JPH01221A - How to continuously process cold rolled carbon manganese steel - Google Patents

How to continuously process cold rolled carbon manganese steel

Info

Publication number
JPH01221A
JPH01221A JP63-87049A JP8704988A JPH01221A JP H01221 A JPH01221 A JP H01221A JP 8704988 A JP8704988 A JP 8704988A JP H01221 A JPH01221 A JP H01221A
Authority
JP
Japan
Prior art keywords
steel
temperature
range
mpa
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63-87049A
Other languages
Japanese (ja)
Other versions
JP2677326B2 (en
JPS64221A (en
Inventor
ジョージ クラウス
フィリップ エム.ロバーツ
Original Assignee
シグノード コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/037,185 external-priority patent/US4793869A/en
Priority claimed from US07/037,186 external-priority patent/US4793870A/en
Application filed by シグノード コーポレーション filed Critical シグノード コーポレーション
Publication of JPS64221A publication Critical patent/JPS64221A/en
Publication of JPH01221A publication Critical patent/JPH01221A/en
Application granted granted Critical
Publication of JP2677326B2 publication Critical patent/JP2677326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 今日では、IIA造用炭素鋼より降伏点および引張強さ
を含む機械的性質が就中高いことを特徴とする一群の鋼
が存在する。それらは高強度低合金(トl5LA)鋼と
して知られている。各種のH8LA鋼が入手可能であり
、その中にはC−Mn鋼や、Nb、V並びにTiのごと
き元素を添加することによりマイクロアロイ化して機械
的性質を高めた鋼がある。H8LAIIの需要は本来輸
送装置において強度対重量比を改善して自重を低減する
必要から発生した。今日では、H8LA鋼は本来の用途
に加えて車両、建設機械、材料取扱装置、橋梁および建
築物を含む広範囲の用途に用いられている。
DETAILED DESCRIPTION OF THE INVENTION Today there exists a family of steels that are characterized by inter alia higher mechanical properties, including yield point and tensile strength, than IIA building carbon steels. They are known as high strength low alloy (TR5LA) steels. Various H8LA steels are available, including C--Mn steels and steels that have been microalloyed with the addition of elements such as Nb, V, and Ti to enhance mechanical properties. Demand for H8LAII originally arose from the need to improve the strength-to-weight ratio and reduce dead weight in transportation equipment. Today, H8LA steel is used in a wide variety of applications, including vehicles, construction equipment, material handling equipment, bridges, and buildings in addition to its original use.

市販のH8LA鋼は鈎型的に275〜345MPa以上
の降伏点および410〜480 MPa以上の引張強さ
を有する。H8LA鋼の機械的性質およびその他の特性
は5AEJJI格(5ociety of^utomo
tive Engineesrs ) J 410 c
のごとき標準規格に述べられている。マイクロアロイ化
(licroallOvinQ )元素を添加したH8
LA鋼は345〜550MPa以上の降伏点および45
0〜655 MPa以上の引張強さのような更に高い強
度を有する。これらの鋼ではNb、V、Ti、7rおよ
び稀土類元素のごとき合金元集を一般的にo、io〜0
.15%未満の濃度で添加してより^い強度水準を達成
している。マイクロアロイ化したH8LASMの特性は
連続式ホットストリップミルでの111111された圧
延から得られるので熱処理は含まれていない。
Commercially available H8LA steel has a hook-shaped yield point of 275-345 MPa or more and a tensile strength of 410-480 MPa or more. The mechanical properties and other properties of H8LA steel are rated 5AEJJI (5ociety of^tomo
tive Engineers) J 410 c
It is stated in standards such as H8 added with microalloying (licroallOvinQ) elements
LA steel has a yield point of 345 to 550 MPa or more and a yield point of 45
It has even higher strength, such as tensile strength of 0-655 MPa or more. These steels generally contain alloying elements such as Nb, V, Ti, 7r, and rare earth elements in o, io~0
.. It has been added at concentrations below 15% to achieve higher strength levels. The properties of the microalloyed H8LASM are obtained from continuous rolling in a continuous hot strip mill, so no heat treatment is involved.

SAE規格J410cの^強度低合金鋼の一つのグレー
ドにグレード950A、B、C,Dがあり、それは34
5 MPa以上の耐力(0,2%オフセット)、480
MPa以上の引張強ざおよび22%以上の伸び(51:
1m試験片)を有することを特徴とする。この材料は熱
間圧延のままの状態でその機械的性質を示し、さらに薄
板の厚さに冷間加工する場合には長時間の低温回復焼鈍
を施し圧延のままの機械的性質を維持する。
There are grades 950A, B, C, and D in the SAE standard J410c^ strength low alloy steel, which is 34
Proof strength of 5 MPa or more (0.2% offset), 480
Tensile strength of MPa or more and elongation of 22% or more (51:
It is characterized by having a 1 m test piece). This material exhibits its mechanical properties in the as-hot-rolled state, and when it is further cold-worked to a thin plate thickness, it is subjected to a long-term low-temperature recovery annealing to maintain the mechanical properties in the as-rolled state.

SAE規格J410cの微量の合金を添加した高倫度低
合金鋼のもう一つのグレードにグレード970 Xがあ
り、それは480 MPa以上の耐力(0,2%オフセ
ット)、585MPa以上の引張強さおよび14%以上
の伸び(5I:Il試験片)を有することを特徴とする
。上記のごとくこの材料は熱間圧延のままの状態でその
機械的性質を示す。
Another grade of high-quality low-alloy steel with trace alloy additions to SAE standard J410c is grade 970 % or more (5I:Il test piece). As mentioned above, this material exhibits its mechanical properties in the as-hot-rolled state.

さらに薄板の厚さに冷間加工する場合には同様に長時間
の低温の回復焼鈍を施し制御された圧延による機械的性
質を維持する。マイクロアロイ化元素添加による原価増
加に加えてこの回復焼鈍は、ボックス焼鈍(box a
nnealing )に要する長時間あるいは連続焼鈍
装置に要する莫大な投資の故に不利ぐある。
Furthermore, when cold working to a thin sheet thickness, a long period of low-temperature recovery annealing is similarly applied to maintain the mechanical properties achieved by controlled rolling. In addition to the cost increase due to the addition of microalloying elements, this recovery annealing is
This is disadvantageous due to the long time required for the annealing process or the huge investment required in continuous annealing equipment.

かくして今日においては、H8LΔ鋼の用途に必要な望
ましい強度と延性とを兼ねそなえ、尚かつ長時間の回復
焼鈍の必要なく経済的に冷間加工薄板材から製造するこ
とができる鋼の需要がある。
Thus, there is a need today for a steel that has the desired strength and ductility necessary for H8LΔ steel applications, yet can be economically produced from cold-worked sheet stock without the need for extended recovery annealing. .

さらに、Nb、Tiおよび■のごときマイクロアロイ化
元素を意図的に添加することをなくすことによって著し
く鋼の原価を上げることなく機械的性質、特に降伏点お
よび引張強さをより高めた綱の需要がある。
Furthermore, there is a need for steels with improved mechanical properties, particularly yield point and tensile strength, without significantly increasing the cost of steel by eliminating the intentional addition of microalloying elements such as Nb, Ti, and ■. There is.

比較的低い炭素含有量でありしかも高価なマイクロアロ
イ化剤を含有しないことを特徴とし、なおもたとえばS
AE規格J 410 cのグレード950A、B、C1
Dおよび970Xのごときマイクロ70イ化したl−I
 S L A鋼の規格を満足する降伏点、引張強さおよ
び伸びのごとき機械的性質を処理した状態で示すことを
特徴とする、冷間加工鋼組成物を処理する方法を提供す
ることが本発明の主要な目的である。さらに、連続的な
工程で比較的拘束でかつ非常に経済的に製造することが
できしかもマイクロアロイ化したH3LΔ鋼の均一なよ
り高い機械的性質を有する冷間加工鋼を製造する方法を
提供することも本発明の主要な目的である。
It is characterized by a relatively low carbon content and does not contain expensive microalloying agents, yet still contains e.g.
AE standard J 410 c grade 950A, B, C1
D and 970X micro-70-sized l-I
It is an object of the present invention to provide a method for processing a cold-worked steel composition characterized in that the processed state exhibits mechanical properties such as yield point, tensile strength and elongation that satisfy the specifications for SLA steel. This is the main purpose of the invention. Furthermore, we provide a method for producing cold-worked steels that can be produced in a continuous process relatively constraint and very economically, yet have uniformly higher mechanical properties than microalloyed H3LΔ steels. This is also a main objective of the present invention.

この目的のために、本発明はマイクアロイ化しない低C
−Mn鋼組成物およびそれの熱処理方法に向けられてい
る。本発明に含まれている一つの銅相或は0.04〜0
.15重叩%C10,25〜0.701ffi%Mnで
ある。Nb1T iおよび■のごとぎマイクロアロイ化
元素を鋼組成に添加して機械的性質を高めることは行わ
ない。希望する板厚、例えば0.078〜0.236m
+の範囲に冷間加工した鋼を連続的に三段階の加熱ステ
ージを通過させる。第一のステージは予熱ステージであ
り冷間圧延した板の温度を約700°F〜1000下の
範囲の温度に上げる。
To this end, the present invention proposes a low C without microalloying
- Mn steel compositions and methods of heat treatment thereof. One copper phase included in the present invention or 0.04-0
.. 15 double beating%C10,25~0.701ffi%Mn. Microalloying elements such as Nb1Ti and ■ are not added to the steel composition to enhance mechanical properties. Desired plate thickness, e.g. 0.078-0.236m
Steel that has been cold-worked to a + range is successively passed through three heating stages. The first stage is a preheating stage which raises the temperature of the cold rolled sheet to a temperature in the range of about 700°F to below 1000°F.

次に、鋼は1625°F〜1725下の範囲の温度に加
熱し、650下〜750°Fの範囲の温度に急冷し、そ
して次にvmに冷却する。本発明に含まれるもう一つの
鋼組成は0.11〜0.18重量%Cおよび1.20〜
1.40重重量%nである。
The steel is then heated to a temperature ranging from below 1625°F to below 1725°F, quenched to a temperature ranging from below 650°F to 750°F, and then cooled to vm. Another steel composition included in the invention is 0.11 to 0.18 wt.% C and 1.20 to
1.40wt%n.

鋼は同様に希望する板厚、たとえば0.078〜0.2
36411+の範囲に冷間加工し連続的に三段階の加熱
ステージを通過させる。第一ステージは予熱ステージで
あり約700°F〜1000下の範囲の温度に冷間圧延
した板の温度を上げる。次に、鋼を1500下〜157
5下の範囲の温度に加熱し、850°F〜950下の範
囲の温度に急冷し、そして次に室温に冷却する。
Similarly, the desired thickness of steel, e.g. 0.078 to 0.2
It is cold worked to a temperature range of 36411+ and passed through three successive heating stages. The first stage is the preheating stage, which raises the temperature of the cold rolled sheet to a temperature in the range of about 700°F to below 1000°F. Next, lower the steel to 1500 to 157
Heat to a temperature in the range below 5°F, rapidly cool to a temperature in the range from 850°F to below 950°F, and then cool to room temperature.

いずれの場合も熱処理を50〜300フイ一ト/分の範
囲のライン速度で連続的に行うことにより希望する厚さ
および幅の連続薄鋼板を三段階の加熱ステージを連続的
かつ順次に通過させる。
In either case, the heat treatment is performed continuously at a line speed in the range of 50 to 300 feet/min, so that a continuous thin steel plate of the desired thickness and width is passed through three heating stages continuously and sequentially. .

現時点で好ましい鋼組成の一つに0.10〜0.15重
量%C1約0.25へ−0,70Φ吊%Mnおよび残部
としてFeと脱酸に伴う通常の残留成分とを有する鋼が
ある。上記の第一の熱処理計画に従って処理した際に、
該処理鋼はSAE規格J410Cのグレード950A、
B、C,Dに規定されている3 45 MPa以上の耐
力、480MPa以上の引張強さおよび22%以上の伸
びを満足する。約0.04〜0.07:aft%Cおよ
び約0.25〜0.40重量%Mnを含有するもう一つ
の低炭素組成物は本発明の方法で処理した時345MP
a以上の耐力、410MPa以上の引伽強さおよび28
%の比較的高い伸び率を示す。
One of the currently preferred steel compositions is a steel having 0.10-0.15% by weight C1 to about 0.25-0.70Φ%Mn and the balance Fe and the usual residual components associated with deoxidation. . When treated according to the first heat treatment plan above,
The treated steel is SAE standard J410C grade 950A,
It satisfies the yield strength of 345 MPa or more, the tensile strength of 480 MPa or more, and the elongation of 22% or more specified in B, C, and D. Another low carbon composition containing about 0.04 to 0.07:aft% C and about 0.25 to 0.40 wt% Mn has a Mn of 345 MP when processed with the method of the present invention.
proof stress of more than a, tensile strength of more than 410 MPa and 28
% showing a relatively high elongation rate.

現時点で好ましいらう一つの鋼組成に約0.11〜0.
18重量%C1約1.20〜1゜40虫吊%Mnおよび
残部としてFeと脱酸に伴う通常の残留成分とを含有す
る鋼がある。上記の第二の熱処理計画に従って処理した
際に、該処理鋼G;! S A E規格J410c(D
/レード970X1.:規定されている4 80 MP
a以−Lの耐力、585MPa以上の引張強さおよび1
4%以上の伸びを満足する。
One currently preferred steel composition is about 0.11-0.
There is a steel containing 18% by weight C1, about 1.20 to 1.40% Mn, and the balance Fe and the usual residual components associated with deoxidation. When treated according to the second heat treatment plan above, the treated steel G;! S A E standard J410c (D
/Rade 970X1. : Specified 4 80 MP
proof stress of a to L, tensile strength of 585 MPa or more and 1
Satisfies growth of 4% or more.

比較的低炭素でありかつMnが上記の含有量でしかもマ
イクロ70イ化剤を添加してない鋼を処理するための本
発明の方法によりマイクロアロイ化鋼に関する現存する
H3LA鋼規格に相当するあるいはそれを凌毘する機械
的性質を有する冷間加工製品を得る。かくして、本発明
はある種の市販のマイクロ70イ化した高強度低合金鋼
の有するより高い機械的性質でありながらマイクロアロ
イ化しない冷開加工低炭素鋼においてそれを実現するこ
と、およびマイクロアロイ化剤を添加しないこと並びに
冷間加工製品を連続的に処理することに由来する経済性
とを特徴とする。
The method of the present invention for treating steels with relatively low carbon content and Mn content as described above and without the addition of micro-70 alloying agents corresponds to the existing H3LA steel standard for micro-alloyed steels or To obtain a cold-worked product having mechanical properties that surpass those of the above. Thus, the present invention aims to achieve higher mechanical properties than certain commercially available micro-70 alloyed high-strength low-alloy steels in a cold-open worked low carbon steel that does not undergo microalloying. It is characterized by the absence of added curing agents and by the economy derived from the continuous processing of the cold-worked product.

本発明の方法により処理するC−Mn鋼組成物は一つの
場合は約0.04〜0.15重量%Cおよび0.25〜
0.70@ff1%Mnを含有し、もう一つの場合には
約0.11〜0.18中吊%Cおよび1.20〜1.4
0重湯%Mnを含有する。
C--Mn steel compositions treated by the method of the present invention in one case have about 0.04-0.15 wt.% C and 0.25-0.25 wt.
0.70@ff1% Mn, in another case about 0.11-0.18%C and 1.20-1.4
Contains 0% Mn.

鋼はギルド鋼、好ましくはへlキルド鋼としてしかも連
続鋳造して均一な機械的性質を実現する。
The steel is a guild steel, preferably a cold-killed steel, and is continuously cast to achieve uniform mechanical properties.

結果として該組成物はfl12酸■稈で残留するSiお
よびAj!を含有することができる。鋼は3iギルド鋼
あるいはセミキルド鋼であってもよい。
As a result, the composition has residual Si and Aj! can contain. The steel may be 3i guild steel or semi-killed steel.

第1図に示すように、酸洗いおよび油塗右してあってよ
い熱間汁延鋼コイルを一連の冷間H−延ババスより希望
する厚さ、たとえば0.078〜0.236履のオーダ
ーの厚さをllする根10に冷間加工する。冷間圧延加
工した根10は次にローラ11を通過し700”〜10
00°Fの範囲の温度に保持しである溶融Pb浴であっ
てよい予熱塔12中へと通る。該Pb浴はたとえば天然
ガスあるいは電気のごときいくつかの方法のいずれによ
って加熱してもよい。700゜〜1000下の範囲の温
度を有する液浴を提供できるその他の媒体をPb浴の代
替に用いてもよい。次に材料は浴から上向きに出て上方
に位置するローラ14を通過する。次に材料は急冷用の
浴である第二溶融Pb浴中へ落ち込む。
As shown in Figure 1, hot-dipped rolled steel coils, which may be pickled and oiled, are rolled from a series of cold-rolled steel coils to a desired thickness, e.g. Cold work the root 10 to the desired thickness. The cold-rolled root 10 then passes through rollers 11 and rolls between 700" and 10".
It passes into a preheating tower 12, which may be a molten Pb bath maintained at a temperature in the range of 0.000°F. The Pb bath may be heated by any of several methods, such as natural gas or electricity. Other media capable of providing a liquid bath with a temperature in the range of 700° to below 1000° may be used in place of the Pb bath. The material then exits the bath upwardly and passes over the rollers 14 located above. The material then falls into a second molten Pb bath, which is a quenching bath.

加熱ステージでは組成に従って1625〜1725下の
範囲の温度に材料を加熱する。急冷ステージでは組成に
従って650゜〜950下の範囲の温度に材料を急冷す
る。すなわち、低Mn組成は1625゜〜1725°F
の範囲に加熱して650゜〜750下の範囲に急冷し、
^Mn組成は1500a〜1575T−の範囲ニ加熱L
r800゜〜950下の範囲に急冷する。加熱ステージ
における材料の加熱は抵抗加熱により行う。すなわち、
予熱塔12および急冷浴16は約90Vの電圧および8
000Aの電流に維持し急冷浴を接地する。
The heating stage heats the material to a temperature ranging from 1625 to 1725 below, depending on its composition. The quenching stage quenches the material to a temperature ranging from 650° to below 950°C, depending on the composition. That is, the low Mn composition is between 1625° and 1725°F.
heating to a temperature range of 650° to 750°,
^Mn composition is heated in the range of 1500a to 1575T-
Rapidly cool to below r800° to 950°. The material in the heating stage is heated by resistance heating. That is,
The preheating tower 12 and the quenching bath 16 have a voltage of about 90V and a
Maintain a current of 000 A and ground the quench bath.

結果として、予熱塔と急冷浴の間を通過する板材料10
は該電流を示しそれによって抵抗加熱される。加熱ステ
ージを通過する材料の長さ、電流および移動速度を制御
して加熱ステージにある材料を希望する処理温度とする
。発熱性の保護ガスを流しである雰囲気ハウジング18
中に板材10を封入することにより加熱ステージにおい
ては保護雰囲気をIII持する。板材料が予熱塔12か
ら急冷浴16へと通過する際に該ガスが板材料の酸化を
防止する。抵抗加熱に代替して誘導加熱、赤外線加熱お
よびガス加熱のごときその他の加熱方法によって材料1
0を加熱してもよい。
As a result, the plate material 10 passing between the preheating tower and the quenching bath
represents the current and is resistively heated by it. The length, current, and speed of movement of the material through the heating stage are controlled to bring the material in the heating stage to the desired processing temperature. Atmosphere housing 18 which is a sink for exothermic protective gas
By enclosing the plate material 10 inside, a protective atmosphere is maintained in the heating stage. The gas prevents oxidation of the sheet material as it passes from preheating tower 12 to quench bath 16. Material 1 can be heated by other heating methods such as induction heating, infrared heating and gas heating instead of resistance heating.
0 may be heated.

急冷浴16はPb浴であり、希望する温度に浸漬電熱器
あるいは放射ガス管のごとき方法で加熱することができ
る。急冷の後に材料は急冷浴16を出て垂直に上に0−
ラ20を越えて、pbが板材に乗って急冷浴から外へ引
き出されるのを防ぐための火のついた木炭を有する木炭
シュート22を通る。約500°Fの温度になっている
板材料は次に下流の水槽あるいは水噴’jl(示してな
い)を通してその温度を約150下に下げる。しかし、
鋼のすべての変態は材料が急冷浴16を出るまでに完了
する。冷却の後に出荷用に巻き取ってもよいし、あるい
は酸洗および/又は研摩、塗装、メツキ、展伸、テンシ
ョンレベリング(tensionlevelina)等
の既知の方法あるいはその組合せにより処理してらよい
The quenching bath 16 is a Pb bath, and can be heated to a desired temperature using a method such as an immersion electric heater or a radiant gas tube. After quenching, the material exits the quench bath 16 vertically upwards.
Beyond the lathe 20 it passes through a charcoal chute 22 containing lighted charcoal to prevent the PB from getting onto the board and being drawn out of the quench bath. The plate material, which is at a temperature of about 500°F, is then passed through a downstream water tank or water jet (not shown) to reduce its temperature to about 150°F. but,
All transformation of the steel is complete by the time the material leaves the quench bath 16. After cooling, it may be rolled up for shipping or processed by known methods such as pickling and/or polishing, painting, plating, stretching, tension leveling, or combinations thereof.

板材料は予熱、加熱および急冷のステージを連続的に通
過させる。典型的なライン速度は15〜100TrL/
分のオーダーである。予熱、加熱および急冷のステージ
は約3〜8mの良さである。結果として材料は各ステー
ジでたとえばライン速度30771/分ではわずか6〜
15秒のオーダーで加熱あるいは急冷される。
The plate material passes through preheating, heating and quenching stages successively. Typical line speed is 15-100TrL/
It is an order of minutes. The preheating, heating and quenching stages are approximately 3-8 m long. As a result, the material at each stage is only 6 to
Heating or rapid cooling takes place on the order of 15 seconds.

このような加熱を行うための典型的な装置はウッド等(
Wood et at)の米国特許第2.224゜98
8号明細1および第2.304.225号明細書に開示
されている。重ねて、溶@Pb以外の加熱および冷U】
媒体を予熱および急冷浴に用いることができる。
A typical device for performing such heating is Wood et al.
U.S. Patent No. 2.224°98 to Wood et al.
No. 8 Specification 1 and No. 2.304.225. Overlapping, heating and cooling other than molten Pb]
Media can be used for preheating and quenching baths.

予熱、加熱および急冷ステージが比較的短かいサイクル
タイムであることにより結晶粒が微細化しその結果強度
が向上すると考えられる。すなわら、冷間圧延により材
料中に発生した歪によって予熱および加熱ステージにお
いてフェライトの再結晶が生起して微細な結晶IfrI
造となる。シイクルタイムが短かいと結晶粒成長が制限
されて結品粒度は小さく、典型的に0.01aIII以
下、しばしば0.003〜0.004mおよびそれより
微細に報持される。さらに加熱に際して少量のオーステ
ナイトが結晶粒界に形成され結晶粒界が動くのを抑えて
更に結晶粒成長を制限しより高い強度水準が得られる。
It is believed that the relatively short cycle times of the preheating, heating, and quenching stages result in grain refinement and, as a result, increased strength. In other words, the strain generated in the material by cold rolling causes recrystallization of ferrite in the preheating and heating stages, resulting in fine crystals IfrI.
It becomes a structure. Short cycle times limit grain growth and result in small grain sizes, typically less than 0.01aIII, often 0.003-0.004m and finer. Furthermore, during heating, a small amount of austenite is formed at the grain boundaries, suppressing movement of the grain boundaries and further restricting grain growth, resulting in higher strength levels.

同時にパーライト中の炭化物は球状化されしかも欠陥が
除去されて鋼の延性が向上する。急冷の際に炭化物が析
出して延性をもたらしかつ後の歪時効の可能性を除去す
る。
At the same time, the carbides in pearlite are spheroidized and defects are removed, improving the ductility of the steel. Carbides precipitate during quenching, providing ductility and eliminating the possibility of subsequent strain aging.

実施例1 第1図に示tVi同を用いて0.21の材料から冷間加
工したS cta幅で0.11cs+厚さの薄鋼板を熱
tJX理した。鋼はA1キルに均一な性質とし、組成は
0.10%C10,40%Mn、0.012%3iおよ
び0.057%AIでありSiおよびAI酸成分鋳造前
の鋼の脱酸からの残留分である。
Example 1 A thin steel plate having an S cta width of 0.11 cs+thickness, which was cold-worked from a material of 0.21 using the same tVi shown in FIG. 1, was subjected to hot tJX processing. The steel has uniform properties to A1 kill, and the composition is 0.10% C10, 40% Mn, 0.012% 3i and 0.057% AI, with Si and AI acid components remaining from deoxidation of the steel before casting. It's a minute.

薄板材料は、3371L/分の速度で移動さヒた。予熱
浴中のPbの下の薄板の長さは3mであり、急冷浴中は
67FL、加熱ステージは7.3mであった。
The sheet material was moved at a speed of 3371 L/min. The length of the thin plate under the Pb in the preheating bath was 3 m, 67 FL in the quenching bath and 7.3 m in the heating stage.

ローラ14はpb浴の上2.4mであった。光高温計を
用いて薄板温度を測定した。処理計画および得られた機
械的性質は第1表に示した。
Roller 14 was 2.4 m above the PB bath. The sheet temperature was measured using an optical pyrometer. The treatment plan and mechanical properties obtained are shown in Table 1.

第1表かられかるであろうように、処理工程から得られ
る機械的性質はグレード950A、B。
As can be seen from Table 1, the mechanical properties obtained from the processing step are grade 950A, B.

C1Dに規定された最小の機械的性質(耐力345MP
a、引張強さ480MPa、伸び22%)f越えた。
Minimum mechanical properties specified in C1D (yield strength 345MP
a, tensile strength 480 MPa, elongation 22%) f exceeded.

同一条件を用いて第2の類似の組成の試験を実施した。A second similar composition test was conducted using the same conditions.

この組成は0.0410.06%Cおよび0.2510
.35%Mnであった。処理計画および得られた機械的
性質を第2表に示す。
This composition is 0.0410.06% C and 0.2510
.. It was 35% Mn. The treatment plan and mechanical properties obtained are shown in Table 2.

この材料は前の試料より引張強さは低いが優れた伸びの
水準であることを特徴とし、かくして高度の加工性を有
していると基体されるであろう。
This material is characterized by a lower tensile strength but an excellent level of elongation than the previous sample, and would thus be considered to have a high degree of processability.

実施例2 第1図に示した装置を用いて0.2CIIの材料から冷
間加工したsaA幅0.113の厚さの薄鋼板を熱処理
した、鋼はA1キルとして均一な性質とし、組成は0.
14%C,1,33%Mn、0゜22%Siおよび0.
019%AIであり、3iおよびAI酸成分鋳造前の鋼
の12酸からの残留物である。薄板材料は337FL/
分の速度で移動させた。予熱浴中のpb下の薄板の良さ
は3mであり焼入浴中は6TrL、加熱ステージは7.
3mであった。0−ラ14はpb浴上2.4mであった
。九B潟計を用いて薄板温度を測定した。処理計画およ
び得られた機械的性質は第3表に示す。
Example 2 A thin steel plate with a saA width of 0.113 and a thickness of 0.113 was cold-worked from a material of 0.2 CII using the apparatus shown in FIG. 0.
14% C, 1,33% Mn, 0°22% Si and 0.
019% AI and is the residue from the 12 acid of the steel before casting the 3i and AI acid components. Thin plate material is 337FL/
Moved at a speed of 1 minute. The thickness of the thin plate under the PB in the preheating bath is 3m, the quenching bath is 6TrL, and the heating stage is 7.
It was 3m. 0-Ra14 was 2.4 m above the PB bath. The thin plate temperature was measured using a 9B lagoon meter. The treatment plan and mechanical properties obtained are shown in Table 3.

第3表かられかるであろうように、処理工程から得られ
る機械的性質はグレード970×に規定された最小の機
械的性質(耐力480MPa、引張強さ585 MPa
および伸び14%)を越えた。両試料ともにより高いレ
ベルの強度とともに優れた延性を示した。
As can be seen from Table 3, the mechanical properties obtained from the treatment process are in line with the minimum mechanical properties specified for grade 970x (yield strength 480 MPa, tensile strength 585 MPa).
and elongation exceeded 14%). Both samples exhibited superior ductility with higher levels of strength.

本発明の方法は前述の組成の限度内の鋼組成範囲に適用
可能である。既述の具体的な実施例が示すように処理方
法は市販の微量合金の熱間圧延^強度低合金鋼を特徴ず
ける希望する強度および延性を兼ね備える低C高Mn冷
間加工鋼を提供する。
The method of the invention is applicable to a range of steel compositions within the composition limits mentioned above. As the specific examples described above demonstrate, the processing method involves hot rolling of commercially available trace alloys to provide a low C, high Mn cold worked steel with the desired combination of strength and ductility that characterize low strength low alloy steels. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の処理工程で使用する装置を示す図であ
る。 11・・・ローラ、12・・・予熱浴、14・・・ロー
ラ、16・・・急冷浴、18・・・雰囲気ハウジング。
FIG. 1 is a diagram showing an apparatus used in the treatment process of the present invention. DESCRIPTION OF SYMBOLS 11... Roller, 12... Preheating bath, 14... Roller, 16... Rapid cooling bath, 18... Atmosphere housing.

Claims (7)

【特許請求の範囲】[Claims] (1)機械的性質を向上させる目的のマイクロアロイ化
剤を添加してない約0.04〜0.18重量%の炭素お
よび0.25〜1.40重量%のマンガンの組成を有し
しかも冷間加工された鋼を、連続工程で処理する方法に
おいて、 (イ)鋼を700゜〜1000°Fの範囲の温度に予熱
する工程、 (ロ)該鋼を1500゜〜1725°Fの範囲の温度に
加熱する工程、および (ハ)該鋼を650゜〜950°Fの範囲の温度に急冷
する工程から成り、処理した鋼が275MPa以上の耐
力、345MPa以上の引張強さおよび14%以上の伸
びを有することを特徴とする鋼の処理方法。
(1) having a composition of about 0.04-0.18% by weight carbon and 0.25-1.40% manganese without the addition of microalloying agents for the purpose of improving mechanical properties; A method of treating cold-worked steel in a continuous process, comprising: (a) preheating the steel to a temperature in the range of 700° to 1000°F; (b) heating the steel to a temperature in the range of 1500° to 1725°F. and (c) rapidly cooling the steel to a temperature in the range of 650° to 950°F, such that the treated steel has a yield strength of 275 MPa or more, a tensile strength of 345 MPa or more, and a tensile strength of 14% or more. A method for processing steel characterized by having an elongation of .
(2)機械的性質を向上させる目的のマイクロアロイ化
剤を添加してない約0.11〜0.18重量%の炭素お
よび1.20〜1.40重量%のマンガンの組成を有し
しかも冷間加工された鋼を、連続工程で処理する方法に
おいて、 (イ)鋼を700゜〜1000°Fの範囲の温度に予熱
する工程、 (ロ)該鋼を1500゜〜1575°Fの範囲の温度に
加熱する工程、および (ハ)該鋼を800゜〜950°Fの範囲の温度に急冷
する工程 から成り、処理した鋼が480MPa以上の耐力、58
5MPa以上の引張強さおよび14%以上の伸びを有す
ることを特徴とする鋼の処理方法。
(2) having a composition of about 0.11-0.18% by weight carbon and 1.20-1.40% manganese without the addition of microalloying agents for the purpose of improving mechanical properties; A method of treating cold-worked steel in a continuous process, comprising: (a) preheating the steel to a temperature in the range of 700° to 1000°F; (b) heating the steel to a temperature in the range of 1500° to 1575°F. and (c) rapidly cooling the steel to a temperature in the range of 800° to 950°F, so that the treated steel has a yield strength of 480 MPa or more, 58
A method for treating steel, characterized by having a tensile strength of 5 MPa or more and an elongation of 14% or more.
(3)機械的性質を向上させる目的のマイクロアロイ化
剤を添加してない約0.14重量%の炭素および1.3
3重量%のマンガンの組成を有ししかも冷間加工された
鋼を、連続工程で処理する方法において、 (イ)鋼を700゜〜1000°Fの範囲の温度に予熱
する工程、 (ロ)該鋼を1500゜〜1575°Fの範囲の温度に
加熱する工程、および (ハ)該鋼を800゜〜950°Fの範囲の温度に急冷
する工程 から成り、処理した鋼が480MPa以上の耐力、58
5MPa以上の引張強さおよび14%以上の伸びを有す
ることを特徴とする鋼の処理方法。
(3) approximately 0.14% by weight of carbon and 1.3% by weight without the addition of microalloying agents for the purpose of improving mechanical properties;
A method of treating cold-worked steel having a composition of 3% by weight manganese in a continuous process, comprising: (a) preheating the steel to a temperature in the range of 700° to 1000°F; (b) (c) rapidly cooling the steel to a temperature in the range of 800° to 950°F, such that the treated steel has a yield strength of 480 MPa or more; , 58
A method for treating steel, characterized by having a tensile strength of 5 MPa or more and an elongation of 14% or more.
(4)機械的性質を向上させる目的のマイクロアロイ化
剤を添加してない約0.04〜0.15重量%の炭素お
よび0.25〜0.70重量%のマンガンの組成を有し
しかも冷間加工された鋼を、連続工程で処理する方法に
おいて、 (イ)鋼を700゜〜1000°Fの範囲の温度に予熱
する工程、 (ロ)該鋼を1625゜〜1725°Fの範囲の温度に
加熱する工程、および (ハ)該鋼を650゜〜750°Fの範囲の温度に急冷
する工程 から成り、処理した鋼が275MPa以上の耐力、34
5MPa以上の引張強さおよび22%以上の伸びを有す
ることを特徴とする鋼の処理方法。
(4) having a composition of about 0.04-0.15% by weight carbon and 0.25-0.70% manganese without the addition of microalloying agents for the purpose of improving mechanical properties; A method of treating cold-worked steel in a continuous process, comprising: (a) preheating the steel to a temperature in the range of 700° to 1000°F; (b) heating the steel to a temperature in the range of 1625° to 1725°F. and (c) rapidly cooling the steel to a temperature in the range of 650° to 750°F so that the treated steel has a yield strength of 275 MPa or more, 34
A method for treating steel, characterized by having a tensile strength of 5 MPa or more and an elongation of 22% or more.
(5)機械的性質を向上させる目的のマイクロアロイ化
剤を添加してない約0.10〜0.15重量%の炭素お
よび0.25〜0.70重量%のマンガンの組成を有し
しかも冷間加工された鋼を、連続工程で処理する方法に
おいて、 (イ)鋼を700゜〜1000°Fの範囲の温度に予熱
する工程、 (ロ)該鋼を1625゜〜1725°Fの範囲の温度に
加熱する工程、および (ハ)該鋼を650゜〜750°Fの範囲の湿度に急冷
する工程 から成り、処理した鋼が345MPa以上の耐力、48
0MPa以上の引張強さおよび22%以上の伸びを有す
ることを特徴とする鋼の処理方法。
(5) having a composition of about 0.10-0.15% by weight carbon and 0.25-0.70% manganese without the addition of microalloying agents for the purpose of improving mechanical properties; A method of treating cold-worked steel in a continuous process, comprising: (a) preheating the steel to a temperature in the range of 700° to 1000°F; (b) heating the steel to a temperature in the range of 1625° to 1725°F. and (c) rapidly cooling the steel to a humidity in the range of 650° to 750°F, so that the treated steel has a yield strength of 345 MPa or more, 48
A method for treating steel, characterized by having a tensile strength of 0 MPa or more and an elongation of 22% or more.
(6)材料を溶融鉛浴中を通過させて予熱する工程およ
び抵抗により加熱する工程から成り、しかもそれぞれの
加熱工程が約15秒未満であることを特徴とする、請求
項1〜5に記載の方法。
(6) Preheating the material by passing it through a molten lead bath and heating it by means of a resistor, each heating step lasting less than about 15 seconds. the method of.
(7)材料がアルミニウムキルド鋼の板あるいは薄板で
あることを特徴とする、請求項1〜5に記載の方法。
(7) The method according to any one of claims 1 to 5, wherein the material is a plate or thin plate of aluminum killed steel.
JP63087049A 1987-04-10 1988-04-08 Method for continuously treating cold rolled carbon manganese steel Expired - Fee Related JP2677326B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US037185 1987-04-10
US037186 1987-04-10
US07/037,185 US4793869A (en) 1987-04-10 1987-04-10 Continuous treatment of cold-rolled carbon manganese steel
US07/037,186 US4793870A (en) 1987-04-10 1987-04-10 Continuous treatment of cold-rolled carbon high manganese steel

Publications (3)

Publication Number Publication Date
JPS64221A JPS64221A (en) 1989-01-05
JPH01221A true JPH01221A (en) 1989-01-05
JP2677326B2 JP2677326B2 (en) 1997-11-17

Family

ID=26713887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087049A Expired - Fee Related JP2677326B2 (en) 1987-04-10 1988-04-08 Method for continuously treating cold rolled carbon manganese steel

Country Status (7)

Country Link
JP (1) JP2677326B2 (en)
KR (1) KR950008532B1 (en)
AU (2) AU607480B2 (en)
CA (2) CA1331128C (en)
DE (1) DE3811270C2 (en)
GB (1) GB2203169B (en)
MX (1) MX165036B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1839687A3 (en) * 1990-07-30 1993-12-30 Berlington Nortern Rejlroad Ko Rail, method for its manufacturing and method of its cooling inspection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB248801A (en) * 1924-09-15 1926-03-15 Budd Edward G Mfg Co Improvements in the heat treatment of steel and other metals
US3239201A (en) * 1961-12-14 1966-03-08 Interlake Iron Corp Heat treating and quenching apparatus
IL36660A (en) * 1970-04-30 1975-12-31 Baustahlgewebe Gmbh Continuous heat treatment of nonalloyed low-carbon structural steel
JPS5619380B2 (en) * 1973-08-11 1981-05-07
JPS5830937B2 (en) * 1979-02-02 1983-07-02 新日本製鐵株式会社 Manufacturing method of AI-killed cold-rolled steel sheet for deep drawing by short-time continuous annealing
JPS5825733B2 (en) * 1979-11-27 1983-05-30 新日本製鐵株式会社 Method for manufacturing high-strength cold-rolled steel sheet with good paintability, weldability, and workability
JPS5850300B2 (en) * 1979-12-15 1983-11-09 新日本製鐵株式会社 Method for manufacturing a high strength, low yield ratio, high ductility composite steel sheet with excellent workability and high artificial age hardenability after processing
JPS6046165B2 (en) * 1980-06-06 1985-10-15 新日本製鐵株式会社 A method for producing high-strength cold-rolled steel sheets with high bake hardenability, excellent aging resistance, and press workability by continuous annealing.
JPS5974234A (en) * 1983-09-05 1984-04-26 Sumitomo Metal Ind Ltd Production of cold-rolled steel sheet for deep drawing having excellent formability

Similar Documents

Publication Publication Date Title
EP4317511A1 (en) Low-carbon low-alloy q&p steel or hot-dip galvanized q&p steel with tensile strength greater than or equal to 1180 mpa, and manufacturing method therefor
US10301700B2 (en) Method for producing a steel component
BR112017000027B1 (en) method for manufacturing high strength steel sheet and high strength steel sheet
BR112017000026B1 (en) method for fabricating a steel plate and steel plate
EP4317515A1 (en) Dual-phase steel and hot-dip galvanized dual-phase steel having tensile strength greater than or equal to 980mpa and method for manufacturing same by means of rapid heat treatment
JPS581012A (en) Production of homogeneous steel
JPS6256209B2 (en)
JPH0293051A (en) Production of aging resistant galvanized steel sheet by hot dip type continuous galvanizing method
JPS62267420A (en) Manufacture of high tension and high toughness wire rod having superior delayed fracture resistance
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPH01221A (en) How to continuously process cold rolled carbon manganese steel
US4793869A (en) Continuous treatment of cold-rolled carbon manganese steel
US4793870A (en) Continuous treatment of cold-rolled carbon high manganese steel
JP2677326B2 (en) Method for continuously treating cold rolled carbon manganese steel
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JP2005179732A (en) Method for producing cold-rolled steel sheet
JPH0543779B2 (en)
JPH0756050B2 (en) Manufacturing method of high strength cold rolled steel sheet for non-aging, high bake hardening and press working by continuous annealing
JPS61246327A (en) Manufacture of cold rolled steel sheet for extremely deep drawing
JP3068677B2 (en) Enamelled steel sheet having good deep drawability and aging resistance and method for producing the same
JPH03223420A (en) Production of high strength steel
JPH0625817A (en) Production of hot-dip galvanized cold rolled steel sheet having high strength and excellent in adhesion of plating film
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
JPS60162731A (en) Production of continuously annealed and cold rolled steel sheet having small ageability
JPS59219407A (en) Manufacture of cold rolled steel sheet with superior drawability