other.

一方細い電極から電気分解により発生する微細気泡の集
合からなる線条の上昇流は、その流れにともなう対流電
流を発生させる。電解物質のイオンの電荷なq、その移
動速度をV、磁束密度をBとすると、イオンに働く力F
(ローレンツ力)はF = q v X B     
   (1)である。従って第1図(a>では負の電荷
が線条とともに下から上方へ一定速度で移動しているか
らこれに磁場Bがかかると第2図に示すように力Fが作
用し線条の方向はV゛の方向に変わりθ°だけ左にふれ
ることになる。だから第1図(b)では線条は図のよう
に左へ押されることになる。また第5図(a)では2本
の線条の流れはそれぞれ正、負の極性の異なる電荷の流
れとなるため(1)式によって2本の線条は互いに反対
方向へふれる。第51(b)では図(a)の逆となる。
On the other hand, the upward flow of a filament made up of a collection of microscopic bubbles generated from a thin electrode by electrolysis generates a convection current accompanying the flow. Let q be the electric charge of the ions in the electrolyte, V be the moving speed, and B be the magnetic flux density, then the force acting on the ions is F.
(Lorentz force) is F = q v X B
(1). Therefore, in Figure 1 (a), the negative charge is moving with the filament from the bottom to the top at a constant speed, so when a magnetic field B is applied to it, a force F acts in the direction of the filament, as shown in Figure 2. changes to the direction of V' and moves to the left by θ°.Therefore, in Fig. 1(b), the filament is pushed to the left as shown in the figure.Also, in Fig. 5(a), the two filaments are pushed to the left. Since the flow of the filaments is a flow of charge with different polarity, positive and negative, the two filaments move in opposite directions according to equation (1). Become.

第4図の装置による実際の測定結果を第6図に示した。Actual measurement results using the apparatus shown in FIG. 4 are shown in FIG.

分解電圧4.8V、分解電流400mAで磁場は空心コ
イルにより発生させO〜550 Gaussまての範囲
での測定結果である。第6図で縦軸は線条のふれ角(θ
°)であり、横軸は磁束密度Bである。
The magnetic field was generated by an air-core coil with a decomposition voltage of 4.8 V and a decomposition current of 400 mA, and the measurement results were obtained in the range of 0 to 550 Gauss. In Figure 6, the vertical axis is the deflection angle of the filament (θ
), and the horizontal axis is the magnetic flux density B.

[効果] 本発明のMHD実験方法および装置は、以下に記す効果
を有する。
[Effects] The MHD experimental method and apparatus of the present invention have the following effects.

(+)溶液は水にNaOHなどの電解質を小量前えれば
よいので簡単に作れる。また電解のため電源は少さな電
池で十分である。このように簡単な方法と装置を用いる
ことによって、MHD効果(又はローレンツ力)を、視
覚化可能とする効果を有する。
The (+) solution can be easily made by adding a small amount of an electrolyte such as NaOH to water. Also, because of electrolysis, a small battery is sufficient as a power source. By using such a simple method and device, the MHD effect (or Lorentz force) can be visualized.

したがって教育上学生・生徒の好奇心を刺激し、理解を
助ける効果大なるものがある。
Therefore, it has a great educational effect in stimulating students' curiosity and aiding their understanding.

(2)電極は細くしであるため、発生ガスは大きな気泡
とはならず非常にきめのこまかい微粒子状の気泡となる
効果を有する。従って糸のごとき線条で見やすい効果が
ある。
(2) Since the electrodes are thin, the generated gas does not form large bubbles, but has the effect of forming very fine-grained, fine-grained bubbles. Therefore, it has the effect of being easy to see with thread-like striations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の原理を示す図、第2図は
ローレンツの法則をイオン流線条にあてはめた説明図、
第3図は本発明第1実施例を示す斜視図、第4図は本発
明第2実施例を示す正面図、第5図(aXb)は本発明
第3実施例を示す図、第6図は第4図に示す方法による
実験データを示す図である。 1・・・透明容器、2・・・電解質溶液、3・・・電極
、4・・・電極、5,6・・・m細気泡による線条、7
・・・永久磁石、8・・・コイル、9.10・・・電極
。 特許出願人  青木孝志ばか2名 第2図 y’                    v第3
図 27ノ 第4図 第6図 磁!!密度B (Gauss)
Figures 1 (a) and (b) are diagrams showing the principle of the present invention, Figure 2 is an explanatory diagram applying Lorentz's law to ion stream lines,
Fig. 3 is a perspective view showing the first embodiment of the present invention, Fig. 4 is a front view showing the second embodiment of the invention, Fig. 5 (aXb) is a view showing the third embodiment of the invention, and Fig. 6 4 is a diagram showing experimental data obtained by the method shown in FIG. 4. FIG. DESCRIPTION OF SYMBOLS 1...Transparent container, 2...Electrolyte solution, 3...Electrode, 4...Electrode, 5, 6...Striae formed by fine bubbles, 7
...Permanent magnet, 8...Coil, 9.10...Electrode. Patent applicant Takashi Aoki Two idiots Figure 2 y' v 3rd
Figure 27 Figure 4 Figure 6 Magnetism! ! Density B (Gauss)

Claims (2)

【特許請求の範囲】[Claims] (1)水の電気分解において電極間に磁場を作用させる
構造を有するMHD効果視覚化方法。
(1) A MHD effect visualization method having a structure in which a magnetic field is applied between electrodes in water electrolysis.
(2)水の電気分解において電極間に磁場を作用させる
構造を有するMHD効果視覚化装置。
(2) An MHD effect visualization device having a structure that applies a magnetic field between electrodes in water electrolysis.
JP4923288A 1988-03-02 1988-03-02 Method and device for visualizing mhd effect Pending JPH01222289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4923288A JPH01222289A (en) 1988-03-02 1988-03-02 Method and device for visualizing mhd effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4923288A JPH01222289A (en) 1988-03-02 1988-03-02 Method and device for visualizing mhd effect

Publications (1)

Publication Number Publication Date
JPH01222289A true JPH01222289A (en) 1989-09-05

Family

ID=12825156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4923288A Pending JPH01222289A (en) 1988-03-02 1988-03-02 Method and device for visualizing mhd effect

Country Status (1)

Country Link
JP (1) JPH01222289A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059568A (en) * 2007-10-24 2014-04-03 Nassin Haramein Apparatus and method of magnetic hydrodynamics simulation
CN105256331A (en) * 2015-11-06 2016-01-20 清华大学 Electrolysis device capable of controlling movement of oxygen bubbles by adopting magnetoelectric coupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059568A (en) * 2007-10-24 2014-04-03 Nassin Haramein Apparatus and method of magnetic hydrodynamics simulation
CN105256331A (en) * 2015-11-06 2016-01-20 清华大学 Electrolysis device capable of controlling movement of oxygen bubbles by adopting magnetoelectric coupling

Similar Documents

Publication Publication Date Title
Lefrou et al. Electrochemistry: the basics, with examples
Ho-Ttecke How and what can we learn from replicating historical experiments? A case study
Li et al. The effect of magnetic field on the dynamics of gas bubbles in water electrolysis
Elsasser Hydromagnetism. I. a review
Simpson Maxwell on the electromagnetic field: a guided study
Cébron et al. Experimental and theoretical study of magnetohydrodynamic ship models
Hemmer et al. Collected Works Of Lars Onsager, The (With Commentary)
JPH01222289A (en) Method and device for visualizing mhd effect
Maxwell I. On the induction of electric currents in an infinite plane sheet of uniform conductivity
CN103258466A (en) Lorentz force demonstrating instrument
Xiao et al. The role of hydrazine in mixed fuels (H 2 O 2/N 2 H 4) for Au–Fe/Ni nanomotors
Blondel et al. The key role of Oersted's and Ampère's 1820 electromagnetic experiments in the construction of the concept of electric current
Onsager et al. Lars Onsager
VON History of
Giuliani Electromagnetic induction: physics, historical breakthroughs, epistemological issues and textbooks
Font et al. Magnetohydrodynamic propulsion for the classroom
JP2000105218A (en) Electromagnetrophoretic analytisis method and device for micro particulate in liquid
JPH01275788A (en) Method and apparatus for electrolysis of water by action of magnetic field
JP2535823Y2 (en) Liquid injection experimental device
Wendt et al. How a Few Frog Legs Triggered the Origin of Electrical Engineering
Feyerabend Single Magnetic Northpoles and Southpoles and Their Importance for Science
Grant Magnetohydrodynamic transport and confinement of molecules at microelectrodes
Bar et al. Teaching Electrolysis in High School and College—A Comparative Research
Tazzioli An overview of Riemann’s life and work
Butcher Transient Inhomogeneous Ionic Solutions