JPH01221240A - Polyvinyl alcohol film and its manufacture - Google Patents

Polyvinyl alcohol film and its manufacture

Info

Publication number
JPH01221240A
JPH01221240A JP4905488A JP4905488A JPH01221240A JP H01221240 A JPH01221240 A JP H01221240A JP 4905488 A JP4905488 A JP 4905488A JP 4905488 A JP4905488 A JP 4905488A JP H01221240 A JPH01221240 A JP H01221240A
Authority
JP
Japan
Prior art keywords
film
plasma
polyvinyl alcohol
fluorine
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4905488A
Other languages
Japanese (ja)
Inventor
Keiji Fukuda
福田 啓司
Takao Akagi
赤木 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4905488A priority Critical patent/JPH01221240A/en
Publication of JPH01221240A publication Critical patent/JPH01221240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To maintain water resistance and dimensional stability extending over a long period of time, by applying a fluorine or silane thin film coating of a specific thickness to the surface of a polyvinyl alcohol film through plasma polymerization. CONSTITUTION:A fluorine or silane thin film of 500-10000Angstrom thick is formed on the surface of a polyvinyl alcohol film through a plasma polymerization method by making use of a fluorine compound or an organic silicon compound as a monomer. The plasma polymerization method designates a low-temperature plasmic polymerization method where plasma is generated singly or under mixing with nonpolymerizable gas by making use of polymerizable gas such as the fluorine compound or the organic silicon compound and the thin film is formed on the surface to be treated. With this construction, the polyvinyl alcohol film whose retention of strength after underwater immersion for 24 hours is 70% or higher is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ポリビニルアルコール(以下PVAと略記す
る)フィルムの表面にプラズマ重合による薄膜コーティ
ングを施すことに工す、PVAフィルムの欠点である、
耐水性の向上、改善を行なう技術に関し、特に、水中2
4時間浸漬後の強度保持率が70%以上にもなるPVA
フィルムおよびその製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to applying a thin film coating to the surface of a polyvinyl alcohol (hereinafter abbreviated as PVA) film by plasma polymerization, which solves the disadvantages of PVA film.
Regarding technology for increasing and improving water resistance, especially underwater 2
PVA with a strength retention rate of over 70% after 4 hours of immersion
This invention relates to a film and its manufacturing method.

〔従来の技術〕[Conventional technology]

PVAフィルムは、水に弱く、水と接触すると、フィル
ムが伸びる、即ちフィルムの寸法が変化したり、フィル
ムの強度が著しく低下する。これらの欠点を解決するた
めに、5μ以上の膜厚をもつウレタンをフィルム表面に
コーティングすることで、水がフィルム表面に達するま
での透過速度あるいは拡散速度を低下させ、フィルムの
強度、寸法安定性を長時間保持させる加工方法が行なわ
れている。
PVA film is sensitive to water, and when it comes into contact with water, the film stretches, ie, the dimensions of the film change, and the strength of the film decreases significantly. In order to solve these drawbacks, coating the film surface with urethane with a thickness of 5μ or more reduces the permeation rate or diffusion rate of water until it reaches the film surface, improving the strength and dimensional stability of the film. Processing methods are being used to hold the material for a long time.

しかし、この加工方法では、ウレタンをコーティングす
る工程で水系のエマルションは使用できず、有機溶剤を
使用しなければならず、環境衛生上、排水上、工業的に
好ましい加工方法とはいえない。さらにウレタンの膜厚
をかなυ厚くしないと効果が発現しなかった。
However, in this processing method, an aqueous emulsion cannot be used in the urethane coating process, and an organic solvent must be used, so it cannot be said to be a preferable processing method from an industrial standpoint in terms of environmental hygiene and drainage. Furthermore, the effect was not achieved unless the urethane film was made thicker.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、これら工程上の問題点を解決し、かつPVA
フィルムの耐水性、寸法安定性を長時間にわたって維持
させることを目的とするPVAフィルムおよびその製造
方法に関するものである。
The present invention solves these process problems and
The present invention relates to a PVA film whose purpose is to maintain water resistance and dimensional stability of the film over a long period of time, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は rl)ホ’Jビニルアルコールフィルムの少nくとも一
表面に厚さ500〜10000人のフッ素系またはシラ
ン系の薄膜を有することを特徴とするポリビニルアルコ
ールフィルム。
That is, the present invention provides a polyvinyl alcohol film having a fluorine-based or silane-based thin film having a thickness of 500 to 10,000 on at least one surface of the vinyl alcohol film.

2)水中24時間浸漬後の強度保持率が70%以上であ
る請求項第一項記載のポリビニルアルコールフィルム。
2) The polyvinyl alcohol film according to claim 1, which has a strength retention rate of 70% or more after being immersed in water for 24 hours.

3)フッ素化合物または有機ケイ素化合物をモノマーと
して用い、ポリビニルアルコールフィルムの表面をプラ
ズマ重合法によシ厚さ500〜10000人のフッ素系
又はシラン系の薄膜を形成させることを特徴とするポリ
ビニルアルコールフィルムの製造方法。       
  」に関するものである。
3) A polyvinyl alcohol film characterized by using a fluorine compound or an organosilicon compound as a monomer and forming a fluorine-based or silane-based thin film with a thickness of 500 to 10,000 on the surface of the polyvinyl alcohol film by plasma polymerization. manufacturing method.
”.

本発明のPVAフィルムとは、乾式法によって得られた
ビニルアルコールであっても、又酢酸ビニールの共重合
体(ケン化度20〜100モルチ、重合度100〜10
000 )の粉末を水に対して40%(重量%〕溶解し
、底形したフィルムであってもよい。なお、フィルムは
、その中に、可塑剤として10〜15%(重量%)のグ
リセリンを混合していてもなんらさしつかえない。また
、用いるフィルムは一軸延伸、二軸延伸、未延伸フィル
ムのいずれでもよい。
The PVA film of the present invention may be made of vinyl alcohol obtained by a dry method or a copolymer of vinyl acetate (saponification degree of 20 to 100 molar, polymerization degree of 100 to 10
000) in water at 40% (wt%) and form a bottom-shaped film.The film may contain 10 to 15% (wt%) of glycerin as a plasticizer. There is no problem even if the film is mixed.Furthermore, the film used may be a uniaxially stretched film, a biaxially stretched film, or an unstretched film.

本発明でいうプラズマ重合法とは低温プラズマ重合法を
指し、フッ素化合物や有機ケイ素化合物などの重合性ガ
スを用いて単独又は非重合性ガスとの混合下でプラズマ
を発生させ、被処理表面に薄膜を形成させる方法である
The plasma polymerization method used in the present invention refers to a low-temperature plasma polymerization method, in which plasma is generated using a polymerizable gas such as a fluorine compound or an organosilicon compound alone or in a mixture with a non-polymerizable gas, and is applied to the surface to be treated. This is a method of forming a thin film.

本発明で使用するプラズマ装置は、ペルジャー型装置あ
るいはドラム型装置のいずれであってもよい。前者は1
3.561’l?iHzの高周波電源が採用され、電極
は対称円板電極が好ましいが、これに限定されるもので
はなく、低温プラズマを発生させるものであれば良い。
The plasma device used in the present invention may be either a Pelger type device or a drum type device. The former is 1
3.561'l? A high frequency power source of iHz is employed, and the electrodes are preferably symmetrical disc electrodes, but are not limited to this, and any material that can generate low-temperature plasma may be used.

また処理の均一性の面から言うと、画電極は平行に保持
される必要があシ。
Also, from the viewpoint of uniformity of processing, the image electrodes must be held parallel.

しかもプラズマの進行方向に対し、直角になるよう、配
置されている方が、被処理物表面に均一な薄膜を形成さ
せるという点で好ましい。後者も、13、56 MHz
の高周波電源が採用されるが、必ずしもこれに限定され
るものではない。電極は非対称りぐ 電極で好ましい。被処理物が接触しない側の電極の形状
としては、円柱状のもの、あるいは鋭角な断面を有する
断面多角形の棒状のもの等を一本以上任意に選択できる
が、電極本数によっても処理効果は異なり、少なすぎる
と、処理効果は小さくなる。形状は円柱状のものが好ま
しい。また、被処理物が接触する可能性のある側の電極
の形状としては、ドラム状のものが好ましいCまた、電
極の材質はステンレス、銅、鉄、アルミニウム等の金属
が使用でき、必要に応じてガラス、セラミック等でコー
ティングしてもよい。被処理布の処理中が大きく、従っ
て大きな電極が必要となる大型のプラズマ処理装置の場
合、処理の均一性の面から言うと、非対称型電極の方が
好ましい。
Furthermore, it is preferable to arrange the electrodes perpendicularly to the direction in which the plasma travels in order to form a uniform thin film on the surface of the object to be processed. The latter is also 13, 56 MHz
A high frequency power source is employed, but the present invention is not necessarily limited to this. The electrodes are preferably asymmetrically rigged electrodes. The shape of the electrode on the side that does not come in contact with the object to be processed can be arbitrarily selected from one or more cylinders or rods with a polygonal cross section with an acute angle, but the processing effect also depends on the number of electrodes. On the other hand, if it is too small, the treatment effect will be small. The shape is preferably cylindrical. In addition, the shape of the electrode on the side that may come into contact with the object to be processed is preferably drum-shaped.Also, metals such as stainless steel, copper, iron, and aluminum can be used as the material of the electrode. It may also be coated with glass, ceramic, etc. In the case of a large-scale plasma processing apparatus in which a large amount of cloth is being processed and therefore a large electrode is required, an asymmetric electrode is preferable from the viewpoint of uniformity of processing.

真窒系に導入するモノマーガヌは1本発明では重合性ガ
ス単独系あるいは重合性ガスと非重合性ガスとの混合系
のいずれかで、常温で既にガス状のもの、あるいは液体
状のもののいずれでもよい。
In the present invention, the monomer introduced into the true nitrogen system is either a polymerizable gas alone or a mixture of a polymerizable gas and a non-polymerizable gas, which is already gaseous or liquid at room temperature. good.

重合性ガヌとしては、フッ素化合物あるいは有機ケイ素
化合物を用い、前者としては、C2F4(四フフ化エチ
レン) 、C3F6(六フッ化プロピレン)、C3F8
 (へフッ化プロパン)、C4F3(へフッ化ブテン)
、03F60(六フッ化プロピレンオキサイド、C2H
4F2にフッ化エタン)の中の一種を用い、後者として
は、CHa S i (OCH3)3 (メチルトリメ
トキシシラン)、(CH3)25i(OCH3)2(ジ
メチルジメトキシシラン)、(CHa)3St(α?H
3)(トリメチルメトキシシラン)、St (OCH3
)4(テトラメトキシシラン)、(CH3)(H)Sl
 (OCH3)2(メチルジメトキシシラン) 、 C
H2−CH8i(OCHQ3(ヒニルトリメトキシシラ
ン)、CH2−CH8i (QC2H5)3(ビニルト
リエトキシシラン)、(CH2−CH)(CH3)2S
i(OCRs)(シメチルヒニルメトキシシラン)、(
CH2=CH)(CHa)Si(OCRs)z(メチル
ビニルジメトキシシラン)などのアルコキシシラン化合
物、CHaSiα3(メチルトリク、。
A fluorine compound or an organosilicon compound is used as the polymerizable ganu, and examples of the former include C2F4 (tetrafluoroethylene), C3F6 (hexafluoropropylene), and C3F8.
(propane hefluoride), C4F3 (butene hefluoride)
, 03F60 (hexafluoropropylene oxide, C2H
4F2 is a type of fluorinated ethane), and the latter is CHa Si (OCH3)3 (methyltrimethoxysilane), (CH3)25i(OCH3)2 (dimethyldimethoxysilane), (CHa)3St α?H
3) (trimethylmethoxysilane), St (OCH3
)4(tetramethoxysilane), (CH3)(H)Sl
(OCH3)2(methyldimethoxysilane), C
H2-CH8i (OCHQ3 (hinyltrimethoxysilane), CH2-CH8i (QC2H5)3 (vinyltriethoxysilane), (CH2-CH) (CH3)2S
i(OCRs) (cymethylhinylmethoxysilane), (
Alkoxysilane compounds such as CH2=CH)(CHa)Si(OCRs)z(methylvinyldimethoxysilane), CHaSiα3(methyltric, etc.).

シラン) 、(CHs)2Siα2(ジメチルジクロロ
シラン)、(CHa )a 81α(トリメチルクロロ
シラン)などのクロロシラン化合物、(CH3)asi
M侶1(CH3)3(ヘキサメチルジシラザン)、(C
H3)2N5I(CH3)3 (ジメチルトリメチルシ
リルアミン)などのシラザン化合物のうちの一種を用い
る。
silane), (CHs)2Siα2 (dimethyldichlorosilane), (CHa)a81α (trimethylchlorosilane), (CH3)asi
M-1 (CH3)3 (hexamethyldisilazane), (C
H3) One of the silazane compounds such as 2N5I(CH3)3 (dimethyltrimethylsilylamine) is used.

キャリヤーガスとしての非重合性ガスとしては。As a non-polymerizable gas as a carrier gas.

Ar、Ozなどの無機ガスが用いられる。Inorganic gases such as Ar and Oz are used.

非重合性ガスと重合性ガスとの混合系では、七ツマーガ
スの反応性、形成した薄膜の性能などにより任意に組合
せ、比率を選択することができる。
In a mixed system of a non-polymerizable gas and a polymerizable gas, the combination and ratio can be arbitrarily selected depending on the reactivity of the 7-mer gas, the performance of the formed thin film, etc.

また、非重合性ガスと重合性ガスとの混合系では、真空
系に別々に導入して系内で混合したシ、予め混合してお
いて同時に導入してもなんらさしつかえないし、非重合
性ガスでの放電下、重合性ガスを導入してもよい。
In addition, in a mixed system of non-polymerizable gas and polymerizable gas, it is possible to introduce them separately into the vacuum system and mix them within the system, or to mix them in advance and introduce them at the same time. A polymerizable gas may be introduced during the discharge.

低温プラズマを発生させる真空度としては、通常0.0
01〜50 Torrが用いられるが、本発明者等の検
討結果によると、0.01〜5.□ Torrが望まし
い。真空度が0. OI Torr以下になるとイオン
、電子の平均自由行程は大きくなり、加速粒子のエネル
ギーは増大するが、被処理物へ到達する加速粒子個数の
総数が少なく、処理効率はやや低くなる。
The degree of vacuum for generating low-temperature plasma is usually 0.0.
According to the study results of the present inventors, 0.01 to 50 Torr is used. □ Torr is preferable. The degree of vacuum is 0. When the OI Torr is lower than that, the mean free path of ions and electrons increases, and the energy of accelerated particles increases, but the total number of accelerated particles that reach the object to be processed is small, and the processing efficiency becomes somewhat low.

しかも、処理室中にガスを導入しながら0. OI T
orr以下に保つには非常に排気量の大きい真空ポンプ
が必要となり、設備コストから考慮しても望ましくない
。真空度が5 Torr以上になるとイオン、電子等の
平均自由行程は小さくなり、加速粒子のエネルギーは小
さくなり、加速粒子個数の総数は多いにも関らず、処理
効率は低くなる。プラズマ出力は放電部分に作用する出
力として、0.1〜5.0ワツト/dが望ましい。
Moreover, while introducing gas into the processing chamber, the OIT
In order to maintain the temperature below orr, a vacuum pump with a very large displacement is required, which is not desirable considering the equipment cost. When the degree of vacuum is 5 Torr or more, the mean free path of ions, electrons, etc. becomes small, the energy of accelerated particles becomes small, and the processing efficiency becomes low even though the total number of accelerated particles is large. The plasma output acting on the discharge portion is preferably 0.1 to 5.0 watts/d.

放電部面積としては、放電部に存在する被処理物の面積
あるいは対電極のどちらかの表面積でプラズマ放電部出
力の値を割った場合、どれかの数値がO,1〜5.0ワ
ツト/dになればよい。プラズマ出力がO,1ワット/
−以下の場合、プラズマ重合処理に時間がかかるし、重
合膜の厚さも十分でない。プラズマ出力が5.0ワット
/cd以上になると放電が不安定になり、重合以外にエ
ツチングも起こシやすくなる。処理時間は5〜600秒
程度が望ましい。5秒未満では重合膜の膜厚が低く、6
00秒以上となると、重合膜の膜厚は十分であるが、着
色したシ、やや表面が硬くなったシ、もろくなってプラ
ズマ重合膜本来の機能と違ってくる場合がある。
As for the area of the discharge part, when the value of the output of the plasma discharge part is divided by the area of the object to be treated existing in the discharge part or the surface area of the counter electrode, whichever value is O, 1 to 5.0 watts/ It should be d. Plasma output is O, 1 watt/
- In the following cases, the plasma polymerization process takes time and the thickness of the polymerized film is not sufficient. When the plasma output exceeds 5.0 watts/cd, the discharge becomes unstable and etching is likely to occur in addition to polymerization. The processing time is preferably about 5 to 600 seconds. If it is less than 5 seconds, the thickness of the polymerized film will be low;
If the time is longer than 0.00 seconds, the thickness of the polymerized film is sufficient, but the plasma polymerized film may become colored, have a slightly hard surface, or become brittle, which may cause the plasma polymerized film to differ from its original function.

プラズマ重合法により形成した薄膜の膜厚は多重干渉顕
微鏡又は電子顕微鏡によシ測定した。フッ素化合物ある
いは有機ケイ素化合物を使用し、プラズマ重合によって
生成した薄膜が500〜10000人の膜厚を有すれば
、その薄膜は撥水性、防汚性、耐薬品性、耐摩耗性、防
曇性、耐熱性。
The thickness of the thin film formed by the plasma polymerization method was measured using a multiple interference microscope or an electron microscope. If a thin film produced by plasma polymerization using a fluorine compound or an organosilicon compound has a thickness of 500 to 10,000, the thin film has water repellency, stain resistance, chemical resistance, abrasion resistance, and antifogging properties. ,Heat-resistant.

耐水性、耐吸湿性、耐ブロッキング注等に極めて有効で
あること、またプラズマ重合によって生成した薄膜が従
来の重合によってできるポリマーと異なり、架橋構造を
とっているため、このような架橋構造が上述のような特
性を付与していると考えられる。
It is extremely effective for water resistance, moisture absorption resistance, blocking resistance, etc., and unlike polymers produced by conventional polymerization, the thin film produced by plasma polymerization has a crosslinked structure. It is thought that it has the following characteristics.

PVAフィルム表面にフッ素あるいは有機ケイ素膜をプ
ラズマ重合に工ってコーティングしたところ、コーティ
ングしていないPVAフィルムに比べて、撥水性、耐水
性が著しく改善され、即ち、PVAフィルムの欠点であ
る、水による強度低下、寸法変化が著しく改善された0 本発明で言う少なくとも一表面とは、フィルムの用いら
れる目的により両面処理あるいは片面処理を選択できる
ことを意味する。
When a fluorine or organosilicon film is coated on the surface of a PVA film using plasma polymerization, the water repellency and water resistance are significantly improved compared to an uncoated PVA film. The term "at least one surface" as used in the present invention means that either double-sided treatment or single-sided treatment can be selected depending on the purpose for which the film is used.

本発明で言う強度保持率70%以上とは、まずドライの
状態で縦方向、横方向の強度を測定し、その平均値を算
出し、その後水中に(片面のみ処理している場合はフィ
ルムの処理面のみに水が接触するように)浸漬し、24
時間放置後、水中から取シ出し、すぐに縦方向、横方向
のgi度を測足し、その平均値を算出し、その数値をド
ライの平均値で割った値にlOOを乗じたものが70以
上という意味である。以下、実施例にしたがって詳細に
註!する。
In the present invention, a strength retention rate of 70% or more means to first measure the strength in the vertical and horizontal directions in a dry state, calculate the average value, and then submerge the film in water (if only one side is treated, (so that only the treated surface is in contact with water), and
After leaving it for a while, take it out of the water, immediately measure the gi degrees in the vertical and horizontal directions, calculate the average value, divide that value by the dry average value, and multiply the value by lOO to get 70. This means the above. Please note the details below according to the examples! do.

実施例1 有機シラン化合物の一つであるトリメチルメトキシシラ
ンをモノマーとして用い、プラズマ重合法によって薄膜
をコーティングした未延伸PVAフィルムおよびプラズ
マ処理していない未延伸PV Aフィルムの所定時間に
おける水の挙動と、引つ張9強度変化を、表1に示す。
Example 1 Behavior of water at a given time in an unstretched PVA film coated with a thin film by plasma polymerization using trimethylmethoxysilane, which is an organic silane compound, as a monomer and an unstretched PV A film not subjected to plasma treatment. Table 1 shows the tensile strength changes.

表1 未延伸PVAフィルムの水に対する挙動と引張強
度pVAフィルム:重合f−150CのPVAの乾式フ
ィルム、未延伸フィルム〈プラズマ処理条件〉 Qプラズマ装置:ペルジャー型、平行平板電極高周波電
源13.56 MHz Oモノマー:トリメチルメトキシシラン0出力電カニ2
.3ワツト/ ctl Q処理時間:180秒 Q膜  厚: 2400人 0両面処理 〈引張試験測定条件〉 0引張試験機:インストロンTM−M O引  速:20σ/m1n Oサンプル:10z×2.5 cm (長さx幅)プラ
ズマ処理したフィルムは、24時間後の強度保持率87
%、−1未処理のフィルムは27%とプラズマ処理によ
シ耐水性が著しく改良されていた。
Table 1 Behavior and tensile strength of unstretched PVA film in water pVA film: Polymerized f-150C PVA dry film, unstretched film (plasma treatment conditions) Q plasma device: Pelger type, parallel plate electrode high frequency power source 13.56 MHz O monomer: Trimethylmethoxysilane 0 output electric crab 2
.. 3 watts/ctl Q processing time: 180 seconds Q film thickness: 2400 people Double-sided treatment <Tensile test measurement conditions> 0 Tensile tester: Instron TM-MO Tensile speed: 20σ/m1n O sample: 10z x 2.5 cm (length x width) The plasma treated film has a strength retention rate of 87 after 24 hours.
%, -1 The water resistance of the untreated film was 27%, which was significantly improved by the plasma treatment.

実施例2 フッ素系化合物の一つであるC2F4をモノツートして
用い、プラズマ重合法によって薄膜をコーティングした
二軸延伸PVAフィルム、およびプラズマ処理していな
い二軸延伸PVAフィルムの所定時間における水の挙動
と、引っ張り強度変化を表2に示す。
Example 2 Behavior of water at a given time in a biaxially stretched PVA film coated with a thin film using a plasma polymerization method using C2F4, which is one of the fluorine-based compounds, and a biaxially stretched PVA film that was not subjected to plasma treatment. Table 2 shows the change in tensile strength.

表2 二軸延伸PVAフィルムの水に対する挙動と引張
強度PVAフィルム:重合度2200のPVAの乾式フ
ィルム、二軸延伸フィルム 〈プラズマ処理条件〉 0プラズマ装置: ドラム型、非対称電極高周波電源1
3.56 MHz、非接地0モノマー: C2F4 O出力電カニ0.5ワット/− 〇処理時間:180秒 0膜  厚: 1600人 0片面処理 〈引張試験測定条件〉 実施例1と同じ。
Table 2 Behavior and tensile strength of biaxially stretched PVA film in water PVA film: Dry film of PVA with degree of polymerization 2200, biaxially stretched film <Plasma treatment conditions> 0 Plasma device: Drum type, asymmetric electrode high frequency power source 1
3.56 MHz, non-grounded 0 monomer: C2F4 O output power crab 0.5 watt/- 〇 Processing time: 180 seconds 0 film thickness: 1600 people 0 single side processing <Tensile test measurement conditions> Same as Example 1.

実施例に示すとおり、プラズマ重合薄膜をコーティング
したPVAフィルムはプラズマ未処理フィルムと比較す
ると、その効果は著しく、水に長時間浸漬してもフィル
ムの寸法変化は1〜3%の伸びに抑えることが可能とな
シ、また、水に浸漬した時のフィルムの引張強度は、水
に浸漬していないフィルムの引張強度に比べて強度保持
率が高い。これらの結果から、プラズマ重合薄膜をコー
ティングしたPVAフィルムは耐水性、寸法安定性の点
で実用性があることが判明した。
As shown in the examples, the PVA film coated with a plasma polymerized thin film has a remarkable effect when compared to a non-plasma treated film, and even when immersed in water for a long time, the dimensional change of the film is suppressed to 1-3% elongation. Furthermore, the tensile strength of the film when immersed in water has a higher strength retention rate than the tensile strength of a film that is not immersed in water. These results revealed that the PVA film coated with the plasma polymerized thin film is practical in terms of water resistance and dimensional stability.

特許出願人 株式会社 り ラ しPatent applicant RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】 1)ポリビニルアルコールフィルムの少なくとも一表面
に厚さ500〜10000Åのフッ素系またはシラン系
の薄膜を有することを特徴とするポリビニルアルコール
フィルム。 2)フッ素化合物または有機ケイ素化合物をモノマーと
して用い、ポリビニルアルコールフィルムの表面にプラ
ズマ重合法により厚さ500〜10000Åのフッ素系
またはシラン系の薄膜を形成させることを特徴とするポ
リビニルアルコールフィルムの製造方法。
[Scope of Claims] 1) A polyvinyl alcohol film having a fluorine-based or silane-based thin film having a thickness of 500 to 10,000 Å on at least one surface of the polyvinyl alcohol film. 2) A method for producing a polyvinyl alcohol film, which comprises forming a fluorine-based or silane-based thin film with a thickness of 500 to 10,000 Å on the surface of the polyvinyl alcohol film by plasma polymerization using a fluorine compound or an organosilicon compound as a monomer. .
JP4905488A 1988-03-01 1988-03-01 Polyvinyl alcohol film and its manufacture Pending JPH01221240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4905488A JPH01221240A (en) 1988-03-01 1988-03-01 Polyvinyl alcohol film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4905488A JPH01221240A (en) 1988-03-01 1988-03-01 Polyvinyl alcohol film and its manufacture

Publications (1)

Publication Number Publication Date
JPH01221240A true JPH01221240A (en) 1989-09-04

Family

ID=12820368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4905488A Pending JPH01221240A (en) 1988-03-01 1988-03-01 Polyvinyl alcohol film and its manufacture

Country Status (1)

Country Link
JP (1) JPH01221240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461484A2 (en) * 1990-06-01 1991-12-18 Unitika Ltd. Multi-layered sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0461484A2 (en) * 1990-06-01 1991-12-18 Unitika Ltd. Multi-layered sheet
US5283090A (en) * 1990-06-01 1994-02-01 Unitika Ltd. Portable urine or ostomy bag

Similar Documents

Publication Publication Date Title
US6432510B1 (en) Fluorinated resins having a surface with high wettability
Butoi et al. Deposition of highly ordered CF2-rich films using continuous wave and pulsed hexafluoropropylene oxide plasmas
Kim et al. Improvement of wettability and reduction of aging effect by plasma treatment of low-density polyethylene with argon and oxygen mixtures
CA2302546A1 (en) Corona treatment of polymers
Tezuka et al. Surface studies on poly (vinyl alcohol)—poly (dimethylsiloxane) graft copolymers
Loh et al. Surface modifications of polymers with fluorine‐containing plasmas: Deposition versus replacement reactions
Vijayendran et al. Surfactant interactions in poly (vinyl acetate) and poly (vinyl acetate–butyl acrylate) latexes
Li et al. Surface modification and adhesion improvement of expanded poly (tetrafluoroethylene) films by plasma graft polymerization
JPWO2006059697A1 (en) Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
JPH01221240A (en) Polyvinyl alcohol film and its manufacture
Kim et al. Surface analysis of fluorine-containing thin films fabricated by various plasma polymerization methods
Engelmann et al. Plasma-surface interactions of advanced photoresists with C4F8∕ Ar discharges: Plasma parameter dependencies
Zhang et al. Characterization of fluoropolymer films deposited by magnetron sputtering of poly (tetrafluoroethylene) and plasma polymerization of heptadecafluoro‐1‐decene (HDFD) on (100)‐oriented single‐crystal silicon substrates
JPS62132940A (en) Formation of plasma polymerization thin film on high polymer base material
JPH08188658A (en) Process for treating surface of substrate
JPS603334B2 (en) Polymer base material with fluorinated surface
JP3194513B2 (en) Fluoropolymer gradient film
Eckersley et al. Surface energetics of films of surfactant free poly (methyl methacrylate-co-butyl acrylate) emulsion polymers
Freitag Plasma polymer coatings for indoor corrosion protection
JPS59159806A (en) Formation of film of fluorine-containing high-molecular compound
Thomas et al. An X‐Ray Photoelectron Spectroscopy Study of CF 4/H 2 Reactive Ion Etching Residue on Silicon
JPS6129666B2 (en)
Elders et al. Materials analysis of fluorocarbon films for MEMS applications
JPS61159426A (en) Formation of plasma polymer film
JPH0568353B2 (en)