JPH01220735A - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber

Info

Publication number
JPH01220735A
JPH01220735A JP4609788A JP4609788A JPH01220735A JP H01220735 A JPH01220735 A JP H01220735A JP 4609788 A JP4609788 A JP 4609788A JP 4609788 A JP4609788 A JP 4609788A JP H01220735 A JPH01220735 A JP H01220735A
Authority
JP
Japan
Prior art keywords
pressure
shock absorber
chamber
hydraulic shock
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4609788A
Other languages
Japanese (ja)
Other versions
JP2780021B2 (en
Inventor
Hiroshi Nakanishi
博 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP63046097A priority Critical patent/JP2780021B2/en
Publication of JPH01220735A publication Critical patent/JPH01220735A/en
Application granted granted Critical
Publication of JP2780021B2 publication Critical patent/JP2780021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • B60G2400/91Frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper

Abstract

PURPOSE:To enable automatic regulation of damping force by arranging a pump circuit responsive to the excitation frequency of a hydraulic shock absorber mechanism in an independent closed circuit of working oil and regulating the throttle opening area of a damping valve with the output pressure from the pump circuit being employed as a pilot pressure. CONSTITUTION:A plunger 25 is displaced through one cycle excitation of a hydraulic shock absorber to cause pumping function thus feeding constant working oil continuously into a small chamber 21, where the response of the plunger 25 is maintained in wide variation range of exciting speed. Consequently, average working oil flow to be fed into the small chamber in unit time is proportional to the frequency of excitation. Oil pressure fed out from the small chamber 21 through an output path, i.e. the pilot pressure, is determined by the quantity of working oil fed from the small chamber 21 and the circulation flow through an orifice 24. The shape of a spool 15 is set such that the throttle opening of the spool valve 14 for receiving the pilot pressure is regulated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油圧緩衝器に関し、特に、4輌用サスペンシ
ョン機構に採用して醋適な周波数感応型油圧1衝器に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydraulic shock absorber, and more particularly to a frequency-sensitive hydraulic shock absorber suitable for use in a four-vehicle suspension mechanism.

(従来の技術) 周知の如く、車輌の車軸懸案における振動形態は、2自
由度の振動系であり、そのために、走行中の路面からの
J1M動入力によって、該系の振動周波数の特定の領域
で共振動作が起きる。
(Prior Art) As is well known, the form of vibration in the axle suspension of a vehicle is a two-degree-of-freedom vibration system, and therefore, due to the J1M dynamic input from the road surface while driving, the vibration frequency of the system is affected in a specific range. Resonant operation occurs.

そして、かかる共振動作のピーク時を共振点とするとき
、比較的低周波数領域で発現する一次共振点と比較的高
周波a領域て発現する二次共振点とがある。
When the peak time of such resonance operation is defined as a resonance point, there are a primary resonance point that occurs in a relatively low frequency region and a secondary resonance point that occurs in a relatively high frequency region a.

かかる共ft動作をそのまま放置許容すると。If such common ft operation is allowed to remain as it is.

−次共振点の周波数域てばね1の振動か大きくなって、
走行中の乗心地が損なわれることになり、二次共振点周
波数域でばね下の振動が大きくなっ”C,*輪の接地性
が悪くてクリップ性惜並びに操縦安定性能が劣化する。
-The vibration of spring 1 in the frequency range of the next resonance point increases,
The riding comfort during driving will be impaired, and the unsprung vibration will increase in the frequency range of the secondary resonance point, causing the wheels to have poor ground contact, resulting in poor clip performance and poor steering stability.

このような状況を防ぐには、サスベンジqン機構におけ
る振動減衰力をE記共振点付近の周波数域で変化させる
加振周波数応答型の減衰力調整式油圧緩衝器の採用が嗜
まれる。
In order to prevent such a situation, it is desirable to employ an excitation frequency response type damping force adjustable hydraulic shock absorber that changes the vibration damping force in the suspension mechanism in the frequency range near the E resonance point.

しかして、かかる減衰力調整式油圧緩衝器の数種がすで
に提案されている。
Several types of such damping force adjustable hydraulic shock absorbers have already been proposed.

(発明か解決しようとするa8) ところで、従来提案の減衰力調整式油圧緩衝器の内、減
衰バルブの減衰係数を振動周波数に応じて切換変更する
手段では1周波板検出機構並びにアクチュエーターa構
などの附加によって、!l衝器構造が複雑となり、組立
工程数の増大による生産性の低下等を伴って高価となる
不都合がある。
(A8 to be solved by the invention) By the way, among the previously proposed damping force adjustable hydraulic shock absorbers, the means for switching and changing the damping coefficient of the damping valve according to the vibration frequency uses a single frequency plate detection mechanism, an actuator a structure, etc. With the addition of ! The structure of the shock absorber becomes complicated, and there is a disadvantage that the number of assembly steps increases, resulting in decreased productivity and high cost.

また、環状リーフバルブからなる減衰バルブの撓み剛性
を変更して行う手段では、巾−の減衰バルブに異なる大
きさの撓みが繰り返されることになり、そのために素材
の金属疲労などによってバルブ折損勢故が起き易く1機
te安定性に欠ける不都合がある。
In addition, with the method of changing the deflection rigidity of a damping valve consisting of an annular leaf valve, the width of the damping valve is repeatedly deflected with different magnitudes, which can lead to valve breakage and damage due to metal fatigue of the material. This has the disadvantage that it tends to occur easily and lacks stability.

そこで、未発11Jは、上述の従来手段における事情に
鑑み1機構上並びに機能とにおいて従来手段の不都合な
とごろを一挙に解決し得たところの振動周波数に感応し
て発生減衰力を自動的にl!4整変更することの出来る
油圧緩衝器を提供することを目的とする。
Therefore, in view of the circumstances of the conventional means mentioned above, the unreleased 11J automatically reduces the generated damping force in response to the vibration frequency, which solves all the disadvantages of the conventional means in terms of mechanism and function. ni l! The purpose of the present invention is to provide a hydraulic shock absorber that can be changed in four positions.

(a題を解決するための手段) この目的は1本発明によれば、減衰バルブを備えたシリ
ンダ型油圧緩衝機構において、独立した作動油の閉回路
中に自記機構への加振周波I&←応答するポンプ回路を
設け、該ポンプ回路の出力回路圧をパイロット圧として
前記減衰バルブの絞り開口[!IO積を6丁変Jl′g
!するように構成してなる油圧緩衝器によって達成され
る。
(Means for Solving Problem A) According to the present invention, in a cylinder type hydraulic shock absorbing mechanism equipped with a damping valve, the excitation frequency I&← A responsive pump circuit is provided, and the output circuit pressure of the pump circuit is used as a pilot pressure to control the throttle opening of the damping valve [! Change the IO product by 6 Jl'g
! This is achieved by a hydraulic shock absorber configured to do so.

(作 用) 即ち、加振周波数に応答するポンプ回路としては1例え
ば、油圧シリンダ機構のピストンで区分される伸側油室
又は圧側油室の作動油圧を受けて動作するプランジャー
と該プランジャー動作で移動する作動油の給排回路中に
夫々配置した逆止−升とによって構成され、前記油室の
油圧変化(ビストンストローク動作)に応じて該プラン
ジャーか往復動作する加振周波数の一サイクルごとに所
定場の作動油をその出力回路に送り出す。
(Function) In other words, the pump circuit that responds to the excitation frequency includes, for example, a plunger that operates in response to the working pressure of the extension side oil chamber or the pressure side oil chamber divided by the piston of the hydraulic cylinder mechanism, and the plunger. It is composed of non-return checks placed in the supply and discharge circuits of the hydraulic oil that moves during operation, and has an excitation frequency that causes the plunger to reciprocate in response to changes in the oil pressure in the oil chamber (viston stroke operation). A predetermined amount of hydraulic fluid is delivered to its output circuit every cycle.

それ故、油圧緩衝機構の油圧回路に対して流路系が独立
した閉回路は、該機構の外部加振によるピストン動作で
前記油室、の作動油圧が変化しても、その影響を直接に
受ることなくて、所定め波路抵抗を持って環流する該閉
回路の波路系が安定に保たれており、従って、線菌に路
の前記ポンプ回路の出力回路部分において、ピストン動
作即ち加振周波数に応じた酸の作動油の送り込みを受け
る該出力回路はその回路油圧が加振周波数に依存して変
化する。
Therefore, even if the hydraulic pressure in the oil chamber changes due to piston movement caused by external vibration of the mechanism, the closed circuit in which the flow path system is independent from the hydraulic circuit of the hydraulic shock absorbing mechanism directly absorbs the effect. The wave path system of the closed circuit, which circulates with a predetermined wave path resistance without being affected by the bacteria, is kept stable. The circuit oil pressure of the output circuit, which receives acid hydraulic oil fed in accordance with the frequency, changes depending on the excitation frequency.

この回路油圧をパイロット圧としてスプール弁等からな
る減衰バルブをMWするとき、該スプールのパイロット
圧対応移動域における狭搾通路の開口面積を変えるよう
に、該スプール形状を設定しておくことにより1本発明
におけるL記手段からなる油圧緩衝機構は任意の加振周
波数の複数個所の領域で減衰力を低減させ、他の田域に
おいて減衰力の増大を計るような加振周波数感応型の減
衰力調整式油圧緩衝器として機(2)する。
When MWing a damping valve such as a spool valve using this circuit oil pressure as pilot pressure, the spool shape is set so as to change the opening area of the narrow passage in the pilot pressure corresponding movement range of the spool. In the present invention, the hydraulic shock absorbing mechanism consisting of the means indicated by L has an excitation frequency-sensitive damping force that reduces the damping force in a plurality of regions of an arbitrary excitation frequency, and increases the damping force in other areas. Used as an adjustable hydraulic shock absorber (2).

それ故、かかる油圧1衝器を車輌用サスベンジ儂ンに用
いるとき゛、該油圧緩*Sは従来の両共振点周波数域で
大きいM資力Itlll持して、該サスペンション系に
おける共振動作を抑制し。
Therefore, when such a hydraulic shock absorber is used in a vehicle suspension system, the hydraulic pressure damper *S has a large M capability in both conventional resonance point frequency ranges to suppress resonance operation in the suspension system.

バつ、それ以外の周波数領域で減衰力を低Fさせて、線
系にソフトなスプリング性能を与えるように作用する。
Also, it lowers the damping force in other frequency ranges to give soft spring performance to the wire system.

(実施例) 次に、本発明の好ましい叉施例について添附rji面を
参照して説明する。
(Embodiments) Next, preferred embodiments of the present invention will be described with reference to the attached drawings.

第1図は本発明の一実施例を示す油圧緩衝器の縦断側面
図で、シリンダ1にはピストンロット2に支持されたピ
ストン3が槽動自在に嵌装され、かつ、該ピストン3と
シリンダ壽ヤップ5との間にフリーピストン4を配置し
て、シリンダ型油圧緩衝a4mを構成しである。
FIG. 1 is a vertical side view of a hydraulic shock absorber showing an embodiment of the present invention, in which a piston 3 supported by a piston rod 2 is fitted into a cylinder 1 so as to be movable, and the piston 3 and the cylinder A free piston 4 is disposed between the piston 5 and the piston 5 to constitute a cylinder-type hydraulic shock absorber a4m.

そして、該シリンダi内は前記ピストン3によっ□て作
動油の充填された伸側室6と圧倒室7とに区分され、こ
れ等両室6及び7間を該ピストン3に配置した減衰バル
ブ機構8によって連通しである。
The inside of the cylinder i is divided by the piston 3 into an expansion side chamber 6 filled with hydraulic oil and an overwhelm chamber 7, and a damping valve mechanism disposed in the piston 3 connects these two chambers 6 and 7. It is connected by 8.

、一方、前記ピストンロッド2は中空軸体で構成され、
その外端施栓Tに密月された中空部に油室9と空気室I
Oとが形成されている。
, on the other hand, the piston rod 2 is composed of a hollow shaft body,
An oil chamber 9 and an air chamber I are located in the hollow part closed to the outer end plugging T.
O is formed.

そして、該油室9は前記減衰バルブ機構8における絞り
開度な制御するための作動油回路におけるリザーバー室
として機能し、後述する作動時の該油室9におけるわず
かな体積変化を前記空気重重0の圧縮膨張により吸収し
て、リザーバー室圧を常に略一定に保持するようにな“
しである。
The oil chamber 9 functions as a reservoir chamber in a hydraulic oil circuit for controlling the throttle opening in the damping valve mechanism 8, and a slight volume change in the oil chamber 9 during operation, which will be described later, is reduced to the air weight 0. The pressure in the reservoir chamber is always kept almost constant by absorbing it through compression and expansion.
It is.

更に、前記フリーピストン4はそのff後に加圧空気室
11を有し、ピストン3のストローク動作時におけるピ
ストンロッド2のシリンダ内出入によるシリンタ内容積
変化分を該空気室11の圧縮*iによって吸収するよう
になしである。
Further, the free piston 4 has a pressurized air chamber 11 after its ff, and the change in internal volume of the cylinder due to the movement of the piston rod 2 into and out of the cylinder during the stroke operation of the piston 3 is absorbed by the compression*i of the air chamber 11. There is nothing like that.

そして、前記油室9を有する作動油回路はその流路系が
前記伸側室6及び圧側室7に対して独立した閉回路とし
て構成されていると共に。
The hydraulic fluid circuit having the oil chamber 9 has a flow path system configured as a closed circuit independent of the expansion side chamber 6 and the pressure side chamber 7.

これ等両室6,7及び閉回路の作動油を共に高圧下に置
いて作動時における各流路でのキャビテーションの発生
を防ぐようになしである。
Both chambers 6 and 7 and the hydraulic oil in the closed circuit are placed under high pressure to prevent cavitation from occurring in each flow path during operation.

次に1前記減衰バルブ機構8を拡大して示す第2図を参
照して該機構8の具体的構成について説明する。
Next, the specific structure of the damping valve mechanism 8 will be explained with reference to FIG. 2 which shows the damping valve mechanism 8 in an enlarged manner.

前記ピストン3において、その伸側室側面に開口するメ
インボート12と同じく圧側室側面に開[1するメイン
ボートlコとかスプール弁14を介して′4詰されてお
り、該弁14のスプール15の一方の端面には弁閉鎖向
きに作用する弱い拡圧発条16と共に前記油室9と連通
する通路17によってJ[9の作動圧が与えてあり、他
方の端面には通路18によって後述するパイロット圧が
作用するようになしである。
In the piston 3, the main boat 12 that opens on the side of the compression side of the piston 3 and the main boat 12 that opens on the side of the compression side of the piston 3 are closed via a spool valve 14, and the spool 15 of the valve 14 is closed. An operating pressure of J[9 is applied to one end face by a passage 17 communicating with the oil chamber 9 together with a weak pressure expansion spring 16 acting in the valve closing direction, and a pilot pressure (described later) is applied to the other end face by a passage 18. There is no way for it to work.

このスプール弁14に対して12tされる前記閉回路は
、#記油室9から通路19を通りチエツク弁20による
逆流防止下に小容室21を経て、今一つのチエツク弁2
2を配置した出力通路23のオリフィス24から前記油
室9に流入する作動油の環魔回路からなり、更に、前記
小客室21に一端を臨ませたブランジーr−25の他端
が前記伸側室9の室圧を受けるように配置され、かつ、
該スプール25には前記室圧に抗する向きの復帰用スプ
リング26が附設されている。
The closed circuit, which is connected to the spool valve 14 by 12t, is from the #oil storage chamber 9 through the passage 19, passes through the small chamber 21 while being prevented from backflow by the check valve 20, and is then connected to another check valve 2.
The other end of the brunge R-25, which has one end facing the small passenger compartment 21, is connected to the expansion side compartment. arranged to receive a room pressure of 9, and
A return spring 26 is attached to the spool 25 in a direction that opposes the chamber pressure.

そして、前記出力通路23には多孔質材からなる環状の
弾性体27を内蔵した保圧室28が附設されている。
A pressure holding chamber 28 containing a ring-shaped elastic body 27 made of a porous material is attached to the output passage 23.

かかる構成によって、先の通路18と前記出力通路28
とが連結状態にあり、該出力通路28の回路圧をペイ口
・シト圧として前記スプール弁i4が動作する状態にあ
る。
With such a configuration, the previous passage 18 and the output passage 28
are in a connected state, and the spool valve i4 operates using the circuit pressure of the output passage 28 as the pay port/seat pressure.

しかして、L記実施例によれば、油圧fII衝器本体に
加わる振動で、そのシリンダlとピストン3との間の相
対移動により、先ず、ピストン3が仲方向への変位をr
M始すると、これによって伸側室6の室圧が増加し、そ
の結果、該室圧を受けるプランジャー25が、第211
.そスプリング26の拡圧力に抗して降下して下死点位
置に移動する。
According to the embodiment L, the vibration applied to the hydraulic fII impactor body causes the piston 3 to first shift in the middle direction due to the relative movement between the cylinder l and the piston 3.
At the beginning of M, the chamber pressure of the expansion side chamber 6 increases, and as a result, the plunger 25 receiving this chamber pressure moves to the 211th
.. It descends against the expansion force of the spring 26 and moves to the bottom dead center position.

この移動で、プランジャー25の先端移動路中の作動油
が小容室21に押し出されるので、該室21内の作動油
が加圧され、チエツク弁z2を押し開いて出力通路2コ
に向けて送り出される。
By this movement, the hydraulic oil in the path of travel at the tip of the plunger 25 is pushed out into the small chamber 21, so the hydraulic oil in the chamber 21 is pressurized, pushing open the check valve z2 and directing it toward the two output passages. sent out.

このとき、他方のチエツク弁2Gは前記小容室2Iの室
圧を受けて閉じている。
At this time, the other check valve 2G is closed due to the pressure in the small chamber 2I.

これに対して、前記ピストン3が正方向への変位を開始
すると、伸側室6の室圧が逆に低下するので、プランジ
ャー2Sがスプリング26の拡圧力並びにこれに作用す
る閉回路の作動油圧によって上死点まで移動する。
On the other hand, when the piston 3 starts displacing in the forward direction, the pressure in the expansion side chamber 6 decreases, so that the plunger 2S increases the expansion force of the spring 26 and the hydraulic pressure of the closed circuit that acts on it. to move to top dead center.

その結果、小容室21の室圧が低下し、チエツク弁20
が開いて油室9の作動油を小客室21に補充する。この
とき、出力通路23はこれに附設した保圧室28の弾性
体2)によってその通路圧が保持されているので、一方
のチエツク弁22は閉じている。
As a result, the pressure in the small chamber 21 decreases, and the check valve 20
opens to replenish the hydraulic oil in the oil chamber 9 into the small compartment 21. At this time, the passage pressure of the output passage 23 is maintained by the elastic body 2) of the pressure holding chamber 28 attached thereto, so one check valve 22 is closed.

即ち、油圧緩衝器本体に対するlサイクルの加振によっ
て、これに応答するプランジャー25の変位によるポン
プ作用て、小客室2Kには常に一定の作動油が送″り込
まれるが、この加振に対するプランジャー25の応答性
は、第3図(イ)および(11)に示す如く、加振速度
の広い変化範囲(加振周波数変化域)で保たれる。
That is, a constant amount of hydraulic oil is always sent into the small compartment 2K due to the pumping action caused by the displacement of the plunger 25 in response to the vibration of the hydraulic shock absorber body for one cycle. The responsiveness of the plunger 25 is maintained over a wide variation range of the excitation speed (excitation frequency variation range), as shown in FIGS. 3(a) and (11).

従って、該小容室21に送り込まれる作動油流量は、そ
の単位時間平均では加振周波数に比例することになる。
Therefore, the flow rate of hydraulic oil sent into the small chamber 21 is proportional to the excitation frequency on average per unit time.

一方、該小容室2Iからの出力通路2コに送り出された
作動油は弾性体27の圧縮下に保圧室28に保留される
と共にその−・部が適度に絞り込まれた通孔のオリフィ
ス24を通って油室9に徐々に環流される。
On the other hand, the hydraulic oil sent from the small chamber 2I to the two output passages is retained in the pressure holding chamber 28 under compression by the elastic body 27, and the orifice of the through hole is moderately narrowed. The oil is gradually returned to the oil chamber 9 through the oil chamber 24.

その結果、該出力通路2コの作動油圧即ち連通路18に
おけるバーfロット圧力が定常的には小宮室21からの
作動油送り出し騒とオリフィス24を通るjcltIl
t&シによって一意的に決まることとなり、単位時間当
りの送り出し量の少ない加振速度の遅い域(低周波数領
域)では低く、加振速度かhaするに連れて増大する第
2図上(八)図示の状態になる。
As a result, the working oil pressure of the two output passages, that is, the bar f lot pressure in the communication passage 18, is constantly increased by the hydraulic oil sending noise from the small chamber 21 and the jcltIl passing through the orifice 24.
It is uniquely determined by t & shi, and is low in the low excitation speed region (low frequency region) where the amount of delivery per unit time is small, and increases as the excitation speed increases (see (8) in Figure 2). The state will be as shown.

そして、このパイロット圧力を受けるスプール弁14の
スプール15が同図(ニ) 15i1に承す如く変位す
るので、この変位城における狭搾通路部29(第4図参
照)に達する部分のスプール外径を多段的に設定した形
状のスプール15を用いることにより、加[11作の低
周波数域でのスプール変位状態(第411A)図示)、
同中間周波数域の変位状8(第4図(B)図示)、同高
周波数域の変位状8(第4図(C) U4示)及びaa
1周波数域の変位状wB(第4図(0)図示)の各変位
に対して、融出29における絞り開口面積を第3図示(
本)に示す如く変化させることが出来る。
Then, the spool 15 of the spool valve 14 that receives this pilot pressure is displaced as shown in FIG. By using the spool 15 with a shape set in multiple stages, the spool displacement state in the low frequency range (No. 411A) shown in Figure 11),
Displacement shape 8 in the same intermediate frequency range (shown in FIG. 4 (B)), displacement shape 8 in the same high frequency range (shown in FIG. 4 (C) U4), and aa
For each displacement of the displacement shape wB (shown in FIG. 4 (0)) in one frequency range, the aperture aperture area in the melting 29 is calculated as shown in the third diagram (
It can be changed as shown in the book).

しかして、このスプール弁14を介してメインボート1
2及び1コにより連通された伸側室6と圧倒室7との間
の作動油流路抵抗が先の絞り開口面積により規制される
結果、加振丁のピストン3の動作に対する減衰力が、第
3[’4(へ)に示す如く、加振周波数に応して変化す
る。
Therefore, the main boat 1
As a result of the resistance of the hydraulic oil flow path between the expansion side chamber 6 and the overwhelming chamber 7, which are communicated by the expansion side chamber 6 and the overwhelming chamber 7, which are communicated by the expansion side chamber 6 and the overwhelming chamber 7, being regulated by the aforesaid throttle opening area, the damping force against the movement of the piston 3 of the vibrating knife is 3[' As shown in 4(f), it changes depending on the excitation frequency.

(発IJIの効果) このように、本発明油圧緩衝器によれば、緩##器本体
に対して流路系を独立させた作動油の閉回路中に該本体
への加振周波数に応答するポンプ回路を設け、該ポンプ
回路の出力回路圧をパイロット圧として前記減衰バルブ
の絞り開口面積を可変調整するように構成したので、加
振周波数によって減衰力が変化する加振周波数感応型の
油圧緩衝器を得ることが出来、しかも、前記絞り開口面
積の変化を多段的に行なうことにより、任意の加振周波
数の複a個所の領域で減衰力を低減させ、他の領域にお
いて減衰力の増大を計ることも−f能であるので、これ
を−輌用サスペンションに用いて従来の両共振点周波数
域で大きい減衰力を維持して、該サスベンジ1ン系にお
ける共振動作を抑制し、且つ、それ以外の周波数領域で
減衰力を低Fさせて、線系にソフトなスプリング性老を
発揮するショクアブソーバとすることが出来ると共に、
1#器自体の構造が比較的簡単て、あり、しかも、少な
い部品点数で構成することが出来、加えて、シリンダ内
の変角油圧で駆動されるポンプ回路出力油圧をパイロッ
ト圧として減衰力を′M4御するので、緩衝器本体の姿
勢の向きに左右されることなく使用することがOr能で
ある等1本発明油圧#ll衝器は実用に供して極めて有
用なるものである。
(Effect of IJI) As described above, according to the hydraulic shock absorber of the present invention, the hydraulic shock absorber responds to the excitation frequency to the main body during the closed circuit of the hydraulic oil in which the flow path system is independent from the main body of the loose ##. A pump circuit is provided, and the output circuit pressure of the pump circuit is used as a pilot pressure to variably adjust the aperture area of the damping valve. Therefore, an excitation frequency-sensitive hydraulic system in which the damping force changes depending on the excitation frequency is realized. A shock absorber can be obtained, and by changing the diaphragm aperture area in multiple stages, the damping force can be reduced in a plurality of regions of an arbitrary excitation frequency, and the damping force can be increased in other regions. Since it is also possible to measure the -f function, this can be used in the -vehicle suspension to maintain a large damping force in both conventional resonance point frequency ranges, suppressing the resonance operation in the suspension system, and, By lowering the damping force in other frequency ranges, it is possible to create a shock absorber that exhibits a soft spring effect on the line system.
The structure of the #1 device itself is relatively simple, and it can be constructed with a small number of parts.In addition, the damping force is generated by using the pump circuit output oil pressure, which is driven by the variable angle oil pressure in the cylinder, as pilot pressure. The hydraulic #ll shock absorber of the present invention is extremely useful in practical use, as it can be used without being affected by the orientation of the shock absorber body because it controls M4.

4、図面のrfJ#iIな説明 第tUAは本発明に係る油圧[衝器の一実施例を示すI
Ijfr11面図、第2図は第1図示実施例における減
衰バルブ機構部分を拡大して示す縦断側面図、第3図は
本発明油圧緩衝器における各f部の作!IIJ特性図、
第4図は本発明油圧緩衝器における機構要部の作動状態
図である。
4. rfJ#iI Explanation of Drawings Section tUA shows an embodiment of the hydraulic shock absorber according to the present invention.
Ijfr11 side view, FIG. 2 is a vertical cross-sectional side view showing an enlarged view of the damping valve mechanism portion in the first illustrated embodiment, and FIG. IIJ characteristic diagram,
FIG. 4 is a diagram showing the operating state of the main parts of the mechanism in the hydraulic shock absorber of the present invention.

1 =−・シリン′タ    2・・・ビストンロット
3・・・ピストン    4・・・フリーピストン6・
・・伸側室     7・・・圧側室8・・・減衰バル
ブ機構 9・・・油 室10−・・空気室     1
2.13・・・メインポート14−・・スプールブ? 
   15−・・スプール20、22・・・チエツク弁
 25−・・プランジャー−°−ミ 代理人  jf理士 天  野   泉1  ″−二一
−− 第4図 (A) <C> CB) CD)
1 =-・Cylinder 2・Viston rod 3・Piston 4・Free piston 6・
... Rebound side chamber 7 ... Compression side chamber 8 ... Damping valve mechanism 9 ... Oil chamber 10 - ... Air chamber 1
2.13...Main port 14-...Spurb?
15-...Spool 20, 22...Check valve 25-...Plunger-°-Mi representative jf Physician Amano Izumi 1''-21-- Figure 4 (A) <C> CB) CD)

Claims (1)

【特許請求の範囲】[Claims] 減衰バルブを備えたシリンダ型油圧緩衝機構において、
独立した作動油の閉回路中に前記機構への加振周波数に
応答するポンプ回路を設けると共に、該ポンプ回路の出
力回路圧をパイロット圧として前記減衰バルブの絞り開
口面積を可変調整するように構成してなることを特徴と
する油圧緩衝器
In a cylindrical hydraulic shock absorber with a damping valve,
A pump circuit responsive to the excitation frequency applied to the mechanism is provided in an independent hydraulic oil closed circuit, and the aperture opening area of the damping valve is variably adjusted using the output circuit pressure of the pump circuit as a pilot pressure. A hydraulic shock absorber characterized by
JP63046097A 1988-02-29 1988-02-29 Hydraulic shock absorber Expired - Lifetime JP2780021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046097A JP2780021B2 (en) 1988-02-29 1988-02-29 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046097A JP2780021B2 (en) 1988-02-29 1988-02-29 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JPH01220735A true JPH01220735A (en) 1989-09-04
JP2780021B2 JP2780021B2 (en) 1998-07-23

Family

ID=12737487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046097A Expired - Lifetime JP2780021B2 (en) 1988-02-29 1988-02-29 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP2780021B2 (en)

Also Published As

Publication number Publication date
JP2780021B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
US5586627A (en) Hydraulic shock absorber of damping force adjustable type
KR100451289B1 (en) Damping force adjustable hydraulic buffer
JP3141037B2 (en) Adjustable shock absorber and shock absorber
US5078241A (en) Controllable vibration dampers for motor vehicles
GB2366606A (en) A vibration damper with fixed and moving pistons
JPH05164177A (en) Controllable vibration damper
JP2023531761A (en) active suspension for vehicles
WO2020179682A1 (en) Shock absorber
JP4096153B2 (en) Damping force adjustable hydraulic shock absorber
JPH01220735A (en) Hydraulic shock absorber
US11633999B2 (en) Motor-vehicle with multi-mode extreme travel suspension-suspension hydraulic design
JP2909749B2 (en) Hydraulic shock absorber
CN113474245B (en) Buffer device
JPH0285536A (en) Hydraulic damper
JPH0478337A (en) Hydraulic buffer
JPH03134334A (en) Hydraulic buffer
JPH0324337A (en) Hydraulic shock absorber
JP2504423B2 (en) Variable damping force type hydraulic shock absorber
JPH0751365Y2 (en) Hydraulic controller for active suspension
JPH02142943A (en) Hydraulic shock absorber
JPH0281711A (en) Hydraulic draft gear
JPH03168436A (en) Hydraulic shock absorber
JPH01212689A (en) Damping force regulation type front fork
WO2004111488A1 (en) Hydraulic shock-absorbing device for motor vehicle
JPS6383423A (en) Damping force variable type hydraulic damper