JPH01222262A - Photosensitive body and image forming process - Google Patents

Photosensitive body and image forming process

Info

Publication number
JPH01222262A
JPH01222262A JP63047986A JP4798688A JPH01222262A JP H01222262 A JPH01222262 A JP H01222262A JP 63047986 A JP63047986 A JP 63047986A JP 4798688 A JP4798688 A JP 4798688A JP H01222262 A JPH01222262 A JP H01222262A
Authority
JP
Japan
Prior art keywords
layer
image
thermochromic
photoconductive
thermochromic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63047986A
Other languages
Japanese (ja)
Inventor
Tsuneo Handa
恒雄 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63047986A priority Critical patent/JPH01222262A/en
Publication of JPH01222262A publication Critical patent/JPH01222262A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/028Layers in which after being exposed to heat patterns electrically conductive patterns are formed in the layers, e.g. for thermoxerography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Abstract

PURPOSE:To enable thermal writing and reusing thereof by obtd. a visible image by a heat impressing means on a thermochromic layer which becomes transparent and opaque reversibly. CONSTITUTION:A photoconductive layer 2 is formed below a thermochromic layer 1, wherein said photoconductive layer 2 comprises a function separating type one consisting of, for example, an org. conductor, and constituted of a charge generating layer 3 and a charge transfer layer 4. Further, the charge generating layer 3 is formed as an upper layer of said photoconductive layer 2, and a conductive base body 5 is constituted so as to thermally contact with the photoconductive layer 2. By this constitution, an image formed thermally on the thermochromic layer 1, if it is once formed, can be formed several times on the photoconductive layer by uniform general exposure basing on the image formed on the thermochromic layer as a block. By developing the formed image, many sheets of same originals are outputted rapidly. Moreover, since the thermochromic layer 1 is reversible, the photoconductive body is reusable optionally.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真技術を応用した新規な感光体及び画像
形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel photoreceptor and an image forming method using electrophotographic technology.

[従来の技術] 従来の感光体はAlの様な導電性基体上に光導電層を形
成したものであった。また従来の画像形成方法は、光導
電層表面を帯電する工程、光導電層表面にレーザービー
ム等の集束光を強度変調しながら照射しあるいは更に光
導電層面を走査することにより光照射部の帯電を消去し
静電潜像を形成する工程を含んでいた。
[Prior Art] A conventional photoreceptor has a photoconductive layer formed on a conductive substrate such as Al. In addition, conventional image forming methods include a step of charging the surface of the photoconductive layer, irradiating the surface of the photoconductive layer with focused light such as a laser beam while modulating the intensity, or further scanning the surface of the photoconductive layer to charge the light irradiated area. It included a step of erasing the image and forming an electrostatic latent image.

[発明が解決しようとする課題] しかし、かかる従来の感光体及び画像形成方法では、−
枚印字毎にレーザービーム等で静電潜像を形成しなけれ
ばならなかった。この場合レーザービームの強度に限界
があり、さらに強度変調スピードにも限界があり、同一
原稿の多数枚出力を迅速に行うこ仁はかなり無理があっ
た。また多数枚処理のためにゼロックス社がゼロリソグ
ラフィ技術による画像形成方法を提案しているが、この
方式では感光体を使い捨て方式としているためにメンテ
ナンスがかかり、ランニングコストが上昇するという欠
点があった。
[Problems to be Solved by the Invention] However, with such conventional photoreceptors and image forming methods, -
An electrostatic latent image had to be formed using a laser beam or the like for each print. In this case, there is a limit to the intensity of the laser beam, and there is also a limit to the intensity modulation speed, making it extremely difficult to quickly output multiple sheets of the same original. In addition, Xerox has proposed an image forming method using xerolithography technology for processing a large number of sheets, but this method requires maintenance because the photoreceptor is disposable and has the disadvantage of increasing running costs. .

そこで本発明では、従来のこのような問題点を解決する
ため、再使用可能でかつ一度画像形成を行えば簡単かつ
迅速な工程で同一原稿を複数枚出力できる新規な感光体
と新規な画像形成方法を提供することを目的とするもの
である。
Therefore, in order to solve these conventional problems, the present invention has developed a new photoreceptor that is reusable and can output multiple sheets of the same original in a simple and quick process once image formation is performed, and a new image forming method. The purpose is to provide a method.

[課題を解決するための手段] 上記課題を解決するため、本発明の感光体は、導電性基
体、光導電層、サーモクロミック層の構成からなること
を特徴とする。本発明の画像形成方法は本発明の感光体
のサーモクロミック層に熱により像形成する工程、サー
モクロミック層表面を均二帯電する工程、該形成像側か
ら均一露光して静電潜像を形成する工程、該静電潜像を
帯電粒子により可視像化する工程、を含むことを特徴と
する。
[Means for Solving the Problems] In order to solve the above problems, the photoreceptor of the present invention is characterized by comprising a conductive substrate, a photoconductive layer, and a thermochromic layer. The image forming method of the present invention includes a step of forming an image on the thermochromic layer of the photoreceptor of the present invention by heat, a step of uniformly charging the surface of the thermochromic layer, and a step of uniformly exposing the formed image side to form an electrostatic latent image. The electrostatic latent image is visualized using charged particles.

[作用コ 上記のように構成された感光体は、熱によりサーモクロ
ミック層に像を一度形成すると、均一全面露光によりサ
ーモクロミック層に形成された像を版として何度も光導
電層に画像形成ができ現像が行え同一原稿を多数枚迅速
に出力できる。またサーモクロミック層を可逆にできる
ので感光体は何回でも再使用できる。
[Function] Once an image is formed on the thermochromic layer by heat, the photoreceptor configured as described above uses the image formed on the thermochromic layer by uniform overall exposure as a plate to form an image many times on the photoconductive layer. It is possible to perform development and quickly output multiple copies of the same original. Furthermore, since the thermochromic layer can be made reversible, the photoreceptor can be reused any number of times.

以下、実施例により本発明の詳細を示す。Hereinafter, the details of the present invention will be shown by examples.

〔実施例コ 第一図に本発明の感光体の構成を示す。1のサーモクロ
ミック層は第4回ノンインパクトプリンティング技術論
文集p、57−60に示されたもので1μm程度の有機
低分子物質粒子を樹脂中に分散させたもので、厚みは1
0−20μm程度でその表面に樹脂保護膜を形成しであ
る。サーモクロミック層1は樹脂保護膜と合わせて電磯
絶縁件を示しである。サーモクロミック層1の下層には
光導電N2が形成されている。光導電層は有機光導電体
であっても無機光導電体であっても良いが、本実施例で
は有機光導電体である。有機光導電体は電荷発生層3と
電荷移動層4の二1からなる機能分離型を採っている。
[Example 1] Figure 1 shows the structure of the photoreceptor of the present invention. The thermochromic layer No. 1 is shown in the 4th Non-Impact Printing Technology Papers, p. 57-60, and is made by dispersing organic low-molecular substance particles of about 1 μm in resin, and has a thickness of 1 μm.
A resin protective film is formed on the surface with a thickness of about 0 to 20 μm. The thermochromic layer 1 together with the resin protective film provides electrical insulation properties. A photoconductive layer N2 is formed under the thermochromic layer 1. The photoconductive layer may be an organic photoconductor or an inorganic photoconductor, but in this example it is an organic photoconductor. The organic photoconductor is of a functionally separated type consisting of a charge generation layer 3 and a charge transfer layer 4.

電荷発生層としてはフタロシアニン系あるいはアゾ系の
顔料粒子を樹脂に分散させた膜である。電荷移動層とし
てはヒドラゾン系、スチルベン系、ベンジジン系などの
材料を樹脂に相溶させた膜である。光導電層の膜厚は1
0−50μm程度である。光導電層2は従来の構成とは
逆で電荷発生層が上部に形成しである。
The charge generation layer is a film in which phthalocyanine or azo pigment particles are dispersed in a resin. The charge transfer layer is a film made by dissolving hydrazone-based, stilbene-based, benzidine-based, or other materials in a resin. The thickness of the photoconductive layer is 1
It is about 0-50 μm. The photoconductive layer 2 has a charge generation layer formed thereon, which is the opposite of the conventional structure.

導電性基体5はアルミニウム上にAu金属層をスパッタ
、あるいは真空蒸着で形成したものかあるいは別の導電
性材料や絶縁性材料の表面にAuなどを形成したもので
光導電層2とオーミックコンタクトをとる構成としであ
る。サーモクロミック層、電荷発生層、電荷移動層いず
れも順次塗布乾燥して形成する。
The conductive substrate 5 is made by forming an Au metal layer on aluminum by sputtering or vacuum evaporation, or by forming Au on the surface of another conductive material or insulating material, and makes ohmic contact with the photoconductive layer 2. This is the configuration to take. The thermochromic layer, charge generation layer, and charge transfer layer are all formed by sequentially coating and drying.

本構成の感光体の場合、サーモクコミック層は透明状態
と不透明状態を可逆的にとることができ、サーモクロミ
ック層にサーマルヘッド等の熱印加手段を用いて可視像
をえることができる。第2図を用いてこの点を説明する
。室温のはじめの状態を全面不透明であるとする。次に
サーマルヘッド等により加熱してT2まで昇温すると透
明状態になりその後室温まで戻しても透明状態を維持し
ており可視像をえることができる。サーモクコミック層
全体をT3まで加熱してその後室温まで戻すことにより
全面が不透明状態になりはじめの状態に戻せる。このサ
イクルを繰り返すことができサーモクロミンク層は何度
も造形酸ができる。この可視像を露光マスクとして利用
することにより、サーモクローミック層側から感光体に
全面露光することにより光導電体上に何度でもパターン
露光することが可能である。従って一度画像を書き込め
ば感光体は画像を記憶しており容易に同一画像の複数枚
の出力が可能である。
In the case of the photoreceptor having this configuration, the thermochromic layer can reversibly take on a transparent state and an opaque state, and a visible image can be obtained by using heat application means such as a thermal head on the thermochromic layer. This point will be explained using FIG. Assume that the initial state at room temperature is completely opaque. Next, when the temperature is raised to T2 by heating with a thermal head or the like, it becomes transparent, and even if the temperature is then returned to room temperature, the transparent state is maintained and a visible image can be obtained. By heating the entire Thermocomic layer to T3 and then returning it to room temperature, the entire surface becomes opaque and can be returned to its initial state. This cycle can be repeated and the thermochromic layer can be shaped many times. By using this visible image as an exposure mask, it is possible to perform pattern exposure on the photoconductor any number of times by exposing the entire surface of the photoconductor to light from the thermochromic layer side. Therefore, once an image is written, the photoreceptor stores the image and can easily output multiple sheets of the same image.

この点を説明するために本発明の画像形成方法の例を第
3図に示す。はじめにサーモクコミック層1を不透明状
態にしておく。この状態のサーモクロミック層にサーマ
ルヘッド6を接触させ形成したい画像に応じてサーマル
ヘッド6に通電発熱しこの熱によりサーモクロミック層
に部分的に透明部7を形成し画像を書き込む(第3図(
A))。
To explain this point, an example of the image forming method of the present invention is shown in FIG. First, the thermocomic layer 1 is made opaque. The thermal head 6 is brought into contact with the thermochromic layer in this state, and the thermal head 6 is energized to generate heat according to the image desired to be formed, and by this heat, a transparent portion 7 is partially formed on the thermochromic layer and an image is written (see Fig. 3).
A)).

吹にサーモクロミック層1上にスコロトロンのコロナイ
オン発生器8により全面均一帯電を行う。
First, the entire surface of the thermochromic layer 1 is uniformly charged by a scorotron corona ion generator 8.

本例ではマイナスに帯電されている。サーモクロミック
層1は絶縁性である−のでサーモクロミック層だけで電
荷を保持できる。このとき光導電層と導電性基体の間の
界面には電荷の移動を阻止する障壁がないので光導電層
にはホールが注入され、更に、本例の電荷移動層はホー
ル移動型であるので注入されたホールは電荷移動層内を
移動しサーモクロミック層との界面にまで到達する(第
3図(B))。界面に到達した牢−ルは電荷移動層内の
トラップに捕獲され界面近傍に固定され移動できなくな
る。次に前の工程でサーモクロミック層に帯電させた帯
電電荷と逆極性のイオン(本例ではプラス)をスコロト
ロン9でサーモクロミック層に照射する(第3図(C)
)。更にこの状態でサーモクロミック層側から感光体に
均一光10を照射すると光導電体にパターン露光される
。つまりサーマルヘッドで加熱した部分に対応した光導
電体の電荷発生層に導電電荷が発生し光導電層内部の電
荷分布を変えてしまい結果としてサーモクコミック層に
形成された画像に応じた電位分布が感光体表面上にでき
る(第3図(D))。この場合全面均一露光でありビー
ムなどに形成する必要もなく小出力の光源で光量は十分
に確保でき非常に短時間の露光でよい。次に得られた静
電潜像をプラスのトナー11で現像することにより可視
像化する(第3図(E))。その後記録紙12を感光体
に接触させ記録紙裏面よりコロトロン13によりプラス
のイオンを照射し感光体上のトナーを記録紙に転写して
(第3図(E))、定着処理をして画像形成を終了する
。現像から定着までの画像形成の後半の部分は従来の電
子写真プロセスと同一である。複数枚出力するときは工
程(B)にもどってプロセスを繰り返す。必要枚数の出
力を行い終了するとT3までサーモクロミック贋全体を
加熱して全面不透明にもどし、さらにサーモクロミック
層全面に交流コロナを照射し電荷を消し次の画像形成に
備える。工程(B)から(D)までの感光体表面の電位
の推移を第4図に示す。
In this example, it is negatively charged. Since the thermochromic layer 1 is insulating, the thermochromic layer alone can hold charges. At this time, since there is no barrier to prevent charge movement at the interface between the photoconductive layer and the conductive substrate, holes are injected into the photoconductive layer, and furthermore, the charge transfer layer in this example is of the hole transfer type. The injected holes move within the charge transfer layer and reach the interface with the thermochromic layer (FIG. 3(B)). The prisons that reach the interface are captured by traps in the charge transfer layer and are fixed near the interface, making them unable to move. Next, the thermochromic layer is irradiated with ions of opposite polarity (in this example, positive) to the charge charged on the thermochromic layer in the previous step (Figure 3 (C)).
). Further, in this state, when the photoconductor is irradiated with uniform light 10 from the thermochromic layer side, the photoconductor is exposed in a pattern. In other words, conductive charges are generated in the charge generation layer of the photoconductor corresponding to the area heated by the thermal head, changing the charge distribution inside the photoconductor layer, resulting in a potential distribution corresponding to the image formed on the thermocomic layer. is formed on the surface of the photoreceptor (FIG. 3(D)). In this case, the exposure is uniform over the entire surface, and there is no need to form a beam or the like, and a sufficient amount of light can be secured using a low-output light source, and an extremely short exposure time is sufficient. Next, the obtained electrostatic latent image is developed with positive toner 11 to make it visible (FIG. 3(E)). After that, the recording paper 12 is brought into contact with the photoconductor, and positive ions are irradiated from the back side of the recording paper by the corotron 13, to transfer the toner on the photoconductor to the recording paper (Fig. 3 (E)), and a fixing process is performed to form an image. Finish forming. The latter part of image formation from development to fixing is the same as the conventional electrophotographic process. When outputting multiple sheets, return to step (B) and repeat the process. When the required number of sheets have been output, the entire thermochromic counterfeit is heated to T3 to return the entire surface to opaque, and the entire thermochromic layer is further irradiated with AC corona to erase the electric charge and prepare for the next image formation. FIG. 4 shows the change in potential on the surface of the photoreceptor from steps (B) to (D).

第5図に本発明の画像形成方法による画像形成装置の一
例の概略図を示す。この例では感光体13はド与ム状で
あり、ドラムの回りに各種のユニットが配置されてあり
、矢印15の向きに回転しながら画像形成を行う。書き
込みデバイス16はライン型サーマルヘッドであり可動
部がなく信頼性が高くコンパクトである6、初期化ヒー
ター25には赤外ランプヒーターを利用する。赤外ラン
プヒーターは応答が速く制御性も高いので感光体を加熱
し過ぎない。そのほかのユニットは従来の電子写真プロ
セスの画像形成装置で使用されているものを使用する。
FIG. 5 shows a schematic diagram of an example of an image forming apparatus using the image forming method of the present invention. In this example, the photoreceptor 13 has a dome shape, and various units are arranged around the drum, and images are formed while rotating in the direction of an arrow 15. The writing device 16 is a line-type thermal head, which has no moving parts and is highly reliable and compact6.The initialization heater 25 uses an infrared lamp heater. Infrared lamp heaters have a fast response and high controllability, so they do not overheat the photoreceptor. Other units are those used in conventional electrophotographic process image forming apparatuses.

[発明の効果] 以上述べたように本発明の感光体は熱により書き込みが
でき、しかも再使用が可能であり、従って本発明の感光
体を使用した画像形成方法は高速な多数枚印字が可能で
しかもランニン゛グコストが低い装置を提供できる。
[Effects of the Invention] As described above, the photoreceptor of the present invention can be written on by heat and can be reused. Therefore, the image forming method using the photoreceptor of the present invention enables high-speed printing on a large number of sheets. Moreover, it is possible to provide a device with low running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の感光体の構成を示す断面図である。 第2図は本発明の感光体のサーモクロミック層の相変化
の状態を示す特性図である。 第3図は本発明の画像形成方法の実施例を示す工程図で
ある。 第4図は第3図で示す実施例の画像形成工程中の感光体
上の電位の推移を示す図である。 第5図は本発明の感光体及び画像形成方法を使用した画
像形成装置の一例の概略図である。 1・・・サーモクロミック層 2・・・光導電層 3・・・電荷発生層 4・・・電荷移動層 5・・・導電性基体 6・・・サーマルヘッド 7・・・透明部 8・・・コロナイオン発生器(スコロトロン)9・・・
コロナイオン発生器(スコロトロン)10・・均一光 11・・トナー 12・・記録紙 13・・コロトロン 14・・感光体 15・・感光体の回転方向 16・・書き込みデバイス 17・・コロナイオン発生器(スコロトロン)18・・
コロナイオン発生器(スコロトロン)19・・全面露光
ランプ 20・ ・現像器 21・・記録紙 22・・コロトロン 23・・定着器 2−4・・クリーナー 25・・初期化ヒーター(赤外ランプヒーター)26・
・交流コロナ発生器 以  上 出願人 セイコーエプソン株式会社 第1図 1友 第2図 (A) 第3図 Cp) (E) 第3図 第4t!1 第51!1
FIG. 1 is a sectional view showing the structure of the photoreceptor of the present invention. FIG. 2 is a characteristic diagram showing the phase change state of the thermochromic layer of the photoreceptor of the present invention. FIG. 3 is a process diagram showing an embodiment of the image forming method of the present invention. FIG. 4 is a diagram showing the transition of the potential on the photoreceptor during the image forming process of the embodiment shown in FIG. 3. FIG. 5 is a schematic diagram of an example of an image forming apparatus using the photoreceptor and image forming method of the present invention. 1... Thermochromic layer 2... Photoconductive layer 3... Charge generation layer 4... Charge transfer layer 5... Conductive substrate 6... Thermal head 7... Transparent part 8...・Corona ion generator (scorotron) 9...
Corona ion generator (scorotron) 10... Uniform light 11... Toner 12... Recording paper 13... Corotron 14... Photoreceptor 15... Rotation direction of photoreceptor 16... Writing device 17... Corona ion generator (Scorotron) 18...
Corona ion generator (scorotron) 19...Full exposure lamp 20...Developer 21...Recording paper 22...Corotron 23...Fixer 2-4...Cleaner 25...Initialization heater (infrared lamp heater) 26・
・AC Corona Generator Applicant: Seiko Epson Co., Ltd. Figure 1 Friend Figure 2 (A) Figure 3 Cp) (E) Figure 3 Figure 4t! 1 51st!1

Claims (1)

【特許請求の範囲】 1、導電性基体、光導電層、サーモクロミック層の構成
からなることを特徴とする感光体。 2、第一項記載の感光体のサーモクロミック層に熱によ
り像形成する工程、サーモクロミック層表面を均一帯電
する工程、該形成像側から均一露光して静電潜像を形成
する工程、該静電潜像を帯電粒子により可視像化する工
程、を含むことを特徴とする画像形成方法。
[Scope of Claims] 1. A photoreceptor comprising a conductive substrate, a photoconductive layer, and a thermochromic layer. 2. A step of thermally forming an image on the thermochromic layer of the photoreceptor described in item 1, a step of uniformly charging the surface of the thermochromic layer, a step of uniformly exposing the formed image side to form an electrostatic latent image, An image forming method comprising the step of visualizing an electrostatic latent image using charged particles.
JP63047986A 1988-03-01 1988-03-01 Photosensitive body and image forming process Pending JPH01222262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047986A JPH01222262A (en) 1988-03-01 1988-03-01 Photosensitive body and image forming process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047986A JPH01222262A (en) 1988-03-01 1988-03-01 Photosensitive body and image forming process

Publications (1)

Publication Number Publication Date
JPH01222262A true JPH01222262A (en) 1989-09-05

Family

ID=12790639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047986A Pending JPH01222262A (en) 1988-03-01 1988-03-01 Photosensitive body and image forming process

Country Status (1)

Country Link
JP (1) JPH01222262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807142B2 (en) 2019-03-06 2023-11-07 Lear Corporation Electrical track assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807142B2 (en) 2019-03-06 2023-11-07 Lear Corporation Electrical track assembly

Similar Documents

Publication Publication Date Title
Schein Electrophotography and development physics
Pai et al. Physics of electrophotography
US4545669A (en) Low voltage electrophotography with simultaneous photoreceptor charging, exposure and development
US3663219A (en) Electrophotographic process
JPH05224469A (en) Simultaneous printing method wherein fixed data and variable data are improved
US4641948A (en) Method of and device for preventing disturbance of unfixed visible image
US4298669A (en) Electrophotographic process and apparatus
JPH03264978A (en) Zero-printing method
US3318698A (en) Xeroprinting reproduction
JPH04352183A (en) Image forming method
US4047945A (en) Xeroprinting master and process
JPH01222262A (en) Photosensitive body and image forming process
US4077803A (en) Low charge-voltage frost recording on a photosensitive thermoplastic medium
JPS604461B2 (en) Image forming method
JPH01221265A (en) Image forming device
US3950167A (en) Imaging system
JPH01222261A (en) Photosensitive body and image forming process
US3247794A (en) Transfer process
US5914741A (en) Method of creating multiple electrostatic latent images on a pyroelectric imaging member for single transfer of a developed multiple layer image
JPH01221266A (en) Image forming device
JPH03200276A (en) Overhead projector original forming device
US3971658A (en) Imaging process employing friction charging in the presence of an electrically insulating liquid
JPH056058A (en) Copying device
JPS5875168A (en) Image recording method
JPH03159785A (en) Heat reversible recording medium and image-forming apparatus