JPH0122115Y2 - - Google Patents

Info

Publication number
JPH0122115Y2
JPH0122115Y2 JP2999080U JP2999080U JPH0122115Y2 JP H0122115 Y2 JPH0122115 Y2 JP H0122115Y2 JP 2999080 U JP2999080 U JP 2999080U JP 2999080 U JP2999080 U JP 2999080U JP H0122115 Y2 JPH0122115 Y2 JP H0122115Y2
Authority
JP
Japan
Prior art keywords
liquid
oil
tank
measured
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2999080U
Other languages
Japanese (ja)
Other versions
JPS56131440U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2999080U priority Critical patent/JPH0122115Y2/ja
Publication of JPS56131440U publication Critical patent/JPS56131440U/ja
Application granted granted Critical
Publication of JPH0122115Y2 publication Critical patent/JPH0122115Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は被測定物からの流通量を測定する流通
量測定装置に関する。 従来、密閉容器の流出(漏洩)量の測定あるい
は焼結部品の空孔の透過性の測定等は被測定物か
らの空気の流出量を測定している。このため、焼
結軸受のように含浸された油の空孔内の透過状態
が問題となるような被測定物にあつては、空孔内
の油の透過状態と空気の透過状態とが必ずしも1
対1に対応せず、焼結軸受の特性の適切な判断が
下せないという欠点がある。また、通常の密閉容
器にあつても、収容する内容物によつては、空気
程の漏洩をしないものもあり、この場合も空気で
漏洩測定を行なつた場合には必要以上に厳しい判
定をすることとなるという不都合がある。 本考案の目的は、被測定物の液体による流通量
を精密に測定可能な流通量測定装置を提供するに
ある。 本考案に係る流通量測定装置は、気体漏洩測定
機と、液体タンクと、液体注入通路と、第1の測
定治具と、恒温槽と、空気注入通路と、第2の測
定治具とを備えたものとなつている。 気体漏洩測定機には、基準タンク、この基準タ
ンクに平衡バルブを介して連結されたユニツト
室、基準タンクとユニツト室との圧力差を検出す
る検出手段が設けられ、液体タンクはユニツト室
に分離バルブを介して連結されるとともに、その
内部に油等の液体が収納され、液体注入通路は、
液体タンク中の液体を被測定物内に導くものであ
つてその途中にコツクが設けられ、第1の測定治
具は液体注入通路で導かれた液体を被測定物に対
して流入可能かつ流出可能に被測定物を保持し、
この第1の測定治具は恒温槽に収納され、空気注
入通路はユニツト室に分離バルブを介して液体タ
ンク、液体注入通路と並列に連結されるととも
に、その途中にコツクを有し、第2の測定治具は
空気注入通路を通じて導かれたユニツト室の空気
を被測定物に対して流入可能かつ流出可能に被測
定物を保持する。 以上の本考案では、基準タンク、ユニツト室、
液体タンクをそれぞれ同一のエア圧に加圧した
後、分離バルブを開いてユニツト室と液体タンク
とを連通させるとともに、液体注入通路のコツク
を開いて液体タンク内の液体を第1の測定治具で
保持された被測定物に供給すると、被測定物から
流出する液体の量によつて液体タンク、ユニツト
室の圧力が低下し、ユニツト室と基準タンクとに
圧力差が生じるので、この圧力差を検出手段で検
出することにより被測定物からの液体の流出量を
測定できる。また、基準タンク、ユニツト室のそ
れぞれを同一のエア圧力に加圧した後、分離バル
ブを開き、空気注入通路のコツクを開いてユニツ
ト室の空気を第2の測定治具で保持された被測定
物に供給すると、被測定物から流出する空気の量
によつてユニツト室の圧力が低下し、ユニツト室
と基準タンクとに圧力差が生じるので、この圧力
差を検出手段で検出することにより被測定物から
の空気の流出量を測定できる。 以上のように被測定物の液体の流出量および空
気の流出量を測定することにより、第1および第
2の測定治具で保持された同種の被測定物につい
ての液体流出量と空気流出量との関係が判明し、
被測定物が油流出量が重要な焼結軸受の場合に
は、油流出量と空気出量とに関するデータを得ら
れる。 また、本考案では、第1の測定治具は恒温槽に
収納されているため、温度変化に伴う液体の粘度
変化等を加味した液体の流量を測定できることに
なる。 以下、本考案の実施例を図面に基づいて説明す
る。 第1図には、本考案の一実施例を示す系統図が
示されている。 第1図において、エアコンプレツサなどからな
る圧力源1にはフイルタ2、レギユレータ3及び
圧力計4を介して気体漏洩測定機5の圧力源側接
続口6が接続されている。この気体漏洩測定機5
のワーク側接続口7には、注入液体としての油8
を収納した液体タンクとしての油タンク9及びオ
イルコツク10を介して第1の測定治具である通
油量測定治具11が接続され、さらに、これらの
油タンク9、オイルコツク10及び通油量測定治
具11と並列にエアコツク12を介して第2の測
定治具である通気量測定治具13が接続されてい
る。 前記通油量測定治具11は、被測定物としての
焼結軸受14の端面をシール可能な上下一対のゴ
ムパツド15,16と、下方のゴムパツド16を
支持する受台17と、この受台17の下部に設け
られるとともに焼結軸受14から流出する油8を
受ける受皿18と、前記上方のゴムパツド15上
に載置される押圧板19と、前記受台17に架台
20を介して支持されるとともに前記押圧板19
を押圧して一対のゴムパツド15,16と焼結軸
受14との密着を行なわせるシリンダ21とから
構成され、この通油量測定治具11は全体として
恒温槽22内に収納されている。また、前記受台
17及び下方のゴムパツド16を貫通して油通路
23が設けられるとともに、この油通路23と前
記オイルコツク10とを連結する液体注入通路2
4の途中において、前記恒温槽22内に位置する
部分はコイル状等に形成されて液体温度調整部2
5が設けられ、この液体温度調整部25内を通過
することにより注入液体としての油8の温度が恒
温槽22の温度と等しくなるようにされている。 前記通気量測定治具13は、通油量測定治具1
1とほぼ同様に構成され、被測定物としての焼結
軸受14の端面をシール可能な一対のゴムパツド
26,27と、下方のゴムパツド27を支持する
受台28と、上方のゴムパツド26上に載置され
る押圧板29と、前記受台28に架台30を介し
て支持されるとともに前記押圧板29を押圧して
一対のゴムパツド26,27と焼結軸受14との
密着を行なわせるシリンダ31とから構成されて
いる。また、受台28及び下方のゴムパツド27
を貫通して空気通路32が設けられ、この空気通
路32に前記エアコツク12からの通路が接続さ
れている。 前記通油量測定治具11及び通気量測定治具1
3の各シリンダ21,31は共に2位置切換弁3
3を介して前記フイルタ2とレギユレータ3との
間の圧力源側圧縮空気回路に接続され、切換弁3
3を切換えることにより各シリンダ21,31の
ピストンロツドが進退され、押圧板19,29の
押圧による焼結軸受14のシール及び固定あるい
はその解放がなされるようになつている。 前記気体漏洩測定機5は、密閉容器からなる筐
体34を備え、この筐体34内は仕切板35によ
り二分割され、一方のユニツト室36には検出手
段としてのバランスユニツト37が収納されると
ともに、他方の室は基準タンク38とされてい
る。このバランスユニツト37は、途中を支点3
9で揺動自在に支持された天秤40と、この天秤
40の一端に取付けられるとともに椀を伏せた形
状にされたベルカツプ41と、このベルカツプ4
1の下端開口部を液封かつ液封状態で上下動可能
にするとともにこの液封されたベルカツプ41内
と前記基準タンク38内とを連通させる連通孔4
2を有する液体容器43と、前記ベルカツプ41
とは反対端において天秤40に取付けられ天秤4
1の傾斜量を検出する差動トランス44と、この
差動トランス44と同側端において天秤40に取
付けられ天秤40を強制的に水平等の一定位置に
位置させるコイルとマグネツトとからなる復帰機
構45とから構成されている。 前記筐体34の基準タンク38は第1の加圧バ
ルブ46を介して圧力源側接続口6に連通される
とともに、ユニツト室36は分離バルブ47及び
第2の加圧バルブ48を介して圧力源側接続口6
に連通され、これらの分離バルブ47と第2の加
圧バルブ48との中間位置はワーク側接続口7に
連通されている。また、基準タンク38とユニツ
ト室36とは平衡バルブ49を介して連通可能に
され、基準タンク38内とユニツト室36内との
圧力を同一にすることができるようになつてい
る。 なお、前記油タンク9にはレベルメータ50が
設けられるとともに、常時はOリング51及びボ
ルト52で密栓された油注入孔53が設けられて
いる。 以上において前記エアコツク12は空気注入通
路54の途中に設けられ、この空気注入通路54
は気体漏洩測定機5のユニツト室36に分離バル
ブ47を介して連結され、空気注入通路54は油
タンク9、液体注入通路24と並列になつてい
る。 次に、本実施例の作用につき説明する。 まず、通油量測定治具11を用いて被測定物と
しての焼結軸受14の通油特性を測定するには、
気体漏洩測定機5の各バルブ46〜49を閉止す
るとともに、オイルコツク10及びエアコツク1
2を閉じ、レギユレータ3を所定圧力、例えば
0.5〜1Kg/cm2に設定する。ついで、気体漏洩測
定機5の第1、第2の加圧バルブ46,48、分
離バルブ47及び平衡バルブ49を開放してユニ
ツト室36、基準タンク38、ベルカツプ41内
及び油タンク9の上部空気層内を前記レギユレー
タ3で設定された圧力に加圧し、この加圧による
温度上昇等の影響がなくなり安定する状態まで待
ち、安定後、気体漏洩測定機5の全てのバルブ4
6〜49を閉じる。このユニツト室36内等の加
圧時には復帰機構45が作動され、バランスユニ
ツト37の天秤40は水平等の所定位置に保持さ
れる。 ついで、通油量測定治具11の一対のゴムパツ
ド15,16のうち下方のゴムパツド16上に被
測定物としての焼結軸受14を載置し、オイルコ
ツク10を少し開いて油タンク9内から油8を焼
結軸受14内に供給し、焼結軸受14内に油18
が満されたらいつたんオイルコツク10を閉じ、
焼結軸受14上に上方のゴムパツド15及び押圧
板19を置き、切換弁33を介してシリンダ21
にピストンロツドが進出する方向に圧縮空気を供
給し、押圧板19を介して上下のゴムパツド1
5,16を押圧し、焼結軸受14の上下端面のシ
ールを行なう。このシール後、オイルコツク10
を全開する。 ついで、第2の加圧バルブ48を所定時間開放
して油タンク9内を加圧し、焼結軸受14側への
油8の供給により減少した圧力を補充し、この加
圧後分離バルブ47を開いて気体漏洩測定機5の
ユニツト室36内と焼結軸受14内とを油タンク
9を介して連通させる。この状態で、気体漏洩測
定機5のスタートスイツチ(図示せず)を押して
測定機5を作動させると、復帰機構45が開放さ
れて天秤40はフリーの状態になる。一方、ユニ
ツト室36内及び油タンク9内の圧力により油タ
ンク9内の油8は焼結軸受14の空孔を通つて外
部に流出し、その分ユニツト室36内の圧力が低
下することとなる。このユニツト室36内の圧力
が低下すると、圧力低下のない基準タンク38に
連通されているベルカツプ41の内に圧力差が生
じ、ベルカツプ41内の圧力によつベルカツプ4
1が上昇する方向に天秤40が傾き、この傾斜量
が差動トランス44で検出されて、焼結軸受14
からの油8の流出量が測定できる。この際、焼結
軸受14への油8の供給が一定時間、例えば1分
間行なわれると、分離バルブ47は自動的に閉じ
られるとともに、復帰機構45が作動されて天秤
40が強制的に水平位置とされ、さらに平衡バル
ブ49が開放されてユニツト室36内と基準タン
ク38内の圧力平衡が行なわれ、この圧力平衡
後、平衡バルブ49が閉じられるとともに、復帰
機構45がオフされ、さらに分離バルブ49が開
放されて再び前述と同様にして焼結軸受14への
油8の供給が開始され、以下同様にして複数回の
断続した油8の焼結軸受14への供給が繰り返さ
れ、各供給ごとの油8の流出量が記録される。こ
の記録値に基づいて焼結軸受14の通油性が判断
される。 次に、通気量測定治具13を用いて焼結軸受1
4の通気特性を測定するには、前記通油特性の測
定時と同様にして気体漏洩測定機5内を加圧する
とともに、通気量測定治具13の一対のゴムパツ
ド26,27間に焼結軸受14をセツトし、シリ
ンダ31のピストンロツドで押圧板29を介して
シール固定しておく。 ついで、エアコツク12及び第2の加圧バルブ
48を開放して焼結軸受14内を所定時間加圧し
たのち第2の加圧バルブ48を閉じ、こののち分
離バルブ47を開放してユニツト室36内と焼結
軸受14内とを連通させるとともに測定機5のス
タートスイツチを押して測定機5を作動させる。
これにより、復帰機構45が開放されて天秤40
はフリー状態となるとともに、図示しない記録装
置が作動され、ユニツト室36内の空気の焼結軸
受14を介しての流出に伴なう天秤40の傾きが
差動トランス44を介して計測され記録される。
この際、焼結軸受14への空気の供給時間は前述
と同様に一定時間、例えば1分間とされ、この所
定時間の供給がユニツト室36と基準タンク38
との圧力のバランスをとりながら複数回行なわれ
る。 以下、焼結軸受14を取換えて同様な操作を繰
返して複数の焼結軸受14の通油性及び通気性測
定が行なわれる。 上述のような本実施例によれば、焼結軸受14
のように油を含浸させて使用する被測定物にあつ
ても直接油8を注入して焼結軸受14の通油性を
測定でき、焼結軸受14の設計上等に非常に有効
なデータを得ることができる。また、通油量測定
治具11の回路の他に、通気量測定治具13の回
路を設けたから、焼結軸受14の通油性及び通気
性の両方を測定でき、これらのデータから焼結軸
受14の空孔の大きさ等を推定することができ、
この点からも設計上非常に有効なデータを得るこ
とができる。さらに、通油量の測定には通常の気
体漏洩測定機5の被測定物加圧用気体回路の途中
に液体タンクとしての油タンク9を設け、この油
タンク9内に注入液体としての油8を収納し、か
つ、オイルコツク10を設ければ足り、装置全体
の構成も簡易であり、安価に提供できる。また、
通油量測定治具11は恒温槽22内にあるため、
温度変化による油8の粘度の変化によつて測定デ
ータが不正確になるということがなく、かつ、液
体注入通路24の途中に設けられた液体温度調整
部25により油8の温度の安定が図られ、この点
からもデータの信頼性を向上できる。さらに、油
8の種類は低温用、高温用など使用環境によつて
選定されるが、それぞれの温度特性を包含するよ
うに、通常−20℃〜+80℃の恒温下における特性
把握が重要点となり、この種々の温度における測
定が恒温槽22の設置によつて可能となり、か
つ、焼結軸受14を実際に使用した場合にはシヤ
フトとの摩擦による温度上昇で油8の粘性が変化
するため、この実際の使用時における温度での特
性の測定が可能になる。 次に、本実施例を用いて焼結軸受の含油特性を
測定した実験例の結果を表−1に示す。
The present invention relates to a flow rate measuring device for measuring the flow rate from an object to be measured. Conventionally, the amount of air flowing out from an object to be measured is measured in measuring the amount of outflow (leakage) from a closed container or the permeability of pores in a sintered part. Therefore, in the case of objects to be measured, such as sintered bearings, where the state of impregnated oil permeation through the pores is a problem, the permeation state of oil and the permeation state of air within the pores are not necessarily the same. 1
There is a disadvantage that the characteristics of the sintered bearing cannot be appropriately determined because it does not correspond to the ratio of 1:1. Furthermore, even if a normal sealed container is used, depending on the contents contained therein, there may be cases where the leakage is not as great as air, and even in this case, if leakage is measured using air, judgments should be made more rigorously than necessary. This has the disadvantage of having to be done. An object of the present invention is to provide a flow rate measuring device that can accurately measure the flow rate of a liquid to be measured. The flow rate measuring device according to the present invention includes a gas leak measuring device, a liquid tank, a liquid injection passage, a first measurement jig, a thermostatic chamber, an air injection passage, and a second measurement jig. It has become well-prepared. The gas leak measuring device is equipped with a reference tank, a unit chamber connected to the reference tank via a balance valve, a detection means for detecting the pressure difference between the reference tank and the unit chamber, and a liquid tank separated into the unit chamber. They are connected via a valve, and a liquid such as oil is stored inside the valve, and the liquid injection passage is
The first measuring jig is for guiding the liquid in the liquid tank into the object to be measured, and a pot is provided on the way. Holds the object to be measured,
The first measurement jig is housed in a thermostatic chamber, and the air injection passage is connected to the unit chamber in parallel with the liquid tank and the liquid injection passage via a separation valve, and has a tank in the middle. The measurement jig holds the object to be measured so that air in the unit chamber led through the air injection passage can flow into and out of the object. In the above invention, the reference tank, unit room,
After pressurizing each liquid tank to the same air pressure, open the separation valve to communicate the unit chamber and liquid tank, and open the liquid injection passage to transfer the liquid in the liquid tank to the first measuring jig. When the liquid is supplied to an object to be measured held in a By detecting this with the detection means, the amount of liquid flowing out from the object to be measured can be measured. After pressurizing each of the reference tank and unit chamber to the same air pressure, open the separation valve and open the air injection passage to supply the air in the unit chamber to the measured object held in the second measurement jig. When air is supplied to the object to be measured, the pressure in the unit chamber decreases due to the amount of air flowing out from the object to be measured, creating a pressure difference between the unit chamber and the reference tank. The amount of air flowing out from the object to be measured can be measured. By measuring the amount of liquid flowing out and the amount of air flowing out of the object to be measured as described above, the amount of liquid flowing out and the amount of air flowing out of the object to be measured of the same type held by the first and second measurement jigs is determined. It became clear that there is a relationship with
If the object to be measured is a sintered bearing in which the amount of oil leakage is important, data regarding the amount of oil leakage and the amount of air output can be obtained. Further, in the present invention, since the first measurement jig is housed in a constant temperature bath, it is possible to measure the flow rate of the liquid while taking into account changes in the viscosity of the liquid due to temperature changes. Hereinafter, embodiments of the present invention will be described based on the drawings. FIG. 1 shows a system diagram showing one embodiment of the present invention. In FIG. 1, a pressure source side connection port 6 of a gas leak measuring device 5 is connected to a pressure source 1, such as an air compressor, through a filter 2, a regulator 3, and a pressure gauge 4. This gas leak measuring device 5
The workpiece side connection port 7 is filled with oil 8 as an injection liquid.
An oil flow measuring jig 11, which is a first measuring jig, is connected via an oil tank 9 and an oil tank 10 as a liquid tank containing a An airflow rate measuring jig 13, which is a second measuring jig, is connected in parallel with the jig 11 via an air tank 12. The oil flow measuring jig 11 includes a pair of upper and lower rubber pads 15 and 16 that can seal the end face of a sintered bearing 14 as an object to be measured, a pedestal 17 that supports the lower rubber pad 16, and this pedestal 17. A receiving plate 18 is provided at the lower part of the bearing plate 18 to receive the oil 8 flowing out from the sintered bearing 14, a pressing plate 19 is placed on the upper rubber pad 15, and the supporting plate 17 is supported by the pedestal 17 via a pedestal 20. together with the pressing plate 19
The jig 11 is composed of a cylinder 21 that presses the rubber pads 15 and 16 to bring the pair of rubber pads 15 and 16 into close contact with the sintered bearing 14, and the entire oil flow measuring jig 11 is housed in a constant temperature bath 22. Further, an oil passage 23 is provided passing through the pedestal 17 and the lower rubber pad 16, and a liquid injection passage 2 connecting this oil passage 23 and the oil pot 10 is provided.
4, the part located inside the constant temperature bath 22 is formed into a coil shape or the like, and the liquid temperature adjusting part 2
5 is provided, and the temperature of the oil 8 as the injected liquid is made equal to the temperature of the constant temperature bath 22 by passing through the liquid temperature adjustment section 25. The aeration amount measuring jig 13 is the oil passing amount measuring jig 1.
1, and includes a pair of rubber pads 26 and 27 that can seal the end face of the sintered bearing 14 as the object to be measured, a pedestal 28 that supports the lower rubber pad 27, and a pedestal 28 that is mounted on the upper rubber pad 26. a cylinder 31 that is supported by the pedestal 28 via a pedestal 30 and presses the pressing plate 29 to bring the pair of rubber pads 26 and 27 into close contact with the sintered bearing 14; It consists of In addition, the pedestal 28 and the lower rubber pad 27
An air passage 32 is provided through the air passage 32, and a passage from the air tank 12 is connected to this air passage 32. The oil flow amount measuring jig 11 and the aeration amount measuring jig 1
Each cylinder 21, 31 of 3 is a 2-position switching valve 3.
The switching valve 3 is connected to the pressure source side compressed air circuit between the filter 2 and the regulator 3 via the switching valve 3.
3, the piston rods of the cylinders 21 and 31 are moved forward and backward, and the sintered bearing 14 is sealed and fixed or released by the pressure of the pressing plates 19 and 29. The gas leak measuring device 5 includes a casing 34 made of a sealed container, and the inside of the casing 34 is divided into two by a partition plate 35, and one unit chamber 36 houses a balance unit 37 as a detection means. In addition, the other chamber is used as a reference tank 38. This balance unit 37 has a fulcrum 3 in the middle.
A balance 40 is swingably supported at 9, a bell cup 41 is attached to one end of the balance 40 and has the shape of a bowl turned upside down;
A communication hole 4 allows the lower end opening of 1 to be liquid-sealed and movable up and down in a liquid-sealed state, and communicates the inside of this liquid-sealed bell cup 41 with the inside of the reference tank 38.
2 and the bell cup 41.
Attached to the balance 40 at the end opposite to the balance 4
a differential transformer 44 that detects the amount of inclination of the differential transformer 44, and a return mechanism that is attached to the balance 40 at the end on the same side as the differential transformer 44 and includes a coil and a magnet that forcibly positions the balance 40 in a constant horizontal position. It consists of 45. The reference tank 38 of the housing 34 is communicated with the pressure source side connection port 6 via a first pressurizing valve 46, and the unit chamber 36 is connected to the pressure source side via a separation valve 47 and a second pressurizing valve 48. Source side connection port 6
The intermediate position between these separation valves 47 and the second pressurizing valve 48 is communicated with the workpiece side connection port 7. Further, the reference tank 38 and the unit chamber 36 are communicated with each other via a balance valve 49, so that the pressures in the reference tank 38 and in the unit chamber 36 can be made the same. The oil tank 9 is provided with a level meter 50 and an oil injection hole 53 which is normally sealed with an O-ring 51 and a bolt 52. In the above, the air tank 12 is provided in the middle of the air injection passage 54.
is connected to the unit chamber 36 of the gas leak measuring device 5 via a separation valve 47, and the air injection passage 54 is in parallel with the oil tank 9 and the liquid injection passage 24. Next, the operation of this embodiment will be explained. First, to measure the oil flow characteristics of the sintered bearing 14 as the object to be measured using the oil flow measurement jig 11,
While closing each valve 46 to 49 of the gas leak measuring device 5, the oil tank 10 and the air tank 1 are closed.
2 is closed, and the regulator 3 is set to a predetermined pressure, e.g.
Set to 0.5-1Kg/ cm2 . Next, the first and second pressurizing valves 46, 48, separation valve 47, and balance valve 49 of the gas leakage measuring device 5 are opened to release air in the unit chamber 36, reference tank 38, bell cup 41, and upper part of the oil tank 9. Pressurize the inside of the layer to the pressure set by the regulator 3, wait until the temperature is no longer affected by this pressurization, and stabilize. After stabilization, all valves 4 of the gas leak measuring device 5 are closed.
Close 6-49. When the inside of the unit chamber 36 is pressurized, the return mechanism 45 is operated, and the balance 40 of the balance unit 37 is held at a predetermined horizontal position. Next, the sintered bearing 14 as the object to be measured is placed on the lower rubber pad 16 of the pair of rubber pads 15 and 16 of the oil flow measuring jig 11, and the oil pot 10 is slightly opened to drain oil from the oil tank 9. 8 is supplied into the sintered bearing 14, and the oil 18 is supplied into the sintered bearing 14.
As soon as it is filled, close the oil pot 10,
The upper rubber pad 15 and pressing plate 19 are placed on the sintered bearing 14, and the cylinder 21 is connected via the switching valve 33.
compressed air is supplied in the direction in which the piston rod advances, and the upper and lower rubber pads 1 are
5 and 16 to seal the upper and lower end surfaces of the sintered bearing 14. After this seal, oil Kotoku 10
fully open. Next, the second pressurizing valve 48 is opened for a predetermined period of time to pressurize the inside of the oil tank 9, to replenish the pressure reduced by supplying the oil 8 to the sintered bearing 14 side, and after this pressurization, the separation valve 47 is opened. When opened, the inside of the unit chamber 36 of the gas leak measuring device 5 and the inside of the sintered bearing 14 are communicated through the oil tank 9. In this state, when the start switch (not shown) of the gas leak measuring device 5 is pressed to operate the measuring device 5, the return mechanism 45 is opened and the balance 40 becomes free. On the other hand, due to the pressure in the unit chamber 36 and the oil tank 9, the oil 8 in the oil tank 9 flows out through the holes in the sintered bearing 14, and the pressure in the unit chamber 36 decreases accordingly. Become. When the pressure inside the unit chamber 36 decreases, a pressure difference occurs within the bell cup 41 which is connected to the reference tank 38 with no pressure drop, and the pressure within the bell cup 41 causes the bell cup 4 to increase.
The balance 40 is tilted in the direction in which the sintered bearing 14 is tilted in the direction in which the
The amount of oil 8 flowing out can be measured. At this time, when the oil 8 is supplied to the sintered bearing 14 for a certain period of time, for example, 1 minute, the separation valve 47 is automatically closed, and the return mechanism 45 is activated to force the balance 40 to the horizontal position. Then, the balance valve 49 is opened to equalize the pressures in the unit chamber 36 and the reference tank 38. After this pressure equalization, the balance valve 49 is closed, the return mechanism 45 is turned off, and the isolation valve is closed. 49 is opened, the supply of oil 8 to the sintered bearing 14 is started again in the same manner as described above, and thereafter, the supply of oil 8 to the sintered bearing 14 is repeated several times intermittently in the same manner, and each supply The amount of oil 8 spilled per step is recorded. The oil permeability of the sintered bearing 14 is determined based on this recorded value. Next, the sintered bearing 1 is measured using the airflow measurement jig 13.
In order to measure the ventilation characteristics of No. 4, the inside of the gas leakage measuring device 5 is pressurized in the same way as when measuring the oil permeability characteristics, and a sintered bearing is placed between the pair of rubber pads 26 and 27 of the ventilation amount measuring jig 13. 14 is set and sealed and fixed by the piston rod of the cylinder 31 via the pressing plate 29. Next, the air tank 12 and the second pressurizing valve 48 are opened to pressurize the inside of the sintered bearing 14 for a predetermined period of time, and then the second pressurizing valve 48 is closed.Then, the separation valve 47 is opened and the unit chamber 36 is closed. The inside of the sintered bearing 14 is communicated with the inside of the sintered bearing 14, and the start switch of the measuring device 5 is pressed to operate the measuring device 5.
As a result, the return mechanism 45 is opened and the balance 40
becomes a free state, and a recording device (not shown) is activated, and the inclination of the balance 40 due to the outflow of air in the unit chamber 36 via the sintered bearing 14 is measured and recorded via the differential transformer 44. be done.
At this time, the time for supplying air to the sintered bearing 14 is set to be a fixed time, for example, 1 minute, as described above, and the supply for this predetermined time is for the unit chamber 36 and the reference tank 38.
This is done multiple times while balancing the pressure with the Thereafter, the sintered bearings 14 are replaced and similar operations are repeated to measure the oil permeability and air permeability of a plurality of sintered bearings 14. According to this embodiment as described above, the sintered bearing 14
Even if the object to be measured is impregnated with oil as shown in the figure, the oil permeability of the sintered bearing 14 can be measured by directly injecting the oil 8, and very useful data can be obtained for the design of the sintered bearing 14. Obtainable. In addition, in addition to the circuit for the oil flow rate measurement jig 11, the circuit for the ventilation rate measurement jig 13 is provided, so both the oil permeability and air permeability of the sintered bearing 14 can be measured, and based on these data, the sintered bearing It is possible to estimate the size of the 14 pores, etc.
Very useful data for design can be obtained from this point as well. Furthermore, in order to measure the amount of oil flowing, an oil tank 9 as a liquid tank is provided in the middle of the gas circuit for pressurizing the object to be measured of the normal gas leak measuring device 5, and oil 8 as the injection liquid is placed in the oil tank 9. It is sufficient to store the device and provide the oil pot 10, and the overall structure of the device is simple and can be provided at low cost. Also,
Since the oil flow measurement jig 11 is in the constant temperature bath 22,
Measurement data will not become inaccurate due to changes in the viscosity of the oil 8 due to temperature changes, and the temperature of the oil 8 can be stabilized by the liquid temperature adjustment section 25 provided in the middle of the liquid injection passage 24. This also improves the reliability of the data. Furthermore, the type of oil 8 is selected depending on the environment in which it will be used, such as for low temperatures or high temperatures, but it is important to understand its characteristics under constant temperatures, usually between -20°C and +80°C, to ensure that each temperature characteristic is included. Measurements at various temperatures are made possible by installing the constant temperature bath 22, and when the sintered bearing 14 is actually used, the viscosity of the oil 8 changes due to temperature rise due to friction with the shaft. It becomes possible to measure the characteristics at the temperature during actual use. Next, Table 1 shows the results of an experimental example in which the oil impregnation characteristics of a sintered bearing were measured using this example.

【表】 表−1において、通気度とは通気量測定治具1
3を用いて測定し、空気量100c.c.が流出する迄の
時間(分)、通油量とは通油量測定治具11を用
いて測定し、1分間における油8の流通量(c.c.)
であり、断面とは金属顕微鏡による断面形状を図
示したものであり、さらに軸受特性とは実装試験
の結果である。 前記表−1によれば、供試品A,Bの間に通気
度の差はほとんどなく、従つて通気度のように空
孔内流動抵抗の小さい媒体、すなわち、空気を使
用した測定では焼結軸受の軸受特性を適正には判
断できず、一方、通油量では明確な差が有り、こ
の通油量によれば軸受特性の適正な判断が可能と
なる。また、第2図A,Bに示される断面によれ
ば、供試品Aはほとんど小孔54のみであり、一
方、供試品Bは小孔55とこれより大きな孔56
とが混在しており、この断面観察によつても含油
特性の判断は可能であるが、断面を見るためには
破壊試験を行なわねばならず、実用的ではないた
め、本実施例を用いた通油度測定より劣る測定法
といえる。 第3図には、本考案の他の実施例の要部が示さ
れている。本実施例は、前記実施例における通油
量測定治具11あるいは通気量測定治具13の受
台17,28の部分の改良例である。すなわち、
前記実施例の受台17,28及びこれに載置され
る下方のゴムパツド16,27には何ら突部等が
形成されておらず、従つて、焼結軸受14のセツ
ト時における位置決めが難かしい。このため、本
実施例では下方のゴムパツド16,27を貫通し
て突出される案内部材57を受台17,28の油
(空気)通路23,32の上部開口部に同軸上に
固定したものである。 このような本実施例によれば、焼結軸受14の
位置決めが容易となるという利点がある。 なお、本考案により測定できる被測定物は焼結
軸受に限らず、一般の容器等でもよく、この場
合、注入液体は油に限らず水等他の液体でもよ
い。 上述のように本考案によれば、被測定物の液体
による流通量を測定可能な流通量測定装置を提供
できるという効果がある。
[Table] In Table-1, air permeability is air flow measurement jig 1.
3, and the time (minutes) until the amount of air 100c.c. flows out. cc)
Here, the cross section is a diagram showing the cross-sectional shape obtained using a metallurgical microscope, and the bearing characteristics are the results of a mounting test. According to Table 1 above, there is almost no difference in air permeability between specimens A and B, and therefore, when measuring air permeability, a medium with low flow resistance in the pores, that is, air, On the other hand, there is a clear difference in the amount of oil passing, and it is possible to properly judge the bearing characteristics based on this amount of oil passing. Moreover, according to the cross section shown in FIGS. 2A and 2B, specimen A has almost only a small hole 54, while specimen B has a small hole 55 and a larger hole 56.
Although it is possible to judge the oil-retaining properties by observing this cross section, it is not practical to conduct a destructive test to see the cross section, so this example was used. It can be said that this measurement method is inferior to oil permeability measurement. FIG. 3 shows the main parts of another embodiment of the present invention. This embodiment is an improvement of the pedestals 17 and 28 of the oil flow rate measuring jig 11 or the ventilation rate measuring jig 13 in the previous embodiments. That is,
The pedestals 17, 28 and the lower rubber pads 16, 27 placed thereon in the embodiment described above do not have any protrusions or the like, and therefore, it is difficult to position the sintered bearing 14 when setting it. . For this reason, in this embodiment, the guide member 57 that protrudes through the lower rubber pads 16, 27 is coaxially fixed to the upper openings of the oil (air) passages 23, 32 of the pedestals 17, 28. be. According to this embodiment, there is an advantage that positioning of the sintered bearing 14 becomes easy. Note that the object to be measured according to the present invention is not limited to a sintered bearing, but may also be a general container, etc. In this case, the injected liquid is not limited to oil, but may be another liquid such as water. As described above, the present invention has the advantage that it is possible to provide a flow rate measuring device capable of measuring the flow rate of liquid in an object to be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る流通量測定装置の一実施
例を示す系統図、第2図A,Bは第1図の実施例
を用いた実験の供試品の断面形状を金属顕微鏡で
見たときの断面図、第3図は本考案の他の実施例
を示す要部の断面図である。 1……圧力源、5……気体漏洩測定機、8……
注入液体としての油、9……液体タンクとしての
油タンク、10……オイルコツク、11……第1
の測定治具である通油量測定治具、12……エア
コツク、13……第2の測定治具である通気量測
定治具、14……被測定物としての焼結軸受、1
5,16,26,27……ゴムパツド、22……
恒温槽、24……流体注入通路、25……液体温
度調整部、36……ユニツト室、37……検出手
段としてのバランスユニツト、38……基準タン
ク、47……平衡バルブ、54……空気注入通
路。
Fig. 1 is a system diagram showing one embodiment of the flow rate measuring device according to the present invention, and Fig. 2 A and B show the cross-sectional shape of the test sample using the embodiment of Fig. 1, as seen with a metallurgical microscope. FIG. 3 is a sectional view of main parts showing another embodiment of the present invention. 1... Pressure source, 5... Gas leak measuring device, 8...
Oil as injection liquid, 9... Oil tank as liquid tank, 10... Oil pot, 11... 1st
12... An air flow measuring jig which is a measuring jig, 13... A ventilation amount measuring jig which is a second measuring jig, 14... A sintered bearing as an object to be measured, 1
5, 16, 26, 27...Rubber pad, 22...
Constant temperature chamber, 24...Fluid injection passage, 25...Liquid temperature adjustment section, 36...Unit chamber, 37...Balance unit as detection means, 38...Reference tank, 47...Balance valve, 54...Air injection passage.

Claims (1)

【実用新案登録請求の範囲】 (1) 基準タンク、この基準タンクに平衡バルブを
介して連結されたユニツト室、前記基準タンク
とユニツト室との圧力差を検出する検出手段を
含む気体漏洩測定機と、 この気体漏洩測定機のユニツト室に分離バル
ブを介して連結されかつ内部に液体を収納した
液体タンクと、 この液体タンク中の液体を被測定物内へ導き
かつ途中にコツクを有する液体注入通路と、 この液体注入通路を通じて導かれた液体を被
測定物に対して流入可能かつ流出可能に被測定
物を保持する第1の測定治具と、 この測定治具を収納する恒温槽と、 前記気体漏洩測定機のユニツト室に分離バル
ブを介して前記液体タンク、前記液体注入通路
と並列に連結されるとともに、途中にコツクを
有する空気注入通路と、 この空気注入通路を通じて導かれた空気を被
測定物に対して流入可能かつ流出可能に被測定
物を保持する第2の測定治具と、 を備えたことを特徴とする流通量測定装置。 (2) 実用新案登録請求の範囲第1項において、前
記恒温槽内における液体注入通路の途中には、
コイル状の液体温度調整部が形成されているこ
とを特徴とする流通量測定装置。
[Claims for Utility Model Registration] (1) A gas leak measuring device including a reference tank, a unit chamber connected to the reference tank via a balance valve, and a detection means for detecting a pressure difference between the reference tank and the unit chamber. A liquid tank connected to the unit chamber of the gas leakage measuring device via a separation valve and containing liquid therein, and a liquid injection device that guides the liquid in the liquid tank into the object to be measured and has a hole in the middle. a passage; a first measurement jig that holds an object to be measured so that the liquid guided through the liquid injection passage can flow into and out of the object; a thermostatic chamber that houses the measurement jig; An air injection passage that is connected in parallel to the liquid tank and the liquid injection passage through a separation valve to the unit chamber of the gas leakage measuring device, and that has a hole in the middle, and the air introduced through the air injection passage. A flow rate measuring device comprising: a second measuring jig that holds an object to be measured so that it can flow into and out of the object. (2) Scope of Utility Model Registration Claims In paragraph 1, in the middle of the liquid injection passage in the thermostatic oven,
A flow rate measuring device characterized in that a coil-shaped liquid temperature adjustment section is formed.
JP2999080U 1980-03-08 1980-03-08 Expired JPH0122115Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2999080U JPH0122115Y2 (en) 1980-03-08 1980-03-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2999080U JPH0122115Y2 (en) 1980-03-08 1980-03-08

Publications (2)

Publication Number Publication Date
JPS56131440U JPS56131440U (en) 1981-10-06
JPH0122115Y2 true JPH0122115Y2 (en) 1989-06-29

Family

ID=29625890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2999080U Expired JPH0122115Y2 (en) 1980-03-08 1980-03-08

Country Status (1)

Country Link
JP (1) JPH0122115Y2 (en)

Also Published As

Publication number Publication date
JPS56131440U (en) 1981-10-06

Similar Documents

Publication Publication Date Title
US4627270A (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
Grover Simplified air permeameters for soil in place
US7568379B2 (en) Method of measuring porosity by means of ellipsometry and device for implementing one such method
JP2009520971A (en) Method and apparatus for automatically measuring oil consumption of an internal combustion engine and replacing the engine oil described above
US2755660A (en) Permeability tester
KR850000833B1 (en) Apparatus for cheeking the set pressure of a safety valve
CN108303509A (en) The amendment that coal-bed gas free amount calculates and remaining absorption amount determining device and method
US3216242A (en) Soil-testing apparatus
US4660412A (en) Three fluid method for non-mercury intrusion porosimetry
JPH0122115Y2 (en)
US4446726A (en) Apparatus and method for measuring the filterability of a fluid at low temperatures
JPH0611407A (en) Apparatus for measuring flow rate and leaking amount of fluid in body under inspection
US2669869A (en) Apparatus for gauging consumption of oil or other liquid
CN113092335A (en) Novel method for testing porosity of shale gas reservoir based on pressurized saturated alcohol
JPS6318694B2 (en)
JPH0118382B2 (en)
CN205246488U (en) Brick hydrogen diffusance detection device at bottom of molten tin bath
USRE32964E (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
CN210774475U (en) Monitoring experiment device for simulating water pressure of void in tunnel rock stratum
US4114430A (en) Brake system tester
CN107748125A (en) Intrusive mercury curve measurement system and assay method based on liquid level constant method
CN114062215B (en) Core high-pressure measurement permeability experimental device and evaluation method
CN220063761U (en) Air tightness experimental device suitable for confining pressure participation
CN111912757B (en) Shale parameter measuring device
US2139105A (en) Pressure indication within well bores