JPH0122207B2 - - Google Patents

Info

Publication number
JPH0122207B2
JPH0122207B2 JP59210458A JP21045884A JPH0122207B2 JP H0122207 B2 JPH0122207 B2 JP H0122207B2 JP 59210458 A JP59210458 A JP 59210458A JP 21045884 A JP21045884 A JP 21045884A JP H0122207 B2 JPH0122207 B2 JP H0122207B2
Authority
JP
Japan
Prior art keywords
nipple
coating
optical fiber
pressure
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59210458A
Other languages
Japanese (ja)
Other versions
JPS6191045A (en
Inventor
Katsuyuki Tsuneishi
Masakatsu Sugai
Masaaki Yoshida
Tooru Yamanishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59210458A priority Critical patent/JPS6191045A/en
Publication of JPS6191045A publication Critical patent/JPS6191045A/en
Publication of JPH0122207B2 publication Critical patent/JPH0122207B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Coating Apparatus (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光伝送用ガラスフアイバ(以下光フア
イバと称す)の樹脂被覆方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of coating a glass fiber for optical transmission (hereinafter referred to as an optical fiber) with a resin.

〔従来の技術〕 光フアイバは、通常その素材がガラスであり
200μm以下の細径に加工されることから、その
機械強度改善のため光フアイバ母材を抵抗炉、高
周波炉、CO2レーザー酸水素炎等で溶融紡糸した
直後に、樹脂組成物を塗布硬化させ、ガラスの強
度を保持すると共にその後の傷の発生を防ぐいわ
ゆるタンデムプライマリーコート法が採られてい
る(特開昭51−100734号公報)。
[Prior art] Optical fibers are usually made of glass.
Since it is processed into a thin diameter of 200 μm or less, a resin composition is applied and hardened immediately after the optical fiber base material is melt-spun in a resistance furnace, high frequency furnace, CO 2 laser oxyhydrogen flame, etc. to improve its mechanical strength. A so-called tandem primary coating method is used to maintain the strength of the glass and prevent subsequent scratches (Japanese Patent Laid-Open No. 100734/1983).

一方、光フアイバの紡糸速度は、フアイバの量
産性、経済性の点からますます高速化の傾向にあ
り、上記プラスチツク被覆の塗布方法として、加
圧方式が検討されている。この方法は第2図に示
すように光フアイバ母材1を抵抗炉2で溶融紡糸
してフアイバ3とした直後に、加圧塗布装置4で
樹脂組成物を塗布し、硬化炉5にて硬化させた
後、巻取り機6で巻きとるものである。
On the other hand, the spinning speed of optical fibers is becoming increasingly faster from the viewpoints of mass production and economy, and a pressurized method is being considered as a method of applying the plastic coating. In this method, as shown in FIG. 2, an optical fiber base material 1 is melt-spun to form a fiber 3 in a resistance furnace 2, immediately after which a resin composition is applied with a pressure coating device 4 and cured in a curing furnace 5. After that, it is wound up by a winding machine 6.

従来の加圧塗布装置の詳細を第3図に示す。第
3図において、加圧塗布装置は先端の成形穴13
につながる円錐形の空間を有するダイス7と、ホ
ツパー状ニツプル8から構成されており、圧入孔
9より樹脂組成物を加圧空間に圧入し、ニツプル
内部11及びニツプル穴12を通つてきた光フア
イバ3にダイス穴13で成形しながら塗布する。
この際、光フアイバへの樹脂組成物の塗布量は、
光フアイバのけん引流14による量と圧力流15
による量の和で決定される。このため、樹脂組成
物の一定の塗布外径を得るためには、線速の上昇
に伴ない、樹脂組成物に加える圧力も上昇させる
必要がある。
Details of a conventional pressure coating device are shown in FIG. In FIG. 3, the pressure application device
It is composed of a die 7 having a conical space connected to the hopper-shaped nipple 8, and a resin composition is press-fitted into the pressurized space through the press-fitting hole 9, and the optical fiber passing through the inside 11 of the nipple and the nipple hole 12 is 3, apply while molding with the die hole 13.
At this time, the amount of resin composition applied to the optical fiber is
Volume and pressure flow 15 due to optical fiber traction flow 14
It is determined by the sum of the quantities. Therefore, in order to obtain a constant coating outer diameter of the resin composition, it is necessary to increase the pressure applied to the resin composition as the linear speed increases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上述のごとき従来の構造では、線
速の上昇に伴なつて、圧力を上げると圧入された
樹脂組成物が、ニツプル穴12を通つてニツプル
内11に逆流30し滞流する。ニツプル内11に
樹脂組成物が滞流するとけん引による樹脂組成物
の光フアイバへの塗布は、ニツプル内11での樹
脂組成物の自然な流体の流れに依存するため紡糸
速度が速くなると塗布できなくなるため、光フア
イバの紡糸速度は、ニツプル内11に樹脂組成物
が逆流しないような圧力で制限されている。
However, in the conventional structure as described above, when the pressure is increased as the linear velocity increases, the press-fitted resin composition flows back 30 into the nipple 11 through the nipple hole 12 and stagnates therein. When the resin composition stagnates in the nipple 11, the application of the resin composition to the optical fiber by traction depends on the natural fluid flow of the resin composition in the nipple 11, so it becomes impossible to apply the resin composition as the spinning speed increases. Therefore, the spinning speed of the optical fiber is limited to a pressure that prevents the resin composition from flowing back into the nipple 11.

また、より高圧力を得るため、ニツプル穴12
の径をダイス穴13の径より小さくする、又はニ
ツプル穴のランド長を長くすることによつてニツ
プル内11に逆流を生じさせないような方法が用
いられているが、ニツプル穴径を小さくすると光
フアイバがニツプル穴に接触し、強度の劣化を生
じるという問題がある。
In addition, in order to obtain higher pressure, the nipple hole 12
Methods have been used to prevent backflow in the nipple 11 by making the diameter of the nipple smaller than the diameter of the die hole 13 or by increasing the land length of the nipple hole. There is a problem in that the fiber comes into contact with the nipple hole, causing deterioration in strength.

本発明の目的はこれらの問題を解決するところ
にあり、光フアイバ強度を保持すると共に、高圧
力を得るための塗布方法を提供するところにあ
る。
An object of the present invention is to solve these problems, and to provide a coating method that maintains optical fiber strength and obtains high pressure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、ダイス方向に樹脂組成物の供給
圧力を徐々に大きくしてゆけば、ニツプル内への
樹脂組成物の逆流を防止でき、高圧力を保持でき
ることに想到し、本発明の方法および装置を創案
したものである。
The present inventors have come up with the idea that by gradually increasing the supply pressure of the resin composition in the direction of the die, it is possible to prevent the resin composition from flowing back into the nipple and maintain a high pressure. and invented the device.

すなわち本発明は、光フアイバの紡糸速度に対
応して被覆材料を加圧押出すことにより光フアイ
バを被覆する方法において、複数ケ所の被覆材料
を加圧する空間における被覆材料の圧力を、ダイ
ス出口に向けて順次大きくしてゆくことを特徴と
する光フアイバの被覆方法を提供する。
That is, the present invention provides a method for coating an optical fiber by extruding a coating material under pressure in accordance with the spinning speed of the optical fiber, in which the pressure of the coating material in a space where the coating material is pressurized at a plurality of locations is transferred to the exit of a die. Provided is a method for coating an optical fiber, which is characterized by gradually increasing the size of the optical fiber.

以下本発明の被覆方法を第1図に基き説明す
る。第1図は本発明の1実施態様の説明図であつ
て、図中3は光フアイバ、16はダイス穴、17
はダイス、18はニツプル、19〜23は樹脂組
成物圧入口、24〜28はニツプル穴、29はニ
ツプル内空間を示し、P0は大気圧、P1〜Pnは樹
脂圧力をあらわす。
The coating method of the present invention will be explained below with reference to FIG. FIG. 1 is an explanatory diagram of one embodiment of the present invention, in which 3 is an optical fiber, 16 is a die hole, and 17 is an explanatory diagram of an embodiment of the present invention.
18 is a die, 18 is a nipple, 19 to 23 are resin composition inlet ports, 24 to 28 are nipple holes, 29 is a space inside the nipple, P 0 is atmospheric pressure, and P 1 to Pn are resin pressures.

塗布装置は、先端の成形穴16につながる円す
い形の空間を有するダイス17の前記空間に、同
様の円すい形の空間を有するニツプル18を位置
させ、更に、前記ニツプル18の空間に同形状の
ニツプルを複数個位置させることで複数の樹脂加
圧空間を有している。
The coating device positions a nipple 18 having a similar conical space in the space of the die 17 having a conical space connected to the molding hole 16 at the tip, and further positions a nipple 18 having the same shape in the space of the nipple 18. By locating a plurality of , a plurality of resin pressurizing spaces are provided.

光フアイバ母材1より線引された光フアイバ3
は、各々のニツプル穴24,25,26,27及
び28を通つてダイス穴16で樹脂組成物を塗布
される。樹脂組成物は、各ニツプル間の樹脂圧入
口19,20,21,22及びニツプルとダイス
間の樹脂圧入口23から加圧供給される。樹脂圧
入口19より供給される樹脂の圧力はニツプル内
部29に樹脂が逆流しないような大気圧:P0
り大きい圧力P1で加圧される。また、樹脂圧入
口20より供給される樹脂の圧力P2はP1<P2
関係を有しており、同様にP2<P3、P3<P4の関
係で樹脂圧入口21,22より樹脂組成物を加圧
供給し、最終的に所望の圧力Pnを得る。
Optical fiber 3 drawn from optical fiber base material 1
The resin composition is applied at die hole 16 through each nipple hole 24, 25, 26, 27 and 28. The resin composition is supplied under pressure from resin pressure inlets 19, 20, 21, 22 between each nipple and resin pressure inlet 23 between the nipple and the die. The pressure of the resin supplied from the resin pressure inlet 19 is increased to a pressure P 1 greater than the atmospheric pressure: P 0 so that the resin does not flow back into the nipple interior 29 . Further, the pressure P 2 of the resin supplied from the resin injection port 20 has a relationship of P 1 <P 2 , and similarly, the pressure P 2 of the resin supplied from the resin injection port 20 has the relationship of P 1 <P 3 and P 3 <P 4 . 22, the resin composition is supplied under pressure to finally obtain the desired pressure Pn.

このように、ニツプル内への樹脂の逆流を生じ
させない様、n個の加圧空間を有し、各加圧空間
へ供給する樹脂組成物の圧力をP0<P1<P2…<
Pnの関係にすることで、ニツプル穴径を小さく
する又は、ニツプル穴のランド長を長くすること
なく、高圧力で樹脂組成物を加圧供給することが
でき、光フアイバの強度劣化なく線速300m/
min以上の線速で樹脂組成物を均一に被覆するこ
とができる。又、ニツプル穴24,25,26,
27及び28の穴径の関係を24<25<26<
27<…<28のようにダイス出口に向けて順次
大きくしてゆくことで、より大きな効果が得られ
る。
In this way, in order to prevent the resin from flowing back into the nipple, there are n pressurized spaces, and the pressure of the resin composition supplied to each pressurized space is set to P 0 <P 1 <P 2 ...<
By setting the Pn relationship, the resin composition can be supplied under high pressure without reducing the diameter of the nipple hole or increasing the land length of the nipple hole, and the linear speed is maintained without deteriorating the strength of the optical fiber. 300m/
The resin composition can be uniformly coated at a linear speed of min or more. Also, nipple holes 24, 25, 26,
The relationship between hole diameters 27 and 28 is 24<25<26<
A larger effect can be obtained by gradually increasing the size toward the die exit, such as 27<...<28.

〔実施例〕〔Example〕

実施例 1 第1図に示した装置を用いて、光フアイバの被
覆を行つた。
Example 1 An optical fiber was coated using the apparatus shown in FIG.

母材径22mmφの光フアイバ母材を抵抗炉で2000
〜2100℃に加熱し、直径125μmのフアイバを紡
糸し、従来のニツプル穴径0.4mmφ、ランド長0.5
mm、ダイス径0.5mmφの加圧空間1ケ所の加圧ダ
イスを用い、線速100m/min、樹脂圧1.5Kg/cm2
の条牛下では、被覆径400μm±1μmで樹脂組成
物を被覆できたが、線速を200m/minまで上昇
させ樹脂組成物の圧力を線速の上昇に伴い上げて
いつたところ、約3Kg/cm2程度で樹脂組成物がニ
ツプル内に逆流し、400μmの被覆外径は得られ
なかつた。
Optical fiber base material with a base material diameter of 22 mmφ was heated in a resistance furnace for 2000 min.
Heating to ~2100℃, spinning a fiber with a diameter of 125μm, a conventional nipple hole diameter of 0.4mmφ and land length of 0.5
mm, using a pressurizing die with one pressurizing space of die diameter 0.5mmφ, linear speed 100m/min, resin pressure 1.5Kg/cm 2
The resin composition was able to be coated with a coating diameter of 400 μm ± 1 μm under the row of 2000, but when the linear speed was increased to 200 m/min and the pressure of the resin composition was increased as the linear speed increased, the coating was approximately 3 kg/min. The resin composition flowed back into the nipple at about cm 2 and a coating outer diameter of 400 μm could not be obtained.

次に第1図の構成で、ニツプル穴径0.4mmφ、
ランド長0.5mm、ダイス径0.5mmφで、加圧空間を
3ケ所有する装置を用い、各樹脂供給口より上部
からダイス出口に向かい順次1Kg/cm2、2Kg/
cm2、4Kg/cm2の圧力で樹脂組成物を加圧供給した
ところ、線速200m/minでも400μm±1μmの被
覆外径が得られた。又、線速を300m/minまで
上昇しても、2Kg/cm2、4Kg/cm2、7Kg/cm2で樹
脂組成物を加圧供給することで被覆径400μm±
1μmを得ることができた。
Next, with the configuration shown in Figure 1, the nipple hole diameter is 0.4 mmφ,
Using a device with a land length of 0.5 mm, a die diameter of 0.5 mmφ, and three pressurized spaces, 1 Kg/cm 2 and 2 Kg/
When the resin composition was supplied under pressure at a pressure of 4 kg/cm 2 and 4 kg/cm 2 , a coating outer diameter of 400 μm±1 μm was obtained even at a linear speed of 200 m/min. Furthermore, even if the linear speed is increased to 300 m/min, the coating diameter can be maintained at 400 μm± by supplying the resin composition under pressure at 2 Kg/cm 2 , 4 Kg/cm 2 , and 7 Kg/cm 2 .
We were able to obtain 1 μm.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明の方法は複数の加圧
空間を有し、ダイスの方向に徐々に樹脂組成物の
供給圧力を上げていくことで、ニツプル内への樹
脂組成物の逆流を生じさせずに、樹脂組成物を高
圧力で供給できるに加え、ニツプル穴を小さくす
ることもないので光フアイバの強度劣化も生じな
いので、光フアイバの紡糸速度上昇に対応した被
覆が可能であり、量産性向上、経済性向上に非常
に有利である。
As explained above, the method of the present invention has a plurality of pressurized spaces, and by gradually increasing the supply pressure of the resin composition in the direction of the die, a backflow of the resin composition into the nipple is caused. In addition to being able to supply the resin composition at high pressure without reducing the size of the nipple hole, the strength of the optical fiber does not deteriorate because the nipple hole does not need to be made small. It is very advantageous for improving performance and economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施態様を概略説明す
る図、第2図は光フアイバ線引、被覆巻取、工程
の説明図、第3図は従来の加圧方式のダイスの構
造を説明する図である。
Fig. 1 is a diagram schematically explaining an embodiment of the method of the present invention, Fig. 2 is an explanatory diagram of the optical fiber drawing, coating winding, and steps, and Fig. 3 is an illustration of the structure of a conventional pressurized die. This is a diagram.

Claims (1)

【特許請求の範囲】 1 光フアイバの紡糸速度に対応して被覆材料を
加圧押出すことにより光フアイバを被覆する方法
において、複数ケ所の被覆材料を加圧する空間に
おける被覆材料の圧力を、ダイス出口に向けて順
次大きくしてゆくことを特徴とする光フアイバの
被覆方法。 2 上記被覆材料を加圧する空間を、先端の成形
穴につながる円すい形の空間を有するダイスの該
空間に、同様の円すい形の空間を有するニツプル
を複数個間〓を保つて積み重ねることにより形成
し、かつ該ニツプルの穴径を該ダイス出口にむけ
て順次大きくしたダイスを用いて被覆することを
特徴とする特許請求の範囲第1項に記載の光フア
イバの被覆方法。
[Scope of Claims] 1. In a method of coating an optical fiber by extruding a coating material under pressure in accordance with the spinning speed of the optical fiber, the pressure of the coating material in a space where the coating material is pressurized at a plurality of locations is controlled by a die. A method for coating an optical fiber, which is characterized by gradually increasing the size toward the exit. 2. A space for pressurizing the coating material is formed by stacking a plurality of nipples each having a similar conical space at a distance from each other in the space of a die having a conical space connected to the molding hole at the tip. The method of coating an optical fiber according to claim 1, characterized in that the coating is carried out using a die in which the hole diameter of the nipple is gradually increased toward the exit of the die.
JP59210458A 1984-10-09 1984-10-09 Method and apparatus for coating of optical fiber Granted JPS6191045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210458A JPS6191045A (en) 1984-10-09 1984-10-09 Method and apparatus for coating of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210458A JPS6191045A (en) 1984-10-09 1984-10-09 Method and apparatus for coating of optical fiber

Publications (2)

Publication Number Publication Date
JPS6191045A JPS6191045A (en) 1986-05-09
JPH0122207B2 true JPH0122207B2 (en) 1989-04-25

Family

ID=16589664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210458A Granted JPS6191045A (en) 1984-10-09 1984-10-09 Method and apparatus for coating of optical fiber

Country Status (1)

Country Link
JP (1) JPS6191045A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467210B (en) * 2013-06-07 2020-09-29 株式会社藤仓 Bare optical fiber covering device and bare optical fiber covering method
JP5961653B2 (en) * 2014-04-11 2016-08-02 株式会社フジクラ Optical fiber manufacturing method and optical fiber manufacturing apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788038A (en) * 1980-11-21 1982-06-01 Fujitsu Ltd Coating apparatus for optical fiber with resin
JPS6042243A (en) * 1983-04-27 1985-03-06 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン Apparatus for manufacturing coated optical fiber from preform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788038A (en) * 1980-11-21 1982-06-01 Fujitsu Ltd Coating apparatus for optical fiber with resin
JPS6042243A (en) * 1983-04-27 1985-03-06 インタ−ナシヨナル・スタンダ−ド・エレクトリツク・コ−ポレイシヨン Apparatus for manufacturing coated optical fiber from preform

Also Published As

Publication number Publication date
JPS6191045A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US7045010B2 (en) Applicator for high-speed gel buffering of flextube optical fiber bundles
CN1024180C (en) Methods of and apparatus for coating optical fiber and products produced thereby
JP2765033B2 (en) Optical fiber drawing method
US4510884A (en) Device for providing a dual coating on an optical fiber
KR950000628B1 (en) Resin coating device for optical fiber
JPH0122207B2 (en)
JP2003183056A (en) Die for spinning optical fiber, device and method for spinning optical fiber
EP3573936B1 (en) Optical fiber coating die with reduced wetted length
JP3717210B2 (en) Optical fiber coating method
JPS6065748A (en) High-pressure coating apparatus
JPS58132534A (en) Covering method of line material
JPH10338551A (en) Method for coating optical fiber
JP3108510B2 (en) Optical fiber manufacturing method
JP3383565B2 (en) Optical fiber ribbon manufacturing method
JPH11106239A (en) Coating device in optical fiber drawing
JPH06279047A (en) Production of coated optical fiber
JPH06293537A (en) Method for coating optical fiber
JPH0570182A (en) Production of optical fiber element wire
JPH09178961A (en) Production of plastic optical fiber
JPS59156941A (en) Method for reinforcing glass fiber for optical transmission
JPH04367541A (en) Production of optical fiber strand having small diameter
JPH0692693A (en) Method for coating optical fiber with resin
JPS58120540A (en) Production of glass fiber for optical transmission
JPS5869734A (en) Coating method of optical fiber
JPS60215554A (en) Method for coating optical fiber and coating apparatus