JPH0122147Y2 - - Google Patents

Info

Publication number
JPH0122147Y2
JPH0122147Y2 JP1981092931U JP9293181U JPH0122147Y2 JP H0122147 Y2 JPH0122147 Y2 JP H0122147Y2 JP 1981092931 U JP1981092931 U JP 1981092931U JP 9293181 U JP9293181 U JP 9293181U JP H0122147 Y2 JPH0122147 Y2 JP H0122147Y2
Authority
JP
Japan
Prior art keywords
dome
infrared
front window
infrared receiver
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981092931U
Other languages
Japanese (ja)
Other versions
JPS57205083U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981092931U priority Critical patent/JPH0122147Y2/ja
Publication of JPS57205083U publication Critical patent/JPS57205083U/ja
Application granted granted Critical
Publication of JPH0122147Y2 publication Critical patent/JPH0122147Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Burglar Alarm Systems (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Description

【考案の詳細な説明】 本考案は物体から輻射される赤外線エネルギを
感知してその物体を探知する屋外設置型の赤外線
装置に関する。
[Detailed Description of the Invention] The present invention relates to an outdoor infrared device that detects infrared energy radiated from an object to detect the object.

例えば、海や山での遭難者の夜間捜索や立入禁
止区域への無法侵入者の監視に、航空機や船に機
体もしくは船体の外側に搭載し、あるいは地表の
屋外に設置して、人体から輻射される波長が8〜
10μmの赤外線エネルギを感知して遭難者や侵入
者を探知する赤外線探知装置が利用されている。
この種の赤外線探知装置には、冷却型の赤外線検
知素子、物体を上下左右方向に高速で走査して赤
外線映像を得るための精密な光学走査機構と焦点
調節機構、検知素子の冷却装置、それらの駆動制
御のための電気回路や赤外線検知信号の増幅器、
その他の部分で構成された赤外線受信機が用いら
れる。このような赤外線受信機は、その構成部分
を屋外の環境条件から保護するために全体が、金
属あるいは合成樹脂で作られたドーム内に収容さ
れる。この場合、ドームは必要な赤外線を有効に
透過しないことから、ドームにウインドを設け、
ウインドを介して赤外線をドーム内部に導入して
検知するが、ドーム内部を外界と遮断する必要が
あるため、ウインドには不可視な赤外線を有効に
透過し得る例えばGe等の赤外線透過材を嵌め込
む必要がある。また、捜索・追尾のために一定範
囲の探知視野を確保するため、物体を二次元に平
面走査する光軸の中心を物体の方角に一致させる
必要があり、また装置を移動体に搭載した場合に
は移動体の旋回・動揺に対する安定修正のために
も、ドームと赤外線受信機が方位面内を同期して
回動し得ると共に、赤外線受信機は更にそれの前
後軸線に直角な横軸線を中心に方位面に垂直な仰
俯面内でチルト可能に構成されている。
For example, it can be installed on the outside of an aircraft or ship, or installed outdoors on the ground surface to emit radiation from the human body to search for victims at night at sea or in the mountains or to monitor illegal intruders in restricted areas. The wavelength to be detected is 8~
Infrared detection equipment is used to detect 10μm infrared energy to detect people in distress or intruders.
This type of infrared detection device includes a cooled infrared detection element, a precise optical scanning mechanism and focus adjustment mechanism that scans an object at high speed in the vertical and horizontal directions to obtain an infrared image, a cooling device for the detection element, and the like. Electric circuits for drive control and amplifiers for infrared detection signals,
An infrared receiver composed of other parts is used. Such infrared receivers are entirely housed within a dome made of metal or synthetic resin to protect the components from outdoor environmental conditions. In this case, since the dome does not effectively transmit the necessary infrared rays, a window is installed in the dome,
Detection is done by introducing infrared rays into the dome interior through the window, but since it is necessary to isolate the inside of the dome from the outside world, an infrared transmitting material such as Ge, which can effectively transmit invisible infrared rays, is fitted into the window. There is a need. In addition, in order to secure a certain range of detection field of view for search and tracking, it is necessary to align the center of the optical axis that scans the object two-dimensionally with the direction of the object, and when the device is mounted on a moving object. In order to stabilize the moving body against turning and shaking, the dome and the infrared receiver can rotate in synchronization in the azimuth plane, and the infrared receiver also has a horizontal axis perpendicular to its longitudinal axis. The center is configured to be tiltable within an elevation plane perpendicular to the azimuth plane.

しかるに従来の上記のような赤外線探知装置に
おいては、赤外線受信機のチルト中心軸線がほぼ
赤外線受信機の幾何学的中心に位置しており、従
つて赤外線受信機前端の仰俯面内における変位
(移動距離)が大きく、このため大形のドーム前
面ウインドを必要とする。しかるにドーム前面ウ
インドはGe等の単一結晶板から作る必要がある
が、現状では単一結晶板は製作技術上その大きさ
に限界があり、大形の前面ウインドは複数枚の単
一結晶板を継ぎ合わせて製作している。このため
ドーム前面ウインドは極めて高価であり、しかも
継ぎ合せによる光学的特性の低下が避けられない
という問題があつた。また、従来装置ではドーム
前面ウインドがほぼドーム外壁面に沿つて取り付
けられているため、風雨や異物の飛来に対して実
質上無防備状態であり、探知能力の低下または毀
損の問題があつた。
However, in the conventional infrared detection device as described above, the tilt center axis of the infrared receiver is located approximately at the geometric center of the infrared receiver, and therefore the displacement (in the elevation plane) of the front end of the infrared receiver ( This requires a large dome front window. However, the front window of the dome must be made from a single crystal plate such as Ge, but currently there is a limit to the size of single crystal plates due to manufacturing technology, and large front windows are made from multiple single crystal plates. It is made by piecing together. For this reason, the dome front window is extremely expensive, and there is a problem in that the optical characteristics inevitably deteriorate due to the seaming. In addition, in the conventional device, the front window of the dome is installed almost along the outer wall surface of the dome, so it is virtually defenseless against wind, rain, and flying foreign objects, resulting in a problem of reduced or damaged detection ability.

従つて本考案の目的は、前述のような赤外線装
置における上記のような問題を解決すること、す
なわち具体的にはドーム前面ウインドの小型化及
びその有効な保護が可能な構造の赤外線装置を実
現することにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems in infrared devices, specifically, to realize an infrared device with a structure that allows for miniaturization of the dome front window and effective protection thereof. It's about doing.

本考案の赤外線装置は、概略的には、前述のよ
うな赤外線装置においてドーム前面ウインドをド
ーム外壁面に対し凹状にへこんだウインド取付部
に取り付け、赤外線受信機の前端をドーム前面ウ
インドにできるだけ接近させて配置すると共に、
赤外線受信機のチルト中心軸線をドーム前面ウイ
ンドの面と一致する位置またはその近傍の位置に
配置した構成を有するものである。
Generally speaking, the infrared device of the present invention is an infrared device as described above, in which the dome front window is attached to a window mounting portion that is concave to the dome outer wall surface, and the front end of the infrared receiver is placed as close as possible to the dome front window. At the same time,
The tilt center axis of the infrared receiver is arranged at a position that coincides with the surface of the dome front window or a position near the same.

かかる構成によれば、チルト時の赤外線受信機
前端の変位が従来装置に比べて小さく、従つてド
ーム前面ウインドを小形にできる。またドーム前
面ウインドを凹状のウインド取付部に取り付けて
あるので、風雨や異物の飛来に対してドーム前面
ウインドを従来装置よりも有効に保護することが
できる。
According to this configuration, the displacement of the front end of the infrared receiver during tilting is smaller than that of conventional devices, and therefore the dome front window can be made smaller. Furthermore, since the dome front window is attached to the concave window mounting portion, the dome front window can be more effectively protected from wind and rain and flying foreign objects than conventional devices.

以下、本考案について実施例に基づき図面を参
照して詳細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

図面は本考案による赤外線装置の一実施例を示
し、第1図は第2図の線−に沿つた横断面
図、第2図は第1図の線−に沿つた縦断面図
である。この赤外線装置は全体的には基台1とド
ーム2と、赤外線受信機3とから構成されてい
る。基台1は航空機や船または地表の固定構造物
4に固定されるものであり、環状支持壁1a及び
底壁1bを有する。基台1の支持壁1aにはドー
ム回転台5がベアリングを介して方位面(第1図
の紙面と平行な平面)内で矢印Aの一方向又は両
方向に回動可能に取り付けられ、この回転台5上
にドーム2がそれと一体的に回動するように取り
付けられている。回転台5の回動は駆動装置6に
よつて行われる。一方、基台1の底壁1b上には
環状の支持台7が固定され、この支持台7上に赤
外線受信機回転台8がベアリングを介して同じく
方位面内で回動可能に設けられている。赤外線受
信機3はこの回転台8上に、1対の脚部9aを有
するU字形の支持脚9を介して回転台8と一体的
に回動するように取り付けられている。回転台8
の回動は駆動装置10によつて行われる。赤外線
探知時には回転台5及び8は同期して駆動され、
従つてドーム2と赤外線受信機3は方位面内を同
期して回動する。
The drawings show an embodiment of an infrared device according to the present invention, in which FIG. 1 is a cross-sectional view taken along the line - of FIG. 2, and FIG. 2 is a longitudinal sectional view taken along the line - of FIG. 1. This infrared device is generally composed of a base 1, a dome 2, and an infrared receiver 3. The base 1 is fixed to an aircraft, a ship, or a fixed structure 4 on the ground, and has an annular support wall 1a and a bottom wall 1b. A dome rotary table 5 is attached to the support wall 1a of the base 1 via bearings so as to be rotatable in one or both directions of the arrow A within an azimuth plane (a plane parallel to the plane of the paper in FIG. 1). The dome 2 is mounted on the stand 5 so as to rotate integrally therewith. Rotation of the rotary table 5 is performed by a drive device 6. On the other hand, an annular support stand 7 is fixed on the bottom wall 1b of the base 1, and an infrared receiver rotary stand 8 is provided on this support stand 7 via a bearing so as to be rotatable within the azimuth plane. There is. The infrared receiver 3 is mounted on the rotary table 8 via U-shaped support legs 9 having a pair of legs 9a so as to rotate integrally with the rotary table 8. Turntable 8
The rotation is performed by a drive device 10. During infrared detection, the rotary tables 5 and 8 are driven synchronously,
Therefore, the dome 2 and the infrared receiver 3 rotate synchronously in the azimuth plane.

自然界の風、または移動体に搭載した場合には
風に加えて移動体の移動速度による空気の流速に
よつて、ドーム2の回転速度に変動が生じる。こ
の変動が振動を伴うと赤外線の映像が不鮮明なも
のとなつて乱れることから、回転台8をドーム2
の回転台5と一体化せずに別個の駆動装置6,1
0によつて個別に同期させて回転駆動させるよう
にしている。従つて回転台8の回転駆動は精密に
制御されるものである。
The rotational speed of the dome 2 fluctuates due to the wind in the natural world or, when mounted on a moving object, due to the air flow velocity due to the moving speed of the moving object in addition to the wind. If this fluctuation is accompanied by vibration, the infrared image will become unclear and distorted, so the rotary table 8 will be moved to the dome 2.
A separate drive device 6,1 without being integrated with the rotary table 5 of
0 to individually synchronize and drive the rotation. Therefore, the rotational drive of the rotary table 8 is precisely controlled.

ドーム2には赤外線受信機3の前方位置におい
てドーム外壁面に対し凹状にへこんだウインド取
付部11が設けられ、これにGe等の単一結晶材
料から作られた前面ウインド12が取り付けられ
ていて、赤外線受信機3はその前端をできるだけ
前面ウインド12に接近させた位置に配置されて
いる。そして赤外線受信機3は支持脚9の脚部9
aに、軸13により、受信機自体の前後軸線l1
直交する横軸線l2を中心に、方位面に垂直な仰俯
面(第2図の紙面に平行な平面)内を矢印Bの両
方向へチルト可能に取り付けられている。チルト
中心軸線l2は、図から明らかなように前面ウイン
ド12の面とほぼ一致する面内に配置されてい
る。換言すれば、チルト中心軸線l2と前面ウイン
ド12とは第2図に示す如く仰俯面内においてほ
ぼ一致している。赤外線受信機のチルトは、支持
脚9の脚部9aに設けられたモータ14によりレ
バー15を介して行われる。第2図に示すように
レバー15はモータ14により水平位置aを中心
として位置b及びc間を回転駆動され、これによ
り赤外線受信機3はチルト中心軸線l1を中心に角
度θに亘つてチルト可能である。尚、チルト角θ
の検出はチルト軸13に接続された検出器16
(第1図)によつて行われる。
The dome 2 is provided with a window mounting portion 11 that is recessed in a concave shape relative to the outer wall of the dome at a position in front of the infrared receiver 3, and a front window 12 made of a single crystal material such as Ge is attached to this. , the infrared receiver 3 is placed at a position where its front end is as close to the front window 12 as possible. The infrared receiver 3 is connected to the leg 9 of the support leg 9.
At point a, the axis 13 moves in the direction of arrow B in the elevation plane perpendicular to the azimuth plane (plane parallel to the plane of the paper in FIG. It is mounted so that it can be tilted in both directions. As is clear from the figure, the tilt center axis l2 is arranged in a plane that substantially coincides with the plane of the front window 12. In other words, the tilt center axis l2 and the front window 12 substantially coincide in the elevation plane as shown in FIG. The infrared receiver is tilted via a lever 15 by a motor 14 provided on the leg 9a of the support leg 9. As shown in FIG. 2, the lever 15 is driven by the motor 14 to rotate between positions b and c around the horizontal position a, whereby the infrared receiver 3 is tilted over an angle θ around the tilt center axis l1 . It is possible. Furthermore, the tilt angle θ
is detected by a detector 16 connected to the tilt axis 13.
(Figure 1).

第1図において符号θAは赤外線受信機3の方位
視野角(アジマス視野角)を示す。前述したよう
にドーム2と赤外線受信機3とが方位面内を矢印
A方向へ同期して回動することにより、或る所定
の方位範囲(例えば90゜や180゜)または全方位範
囲(360゜)の視野が得られる。一方、第2図にお
いて、符号θEは赤外線受信機3の仰俯視野角(エ
レベーシヨン視野角)を示す。前述したように赤
外線受信機3をチルト中心軸線l2を中心に角度θ
だけチルトさせることにより、全体として角度θ1
の仰俯視野が得られる。
In FIG. 1, the symbol θ A indicates the azimuthal viewing angle (azimuthal viewing angle) of the infrared receiver 3. As described above, by rotating the dome 2 and the infrared receiver 3 synchronously in the direction of the arrow A within the azimuth plane, the dome 2 and the infrared receiver 3 can be rotated in a predetermined azimuth range (for example, 90° or 180°) or in an omnidirectional range (360°).゜) field of view can be obtained. On the other hand, in FIG. 2, the symbol θ E indicates the elevation viewing angle of the infrared receiver 3. As mentioned above, tilt the infrared receiver 3 at an angle θ around the central axis l2 .
By tilting the angle θ 1
Obtains an up-and-down field of view.

次に本考案の装置の利点について説明する。ま
ず、前述したようにドーム2と赤外線受信機3と
を同期して方位面で回動させることにより所望の
方位視野が得られるので、前面ウインド12の方
位面内での寸法(幅)は第1図に示す如く方位視
野角θAを確保できる最小寸法で良い。これは従来
装置でも同様である。また、前述したように赤外
線受信機3の前端はドーム前面ウインド12に接
近しており、しかも赤外線受信機3のチルト中心
軸線l2は仰俯面内において前面ウインド12とほ
ぼ一致しているため、チルト時の赤外線受信機3
の前端の仰俯面内の変位は非常に小さい。このた
め、仰俯面内における前面ウインド12の寸法
(高さ)が小さくてもチルト時の仰俯視野角θ1
充分に確保することができる。ちなみに、本考案
においては従来装置に比べて前面ウインド12の
高さを約1/2.5〜1/3にすることができる。このよ
うに前面ウインドが小形で済むことから、従来の
ようにGe単一結晶板を複数枚継ぎ合わせること
なく、1枚のGe単一結晶板を用いて前面ウイン
ドを製作することができる。従つて前面ウインド
が従来より飛躍的に安価に製作でき、コストダウ
ンができる。また継ぎ合せを要しないので前面ウ
インドの光学的特性の低下がなく、すぐれた探知
能力を実現可能である。
Next, the advantages of the device of the present invention will be explained. First, as described above, by rotating the dome 2 and the infrared receiver 3 synchronously in the azimuth plane, a desired azimuth field of view can be obtained, so the dimension (width) of the front window 12 in the azimuth plane is As shown in Figure 1, the minimum dimensions that can ensure the azimuth viewing angle θ A are sufficient. This also applies to conventional devices. Further, as mentioned above, the front end of the infrared receiver 3 is close to the dome front window 12, and the tilt center axis l2 of the infrared receiver 3 almost coincides with the front window 12 in the elevation plane. , infrared receiver 3 when tilting
The displacement of the front end in the elevation plane is very small. Therefore, even if the dimension (height) of the front window 12 in the elevation plane is small, a sufficient elevation/depression viewing angle θ 1 can be ensured during tilting. Incidentally, in the present invention, the height of the front window 12 can be reduced to about 1/2.5 to 1/3 compared to the conventional device. Since the front window can be made small in this way, the front window can be manufactured using a single Ge single crystal plate instead of splicing together multiple Ge single crystal plates as in the past. Therefore, the front window can be manufactured much more cheaply than before, and costs can be reduced. Furthermore, since no splicing is required, there is no deterioration in the optical characteristics of the front window, and excellent detection ability can be achieved.

以上のように、ウインド12の位置をドーム外
壁面よりへこませたことにより、チルト中心軸線
l2をウインド面上一致させることができる。しか
しながら、ウインド12の位置を更に奥の方にへ
こませ、チルト中心軸線l2を第2図に示すθ1とθE
の限界線の交点の面の位置とすることにより更に
小型化することが可能である。相対的にはチルト
中心軸線l2の位置をドーム外壁面側に近寄らせる
ことによつても可能である。
As described above, by recessing the position of the window 12 from the outer wall surface of the dome, the tilt center axis
l 2 can be matched on the window surface. However, by recessing the position of the window 12 further to the rear, the tilt center axis l 2 is changed to θ 1 and θ E shown in FIG.
It is possible to further reduce the size by positioning the plane at the intersection of the limit lines. Relatively speaking, this can also be achieved by moving the position of the tilt center axis l2 closer to the outer wall surface of the dome.

更に、本考案の前面ウインドはドーム外壁面か
らへこんだ凹状のウインド取付部に取り付けられ
ているので、従来のように前面ウインドをドーム
外壁面に沿つて取り付けた構造に比べて、風雨や
異物の飛来に対して前面ウインドをより有効に保
護でき、探知能力の低下や毀損をより少なくする
ことが可能である。
Furthermore, since the front window of the present invention is attached to a concave window mounting part recessed from the outer wall of the dome, it is more protected from wind, rain, and foreign objects compared to the conventional structure in which the front window is attached along the outer wall of the dome. It is possible to more effectively protect the front window from flying objects, and it is possible to further reduce the decrease in detection ability and damage.

以上のように本考案は、安価であり、光学的特
性にすぐれ、高い探知能力及び高い安全性を有す
るすぐれた赤外線装置を実現するものである。
As described above, the present invention realizes an excellent infrared device that is inexpensive, has excellent optical characteristics, high detection ability, and high safety.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案による赤外線装置の一実施例を示
し、第1図は第2図の線−に沿つた横断面
図、第2図は第1図の線−に沿つた縦断面図
である。 1……基台、2……ドーム、3……赤外線受信
機、4……固定構造物、5……ドーム回転台、6
……駆動装置、8……赤外線受信機回転台、9…
…支持脚、10……駆動装置、11……ウインド
取付部、12……前面ウインド、14……モー
タ、15……レバー、l1……赤外線受信機の前後
軸線、l2……赤外線受信機のチルト中心軸線。
The drawings show an embodiment of an infrared device according to the present invention, in which FIG. 1 is a cross-sectional view taken along the line - of FIG. 2, and FIG. 2 is a longitudinal sectional view taken along the line - of FIG. 1. 1... Base, 2... Dome, 3... Infrared receiver, 4... Fixed structure, 5... Dome rotating table, 6
...Drive device, 8...Infrared receiver rotary table, 9...
... Support leg, 10 ... Drive device, 11 ... Window mounting part, 12 ... Front window, 14 ... Motor, 15 ... Lever, l 1 ... Front and rear axis of infrared receiver, l 2 ... Infrared reception The center axis of the machine's tilt.

Claims (1)

【実用新案登録請求の範囲】 Ge等の材料の前面ウインドを有し且つ方位面
内で回動可能なドーム内に、赤外線受信機がドー
ムと同期して方位面内で回動可能に且つ受信機の
前後軸線に直交する横軸線を中心に方位面に垂直
な仰俯面内でチルト可能に設けられた赤外線装置
において、 前記ドーム前面ウインドをドーム外壁面に対し
凹状にへこんだウインド取付部に取り付け、前記
赤外線受信機の前端をドーム前面ウインドにでき
るだけ接近させて配置すると共に、赤外線受信機
の前記チルト中心軸線をドーム前面ウインドの面
と一致する位置またはその近傍の位置に配置した
ことを特徴とする赤外線装置。
[Claim for Utility Model Registration] Inside a dome that has a front window made of material such as Ge and is rotatable within the azimuth plane, an infrared receiver is rotatable within the azimuth plane in synchronization with the dome and receives reception. In an infrared device that is installed so as to be tiltable in an elevation plane perpendicular to the azimuth plane around a horizontal axis perpendicular to the longitudinal axis of the aircraft, the front window of the dome is attached to a window mounting part that is recessed in a concave manner with respect to the outer wall surface of the dome. The front end of the infrared receiver is placed as close as possible to the dome front window, and the tilt center axis of the infrared receiver is placed at or near the surface of the dome front window. Infrared device.
JP1981092931U 1981-06-25 1981-06-25 Expired JPH0122147Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981092931U JPH0122147Y2 (en) 1981-06-25 1981-06-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981092931U JPH0122147Y2 (en) 1981-06-25 1981-06-25

Publications (2)

Publication Number Publication Date
JPS57205083U JPS57205083U (en) 1982-12-27
JPH0122147Y2 true JPH0122147Y2 (en) 1989-06-29

Family

ID=29887930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981092931U Expired JPH0122147Y2 (en) 1981-06-25 1981-06-25

Country Status (1)

Country Link
JP (1) JPH0122147Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421117Y2 (en) * 1985-11-21 1992-05-14
JP2603674B2 (en) * 1988-01-26 1997-04-23 松下電工株式会社 Human body detection switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154786U (en) * 1974-06-10 1975-12-22

Also Published As

Publication number Publication date
JPS57205083U (en) 1982-12-27

Similar Documents

Publication Publication Date Title
US6652164B2 (en) Retractable camera mounting mechanism
US7597489B2 (en) Apparatus and method for providing pointing capability for a fixed camera
US5383645A (en) Stabilized payload
US7566177B2 (en) Imaging device assembly
US4058831A (en) Panoramic camera scanning system
US4821043A (en) Steerable windowed enclosures
CA2513505A1 (en) Method and apparatus for stabilizing payloads, including airborne cameras
CN101273296B (en) Energy signal processing system
WO2007033033A2 (en) Apparatus and method for providing pointing capability for a fixed camera
KR20010020390A (en) Terminal-antenna device for moving satellite constellation
KR100477256B1 (en) observation or sighting system
US6129307A (en) Stabilized optical gimbal assembly
WO2005106543A1 (en) Panoramic mirror and imaging system using the same
JPH0122147Y2 (en)
WO2008068499A1 (en) A flagpole
EP1547115B1 (en) Optical imaging system having a field-of-regard
US7307771B2 (en) Gimbal with orbiting mirror
US3916196A (en) Infrared detector line array scanner
US20110054690A1 (en) Electro-mechanism for extending the capabilities of bilateral robotic platforms and a method for performing the same
AU2004237193C1 (en) Gimbal assembly for optical imaging system
CN107765088A (en) Control device is swept in movement week and control method, movement sweep equipment and unmanned vehicle week
EP0988659B1 (en) An arrangement comprising an antenna reflector and a transceiver horn combined to form a compact antenna unit
US5091637A (en) Noise reducing infrared reticle/detector arrangement
KR960700535A (en) Multi satellite tv antenna mount
CN107817567B (en) Omnidirectional observation window structure