WO2020179682A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2020179682A1
WO2020179682A1 PCT/JP2020/008378 JP2020008378W WO2020179682A1 WO 2020179682 A1 WO2020179682 A1 WO 2020179682A1 JP 2020008378 W JP2020008378 W JP 2020008378W WO 2020179682 A1 WO2020179682 A1 WO 2020179682A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
shock absorber
chamber
compression
soft
Prior art date
Application number
PCT/JP2020/008378
Other languages
French (fr)
Japanese (ja)
Inventor
宏一郎 粟野
壮大 島内
隆久 望月
將史 植村
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2020179682A1 publication Critical patent/WO2020179682A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the present invention relates to an improvement of a shock absorber.
  • the damping element is composed of, for example, an orifice and a leaf valve provided in parallel with this orifice.
  • the piston speed is in the low speed range and the differential pressure between the upstream side and the downstream side of the damping element is less than the valve opening pressure of the leaf valve, the liquid passes only through the orifice.
  • the piston speed is in the medium to high speed range and the differential pressure is equal to or higher than the valve opening pressure of the leaf valve, the liquid passes through the leaf valve.
  • the characteristic of the damping force with respect to the piston speed of the shock absorber (hereinafter referred to as "damping force characteristic") is based on the orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the leaf valve is opened. , The valve characteristics change to be proportional to the piston speed peculiar to leaf valves.
  • a bypass path that bypasses the damping element and a needle valve that adjusts the opening area of the bypass path are provided, or a damping element is provided.
  • a pilot valve for controlling the back pressure of the constituent leaf valves may be provided (for example, Patent Documents 1 and 2).
  • the adjustment of the damping force by such a needle valve is mainly used to adjust the damping force when the piston speed is in the low speed range.
  • the opening area of the bypass path is adjusted by the needle valve, the damping force when the piston speed is in the middle and high speed range is adjusted to some extent, but it is difficult to increase the adjustment range.
  • the adjustment range of the damping force can be increased when the piston speed is in the middle and high speed range.
  • the characteristic line showing the damping force characteristic in the medium and high speed range shifts up and down without changing its inclination. Therefore, especially in the hard mode, the characteristic line when shifting from the low speed range to the medium and high speed range. The slope of is changed rapidly. For this reason, when the shock absorber is mounted on the vehicle, the occupant may feel uncomfortable and the ride quality may be deteriorated.
  • an object of the present invention is to provide a shock absorber that can solve these problems, increase the adjustment range of the damping force when the piston speed is in the medium to high speed range, and improve the riding comfort when mounted on a vehicle. And.
  • a shock absorber that solves the above problems includes a hard side damping element that resists the flow of liquid moving between the extension side chamber and the compression side chamber, which are partitioned by a piston that is movably inserted into the cylinder, and a hard side damping element.
  • a solenoid valve capable of changing the opening area of a bypass passage that bypasses the element and connects the expansion side chamber and the compression side chamber, a soft side damping element provided in series with the solenoid valve in the bypass passage, and a low pressure priority valve And a tank connected to the low pressure side of the pressure side chamber.
  • the hard damping element has an orifice and a leaf valve provided in parallel with the orifice, and the soft damping element has a large-diameter orifice having an opening area larger than that of the orifice.
  • the damping force generated by the shock absorber has an orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and is peculiar to the leaf valve when the piston speed is in the medium to high speed range. It becomes the valve characteristic of. Then, if the opening area of the bypass passage is changed by the solenoid valve, the distribution ratio of the flow rate of each of the liquids moving between the expansion side chamber and the compression side chamber that passes through the hard side damping element and the soft side damping element changes. Therefore, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the middle and high speed ranges can be freely set, and the adjustment range of the generated damping force can be increased.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be reduced.
  • both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be increased.
  • the soft side damping element may be configured to have a leaf valve provided in parallel with the large diameter orifice.
  • a valve with high valve rigidity is adopted as the leaf valve of the damping element on the hard side, the damping force in the soft mode does not become excessive. Therefore, the adjustment range of the damping force can be further increased when the piston speed is in the middle-high speed range.
  • a cylindrical holder in which a port where the solenoid valve is connected to the bypass path is formed, a spool which is reciprocally inserted in the holder and which can open and close the port, and a moving direction of the spool. It may have an urging spring that urges the spool to one side and a solenoid that applies a thrust in the direction opposite to the urging force of the urging spring to the spool.
  • a hard leaf valve on the expansion side that gives resistance to the flow of liquid from the expansion side chamber to the compression side chamber and a liquid flow from the compression side chamber to the expansion side chamber are provided.
  • a hard leaf valve on the pressure side that provides resistance is provided, and as a leaf valve for the damping element on the soft side, the soft path valve on the expansion side that provides resistance to the flow of liquid from the expansion side chamber to the pressure side chamber and the bypass path are used as the bypass valve.
  • a soft leaf valve on the pressure side may be provided that provides resistance to the flow of liquid from the pressure side chamber to the expansion side chamber. In this way, it is possible to increase the adjustment range of the damping force on both sides of the extension when the piston speed is in the medium to high speed range.
  • a port is provided and the amount of electricity supplied to the solenoid valve is increased, the opening degree of one of the extension side port and the compression side port increases and the opening degree of the other port decreases. It may be set. In this way, when one of the extension side and the compression side is adjusted to have a high damping force, the other damping force is automatically adjusted to be low. The height can be induced to be higher or lower.
  • the port may allow bidirectional flow of liquid.
  • a member for making the port one-way is not required, so that the solenoid valve configuration can be simplified and miniaturized.
  • the spool and the low pressure priority valve may move along a straight line orthogonal to the central axis passing through the center of the piston rod.
  • the shock absorber may include a housing and a sub-cylinder provided in the housing to accommodate a soft-side damping element, and a low-pressure priority valve may be provided between the housing and the sub-cylinder. By doing so, it is possible to prevent the axial length of the housing from increasing.
  • the housing may be integrated with the cylinder. In this way, it is not necessary to connect the housing and the cylinder with a hose, so that it is possible to prevent an unintended damping force from being generated due to resistance when the liquid passes through the hose. Furthermore, since the hose can be omitted, the cost can be reduced.
  • the adjustment range of the damping force can be increased when the piston speed is in the middle and high speed range, and the riding comfort when mounted on the vehicle can be improved.
  • FIG. 1 is a front view in which a shock absorber according to an embodiment of the present invention is partially cut away.
  • FIG. 2 is a partially enlarged vertical sectional view showing an enlarged damping force adjusting portion of the shock absorber according to the embodiment of the present invention.
  • FIG. 3 is a vertical cross-sectional view showing a part of FIG. 2 in an enlarged manner.
  • FIG. 4 is a hydraulic circuit diagram of a shock absorber according to an embodiment of the present invention.
  • FIG. 5 is a damping force characteristic diagram showing the characteristic of the damping force with respect to the piston speed of the shock absorber according to the embodiment of the present invention.
  • FIG. 6 is a hydraulic circuit diagram showing a modified example of the shock absorber according to the embodiment of the present invention.
  • FIG. 1 is a front view in which a shock absorber according to an embodiment of the present invention is partially cut away.
  • FIG. 2 is a partially enlarged vertical sectional view showing an enlarged damping force adjusting portion of the shock absorber according to
  • FIG. 7 is a damping force characteristic diagram showing the characteristics of the damping force with respect to the piston speed of the shock absorber provided with the conventional needle valve.
  • FIG. 8 is a damping force characteristic diagram showing the characteristics of the damping force with respect to the piston speed of a shock absorber provided with a conventional pilot valve.
  • shock absorber according to an embodiment of the present invention is used for a rear cushion device for suspending the rear wheels of a saddle-type vehicle.
  • the upper and lower sides with the shock absorber attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
  • the shock absorber A includes an outer shell 10 and a retractable shock absorber main body D having a piston rod 3 that goes in and out of the outer shell 10.
  • a suspension spring S provided on the outer periphery of the shock absorber main body D, a damping force adjusting portion E provided integrally with the shock absorber main body D, and a tank T connected to the damping force adjusting portion E with a hose are provided. ing.
  • shock absorber A is an inverted type, and the piston rod 3 projects downward from the outer shell 10.
  • An axle-side bracket 30 is provided at the lower end of the piston rod 3.
  • the bracket 30 is connected to a swing arm that is swingably connected to the vehicle body. Since the rear wheel is rotatably supported by the swing arm, it can be said that the piston rod 3 is connected to the axle of the rear wheel.
  • a ridged tubular end cap 11 is screwed around the upper end of the outer shell 10.
  • a bracket 12 on the vehicle body side is provided on the top of the end cap 11, and the outer shell 10 is connected to the vehicle body via the bracket 12.
  • the shock absorber body D is interposed between the vehicle body of the vehicle and the rear wheel axle.
  • the piston rod 3 moves in and out of the outer shell 10 and the shock absorber body D expands and contracts.
  • the expansion and contraction of the shock absorber main body D is also referred to as the expansion and contraction of the shock absorber A.
  • the suspension spring S is a coil spring.
  • the upper end of the suspension spring S is supported by an upper spring receiver 13 mounted on the outer circumference of the outer shell 10.
  • the lower end of the suspension spring S is supported by the lower spring bearing 31 attached to the bracket 30 on the axle side. Since the bracket 30 on the axle side is connected to the piston rod 3, it can be said that the suspension spring S has one end supported by the outer shell 10 and the other end supported by the piston rod 3.
  • the suspension spring S is compressed and exerts an elastic force to urge the shock absorber A in the extension direction. In this way, the suspension spring S exerts an elastic force according to the amount of compression to elastically support the vehicle body.
  • the direction in which the shock absorber A is attached is not limited to that shown in the figure, and for example, the top and bottom in FIG. Further, the mounting target of the shock absorber A is not limited to the vehicle and can be changed as appropriate. Further, the suspension spring S may be a spring other than a coil spring such as an air spring, and the suspension spring S may be omitted depending on the object to which the shock absorber A is attached.
  • the shock absorber main body D is a double cylinder type, and the cylinder 1 as an inner cylinder is provided inside the outer shell 10.
  • a piston 2 is slidably inserted in the cylinder 1.
  • the piston 2 is connected to the outer periphery of the upper end of the piston rod 3 by a nut 32.
  • the shock absorber A expands and contracts, the piston rod 3 moves in and out of the cylinder 1, and the piston 2 moves up and down (axial direction) in the cylinder 1.
  • a capped cylindrical end cap 11 is screwed onto the outer periphery of the upper end of the outer shell 10, and the upper end of the outer shell 10 is closed by this end cap 11.
  • an annular rod guide 14 that slidably supports the piston rod 3 is attached to the lower end of the outer shell 10. Seals 15, 16 and 17 are attached to the rod guide 14, and the outer circumference of the piston rod 3 and the inner circumference of the outer shell 10 are sealed.
  • the inside of the outer shell 10 is a sealed space, and the liquid contained in the outer shell 10 including the inside of the cylinder 1 is prevented from leaking to the outside.
  • a working chamber L filled with a liquid such as working oil is formed in the cylinder 1, and the working chamber L is partitioned by the piston 2 into a lower expansion side chamber L1 and an upper compression side chamber L2. ing.
  • the expansion side chamber L1 here is the one of the two chambers partitioned by the piston that is compressed by the piston 2 when the shock absorber A extends.
  • the pressure side chamber L2 is one of the two chambers partitioned by the piston 2 that is compressed by the piston 2 when the shock absorber A contracts.
  • the piston 2 is formed with an extension side passage 2a and a compression side passage 2b that communicate the extension side chamber L1 and the compression side chamber L2, and the extension side chamber L1 and the compression side chamber L2 pass through the extension side passage 2a and the compression side passage 2b.
  • a hard side damping element FH is attached that resists the flow of liquid moving between them.
  • This hard side damping element FH includes an expansion side hard leaf valve 20 that is a leaf valve that opens and closes the expansion side passage 2a, a compression side hard leaf valve 21 that is a leaf valve that opens and closes the compression side passage 2b, and an orifice 22 (see FIG. 4) and is configured.
  • the hard leaf valves 20 and 21 on the expansion side and the compression side are thin annular plates made of metal or the like, or a laminated body in which the annular plates are stacked, and have elasticity.
  • the extension side hard leaf valve 20 is laminated on the upper side of the piston 2 in a state where the outer peripheral side is allowed to bend, and the pressure of the extension side chamber L1 is applied to the extension side hard leaf valve 20 so that the outer peripheral portion is upward. Acts in the direction of bending.
  • the compression side hard leaf valve 21 is laminated on the lower side of the piston 2 in a state where the outer peripheral side is allowed to bend, and the pressure of the compression side chamber L2 is applied to the compression side hard leaf valve 21 on the outer peripheral side downward. Acts in the direction of bending.
  • the orifice 22 has a notch provided on the outer peripheral portion of one or both of the hard leaf valves 20 and 21 on the extension side and the compression side that are detached and seated on the valve seat of the piston 2, or a stamp provided on the valve seat or the like. Is formed by. Therefore, it can be said that the orifice 22 is provided in one or both of the expansion side passage 2a and the compression side passage 2b in parallel with the expansion side and compression side hard leaf valves 20 and 21.
  • the expansion side chamber L1 is compressed by the piston 2 when the shock absorber A extends and the internal pressure thereof rises, and becomes higher than the pressure of the compression side chamber L2.
  • the pressure side chamber L2 is compressed by the piston 2 when the shock absorber A contracts and its internal pressure rises, and becomes higher than the pressure of the extension side chamber L1.
  • a differential pressure is generated between the extension side chamber L1 and the compression side chamber L2.
  • the piston speed is in the low speed range when the shock absorber A is expanded and contracted, and the differential pressure is less than the opening pressure of the hard leaf valves 20 and 21 on the expansion side and the compression side
  • the liquid expands through the orifice 22.
  • the expansion side chamber L1 moves toward the compression side chamber L2, and when contracting, the compression side chamber L2 moves toward the expansion side chamber L1.
  • the orifice 22 provides resistance to the liquid flow.
  • the piston speed increases and is in the medium to high speed range, and when the differential pressure becomes large and exceeds the valve opening pressure of the extension side hard leaf valve 20, the outer circumference of the extension side hard leaf valve 20 The portion bends upward to form a gap between the outer peripheral portion and the piston 2, and the liquid passes through the gap from the extension side chamber L1 to the compression side chamber L2 and imparts resistance to the flow of the liquid. Will be done.
  • the compression side hard leaf valve 21 bends downward to form a gap between the outer peripheral portion and the piston 2, and the liquid passes through the gap from the compression side chamber L2 to the extension side chamber L1 and with respect to the flow of the liquid. Resistance is given.
  • the orifice 22 of the hard-side damping element FH and the hard-leaf valve 20 on the expansion side provide resistance to the flow of liquid from the expansion-side chamber L1 to the compression-side chamber L2 when the shock absorber A extends. Acts as the first damping element of.
  • the orifice 22 of the hard side damping element FH and the compression side hard leaf valve 21 are the first compression side damping elements that give resistance to the flow of liquid from the compression side chamber L2 to the extension side chamber L1 when the shock absorber A contracts. Function as. The resistance due to these first damping elements is caused by the orifice 22 when the piston speed is in the low speed range, and is caused by the expansion side or pressure side hard leaf valves 20, 21 when the piston speed is in the medium and high speed ranges. ..
  • a tubular gap C1 is formed between the cylinder 1 and the outer shell 10.
  • the gap C1 is always communicated with the extension side chamber L1 through a hole 1a formed at the lower end of the cylinder 1. Further, the gap C1 communicates with the damping force adjusting portion E through a hole 10a formed in the upper end portion of the outer shell 10 and an extension side opening 11a formed in the end cap 11.
  • a pressure side opening 11b is formed in the end cap 11, and the pressure side chamber L2 communicates with the damping force adjusting portion E through the pressure side opening 11b.
  • the damping force adjusting portion E is housed in the housing 4 with a bottomed tubular housing 4, a cap 40 that closes an opening of the housing 4, and one end supported by the cap 40.
  • the sub-cylinder 41, the valve case 5 fixed in the sub-cylinder 41, and the electromagnetic valve V provided on the cap 40 side of the valve case 5 in the sub-cylinder 41 are provided.
  • a low-pressure priority valve 6 is provided for partitioning into C3 and connecting the low-pressure side of the expansion-side clearance C2 and the compression-side clearance C3 to the tank T (FIG. 1).
  • the extension side opening 11a leading to the extension side gap C2 is communicated with the extension side chamber L1
  • the compression side opening 11b communicating with the compression side gap C3 is communicated with the compression side chamber L2. Therefore, it can be said that the low pressure priority valve 6 connects the low pressure side of the expansion side chamber L1 and the compression side chamber L2 to the tank T.
  • the central axis Y of the damping force adjusting portion E passing through the center of the housing 4 is a straight line orthogonal to the central axis X of the shock absorber body D passing through the center of the piston rod 3 shown in FIG. It is arranged along Z.
  • the left and right of the damping force adjusting section E in FIG. 2 are simply referred to as “left” and “right”, but the direction in which the damping force adjusting section E is attached can be appropriately changed.
  • the damping force adjusting unit E may be arranged such that the central axis Y extends in the vehicle width (left and right) direction of the vehicle or the longitudinal direction.
  • the housing 4 of the damping force adjusting portion E is integrally molded with the end cap 11 that closes the upper end of the outer shell 10 and the bracket 12 on the vehicle body side.
  • the integral molding mentioned here does not mean that a plurality of members that have been molded separately are bonded or joined, but that a plurality of members are joined together at the same time as molding to be integrated.
  • the inside of the sub-cylinder 41 housed in the housing 4 is the first chamber L3 on the left side (cap 40 side) and the second chamber on the right side (anti-cap side) by the valve case 5. It is partitioned into L4.
  • the valve case 5 is formed with an expansion-side soft passage 5a and a compression-side soft passage 5b which communicate the first chamber L3 and the second chamber L4, and through the expansion-side soft passage 5a or the compression-side soft passage 5b.
  • a soft damping element FS is attached that provides resistance to the flow of liquid moving between the first chamber L3 and the second chamber L4.
  • a lateral hole 41a opening to the expansion side clearance C2 is formed, and the solenoid valve V is provided in the middle of the passage connecting the lateral hole 41a and the first chamber L3. It is provided.
  • the expansion side gap C2 communicates with the expansion side chamber L1 through the expansion side opening 11a of the end cap 11 (FIG. 1).
  • the second chamber L4 is always communicated with the compression side gap C3, and the compression side gap C3 is communicated with the compression side chamber L2 through the compression side opening 11b of the end cap 11 (FIG. 1).
  • the cylindrical gap C1, the expansion side gap C2, the lateral hole 41a, the first chamber L3, the second chamber L4, and the pressure side gap C3 formed between the cylinder 1 and the outer shell 10 are formed.
  • a bypass passage B is formed which bypasses the hard side damping element FH and connects the extension side chamber L1 and the compression side chamber L2. Then, the solenoid valve V and the soft side damping element FS are provided in series in the middle of the bypass path B.
  • the soft-side damping element FS includes an expansion-side soft leaf valve 50 that is a leaf valve that opens and closes the expansion-side soft passage 5a, a compression-side soft leaf valve 51 that is a leaf valve that opens and closes the compression-side soft passage 5b, and an orifice 52 ( It is configured to have FIG. 4).
  • the soft leaf valves 50 and 51 on the extension side and the compression side are thin annular plates made of metal or the like, or a laminated body in which the annular plates are stacked, and have elasticity.
  • the extension side soft leaf valve 50 is laminated on the right side of the valve case 5 in a state where the outer peripheral side is allowed to bend, and the pressure of the first chamber L3 is applied to the outer peripheral portion of the extension side soft leaf valve 50. It acts in the direction of bending to the right.
  • the pressure side soft leaf valve 51 is laminated on the left side of the valve case 5 in a state where the outer peripheral side is allowed to bend, and the pressure side soft leaf valve 51 has the pressure in the second chamber L4 on the outer peripheral side to the left side. Acts in the direction of bending.
  • the orifice 52 is formed by a notch provided on the outer peripheral portion of the soft leaf valves 50 and 51 on the extension side and the compression side that are detached and seated on the valve seat of the valve case 5, or a stamp provided on the valve seat. There is. Therefore, it can be said that the orifice 52 is provided in one or both of the expansion side soft passage 5a and the compression side soft passage 5b in parallel with the expansion side and compression side soft leaf valves 50 and 51.
  • the pressure in the first chamber L3 rises under the pressure of the extension side chamber L1 when the solenoid valve V opens the extension side port 7a, which will be described later, when the shock absorber A is extended, and the pressure in the second chamber L4 rises. It becomes higher than the pressure, which causes a differential pressure between the first chamber L3 and the second chamber L4.
  • the piston speed is in the low speed range, and the differential pressure is the opening pressure of the extension side soft leaf valve 50. If the amount is less than the above, the liquid flows from the first chamber L3 to the second chamber L4, that is, from the extension side chamber L1 to the compression side chamber L2 through the orifice 52, and resistance is imparted to the flow of the liquid.
  • the piston speed increases and is in the middle-high speed range, and the differential pressure increases and the expansion side soft leaf valve increases.
  • the valve opening pressure of 50 or more is reached, the outer peripheral portion of the expansion side soft leaf valve 50 bends to form a gap between the outer peripheral portion and the valve case 5, and the liquid passes through the gap and leaves the first chamber L3.
  • resistance is imparted to the flow of this liquid.
  • the pressure in the second chamber L4 rises under the pressure of the compression side chamber L2 when the solenoid valve V opens the port 7b on the compression side, which will be described later, when the shock absorber A contracts, and the pressure in the first chamber L4 rises. It becomes higher than the pressure of L3, which causes a differential pressure between the second chamber L4 and the first chamber L3.
  • the shock absorber A is contracted and the solenoid valve V is opening the port 7b on the compression side
  • the piston speed is in the low speed range, and the differential pressure satisfies the valve opening pressure of the soft leaf valve 51 on the compression side.
  • the liquid flows from the second chamber L4 to the first chamber L3, that is, from the pressure side chamber L2 to the extension side chamber L1 through the orifice 52, and resistance is imparted to the flow of the liquid.
  • the orifice 52 of the soft side damping element FS and the extension side soft leaf valve 50 resist the flow of liquid from the extension side chamber L1 to the compression side chamber L2 through the bypass path B when the shock absorber A is extended. Acts as a second damping element on the extension side that gives. Further, the orifice 52 of the soft damping element FS and the soft leaf valve 51 on the compression side give resistance to the flow of liquid from the compression side chamber L2 to the extension side chamber L1 on the bypass path B when the shock absorber A contracts. It functions as a secondary damping element. The resistance due to the first and second damping elements is caused by the orifice 52 when the piston speed is in the low speed range, and is extended or compressed by the soft leaf valves 50, 51 when the piston speed is in the medium and high speed ranges. caused by.
  • the soft leaf valve 50 on the extension side of the soft side damping element FS is a valve having a valve rigidity lower (easy to bend) than the hard leaf valve 20 on the extension side of the hard side damping element FH, and has the same flow rate. , The resistance (pressure loss) applied to the liquid flow is small.
  • the soft leaf valve 51 on the compression side of the soft side damping element FS is a valve having a lower valve rigidity (easier to bend) than the hard leaf valve 21 on the compression side of the hard side damping element FH, and when the flow rates are the same, The resistance (pressure loss) applied to the liquid flow is small.
  • the liquid passes through the soft leaf valves 50 and 51 more easily than the hard leaf valves 20 and 21 under the same conditions.
  • the orifice 52 of the soft side damping element FS is a large diameter orifice having a larger opening area than the orifice 22 of the hard side damping element FH, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
  • the solenoid valve V includes a cylindrical holder 7 fixed in the sub-cylinder 41, a spool 8 reciprocally inserted in the holder 7, and a spool 8 attached in one of the moving directions.
  • a biasing spring 80 for biasing and a solenoid 9 for applying a thrust in a direction opposite to the biasing force of the biasing spring 80 to the spool 8 are configured.
  • the holder 7 is formed with ports 7a and 7b on the extension side and the compression side, and the opening degree of each port 7a and 7b can be adjusted by changing the position of the spool 8 in the holder 7. There is.
  • the holder 7 is arranged such that one end of the holder 7 in the axial direction is directed to the left side (cap 40 side) and the other end is directed to the right side (valve case 5 side) in the sub-cylinder 41, with the central axis Y of the housing 4 being held. It is arranged along.
  • the expansion side and compression side ports 7a and 7b respectively penetrate through the wall thickness of the holder 7 in the radial direction and are arranged at a predetermined interval in the axial direction.
  • An annular extension-side valve seat 70 and a compression-side valve seat 72 are provided between the holder 7 and the housing 4 on both sides of the lateral hole 41a between the extension-side and compression-side ports 7a and 7b.
  • the expansion side valve seat 70 is equipped with an expansion side check valve 71 that allows only one-way flow of the liquid from the expansion side gap C2 through the lateral hole 41a to the expansion side port 7a.
  • the pressure side valve seat 72 is provided with a pressure side check valve 73 that allows only one-way flow of the liquid from the pressure side port 7b through the lateral hole 41a toward the expansion side gap C2.
  • the expansion side and compression side ports 7a and 7b are individually opened and closed by the spool 8.
  • the spool 8 has a tubular shape and is slidably inserted into the holder 7.
  • a plate 81 is laminated on the left end of the spool 8, and a plunger 9a of a solenoid 9 described later is in contact with the plate 81.
  • a biasing spring 80 contacts the right end of the spool 8, and the biasing spring 80 biases the spool 8 to the left side (the solenoid 9 side).
  • the center hole 8a formed in the center of the spool 8 communicates with the first chamber L3 through the right end opening of the spool 8.
  • the spool 8 is formed with annular grooves 8b, 8d on the extension side and the compression side along the circumferential direction of the outer circumference thereof at predetermined intervals in the axial direction, and inside and the center hole of each annular groove 8b, 8d. Side holes 8c and 8e that communicate with 8a are formed. As a result, the inside of each annular groove 8b, 8d communicates with the first chamber L3 via the side holes 8c, 8e and the central hole 8a.
  • the state where the annular groove and the port face each other here means a state where the annular groove and the port overlap each other when viewed in the radial direction, and the opening degree of each port changes depending on the overlapping amount. For example, when the overlapping amount of the annular groove and the corresponding port increases, the opening degree of the port increases, and conversely, when the overlapping amount of the annular groove and the corresponding port decreases, the opening degree of the port decreases. Further, when the spool moves to a position where the annular groove and the corresponding port do not completely overlap, the port is blocked.
  • the opening degree of the port 7a on the extension side becomes the maximum (fully open)
  • the opening degree of the port 7b on the compression side becomes the minimum (fully closed).
  • the opening degree of the port 7a on the extension side is decreased, the opening degree of the port 7b on the compression side becomes larger, and when the opening degree of the port 7b on the compression side becomes the maximum (fully open), the port 7a on the extension side The opening is set to the minimum (fully closed).
  • the solenoid 9 that applies thrust to the spool 8 and drives the spool 8 is held by the cap 40, and although detailed illustration is omitted, a tubular stator including a coil and a movably inserted into the stator.
  • the movable core has a cylindrical shape, and the plunger 9a is attached to the inner periphery of the movable core and has a tip abutting against the plate 81.
  • the harness 90 for supplying power to the solenoid 9 projects outward from the cap 40 and is connected to a power source.
  • the urging spring 80 urges the spool 8 in the direction of opening the port 7a on the extension side and closing the port 7b on the compression side.
  • the solenoid 9 applies a thrust in the direction opposite to the urging force of the urging spring 80, that is, a thrust in the direction of closing the port 7a on the extension side and opening the port 7b on the compression side to the spool 8.
  • the relationship between the opening degree of the expansion side port 7a and the energization amount to the solenoid 9 is a negative proportional relationship having a negative proportional constant, and the opening degree of the expansion side port 7a increases as the energization amount increases from zero. Becomes smaller.
  • the expansion side port 7a is one-wayed by the expansion side check valve 71, and the liquid flows from the expansion side gap C2 toward the first chamber L3. Therefore, when the opening degree of the expansion side port 7a is adjusted, the flow rates of the expansion side soft leaf valve 50 and the orifice 52 located downstream of the adjustment are adjusted.
  • the relationship between the opening degree of the pressure side port 7b and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree of the pressure side port 7b increases as the energization quantity increases from zero.
  • the pressure side port 7b is one-way by the pressure side check valve 73, and the liquid flows from the first chamber L3 toward the extension side gap C2. Therefore, when the opening degree of the pressure side port 7b is adjusted, the flow rates of the pressure side soft leaf valve 51 and the orifice 52 located upstream thereof are adjusted.
  • the opening degree of the port 7a on the extension side of the solenoid valve V is increased or decreased, the opening area of the bypass path B when the liquid passes through the soft side damping element FS and goes through the bypass path B from the extension side chamber L1 to the compression side chamber L2. Is adjusted.
  • the opening degree of the port 7b on the compression side of the solenoid valve V is increased or decreased, the opening area of the bypass path B when the bypass path B is directed from the compression side chamber L2 to the extension side chamber L1 through the soft side damping element FS is adjusted. Will be done.
  • the low-pressure priority valve 6 provided on the outer circumference of the sub-cylinder 41 is a shuttle valve, and as shown in FIG. 3, it is seated on both ends of an annular valve seat portion 42 provided on the outer circumference of the sub-cylinder 41.
  • the low-pressure priority valve 6 is provided on the outer periphery of the sub-cylinder 41 while the two valve bodies 60 and 61 are in sliding contact with the inner circumference of the housing 4 and the connecting portion 62 is in sliding contact with the outer circumference of the valve seat portion 42. It is designed to reciprocate between the two stoppers 43 and 44.
  • Notches 6a, 6b, 6c, and 6d are formed at the portions of the valve bodies 60 and 61 facing the corresponding stoppers 43 and 44 and at the ends of the connecting portions 62 on both valve bodies 60 and 61, respectively. Has been done. Then, when one valve body 60 (61) is seated on the valve seat portion 42, the other valve body 61 (60) is separated from the valve seat portion 42 to form a gap. Then, through the notch 6c (6a) of the other valve body 61 (60), the above gap, and the notch 6d (6b) of the connecting portion 62, the extension side gap C2 or the compression side gap C3 and the outer circumference of the connecting portion 62. The gap C4 that can be formed is communicated.
  • the gap C4 is connected to the tank T.
  • the inside of the tank T is divided into a liquid chamber L5 and a gas chamber G by a bladder 18.
  • the gas chamber G is filled with high-pressure gas
  • the liquid chamber L5 is pressurized by the pressure of the gas chamber G
  • the pressure acts on the cylinder 1 through the damping force adjusting unit E. It has become.
  • the configuration of the tank T can be changed as appropriate.
  • the liquid chamber L5 and the gas chamber G may be partitioned by a free piston, and the free piston may be biased toward the liquid chamber by a spring such as a coil spring or an air spring.
  • the liquid chamber L5 does not necessarily have to be pressurized as long as the pressure inside the cylinder 1 does not become negative.
  • the shock absorber A is slidably inserted into the cylinder 1 and the cylinder 1, and the inside of the cylinder 1 is the extension side chamber L1 and the compression side chamber L2. It is connected to the low pressure side of the extension side chamber L1 and the compression side chamber L2 by a piston 2 which is divided into two parts, a piston rod 3 whose tip is connected to the piston 2 and whose end protrudes to the outside of the cylinder 1, and a low pressure priority valve 6. It is equipped with a cylinder T. Further, the shock absorber A is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage B as passages that connect the extension side chamber L1 and the compression side chamber L2.
  • the extension side passage 2a and the compression side passage 2b are provided with an extension side hard leaf valve 20 and a compression side hard leaf valve 21 that open and close each of them, and one or both of the extension side passage 2a and the compression side passage 2b are provided with an extension side.
  • An orifice 22 is provided in parallel with the hard leaf valves 20 and 21 on the compression side.
  • a hard-side damping element FH having a hard leaf valve 20 on the expansion side, a hard leaf valve 21 on the pressure side, and an orifice 22 and configured to provide resistance to the flow of liquid is configured.
  • the bypass path B branches into an extension side soft passage 5a and a compression side soft passage 5b on the way.
  • the extension side soft passage 5a and the compression side soft passage 5b are provided with an extension side soft leaf valve 50 and a compression side soft leaf valve 51 that open and close each of them, and one or both of the extension side soft passage 5a and the compression side soft passage 5b are provided.
  • An orifice 52 is provided in parallel with the soft leaf valves 50 and 51 on the extension side and the compression side.
  • This orifice 52 is a large-diameter orifice having a larger opening area than the orifice 22.
  • the soft leaf valves 50 and 51 are leaf valves having lower valve rigidity than the hard leaf valves 20 and 21.
  • a soft leaf valve 50 on the extension side, a soft leaf valve 51 on the compression side, and an orifice 52 are provided to form a soft side damping element FS that reduces resistance to the flow of liquid.
  • the bypass path B is provided with a solenoid valve V in series with the soft side damping element FS.
  • the solenoid valve V fully opens the port 7a on the extension side that allows one-way flow of the liquid from the extension side chamber L1 to the compression side chamber L2 when the electricity is not supplied, and also allows the liquid from the compression side chamber L2 to the extension side chamber L1.
  • the compression side port 7b that allows unidirectional flow is set to be fully closed. Then, the opening degree of the port 7a on the extension side becomes smaller as the amount of energization increases, so that the opening area of the bypass path B when the liquid goes from the extension side chamber L1 to the compression side chamber L2 becomes smaller. On the other hand, the opening degree of the port 7b on the compression side increases as the amount of energization increases, so that the opening area of the bypass path B when the liquid flows from the compression side chamber L2 to the extension side chamber L1 increases.
  • shock absorber A The operation of the shock absorber A according to the embodiment of the present invention will be described below.
  • the piston rod 3 retracts from the cylinder 1 and the piston 2 compresses the expansion side chamber L1. Then, the liquid in the expansion side chamber L1 moves to the compression side chamber L2 through the hard side damping element FH or the soft side damping element FS of the bypass passage B. A resistance is applied to the flow of the liquid by the hard damping element FH or the soft damping element FS, and an extension damping force due to the resistance is generated. Then, when the shock absorber A extends, the distribution ratio of the liquid passing through the hard damping element FH and the soft damping element FS changes according to the amount of electricity supplied to the solenoid valve V.
  • the liquid is the extension-side hard leaf valve 20 or orifice 22 that constitutes the extension-side first damping element of the hard-side damping element FH, or the soft-side damping element. It passes through the extension-side soft leaf valve 50 or orifice 52 that constitutes the second extension-side damping element of the FS.
  • the first and second damping elements on the extension side are configured to have orifices 22 and 52, respectively, and a hard leaf valve 20 or a soft leaf valve 50 which are leaf valves parallel thereto. ..
  • the damping force characteristic on the extension side becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and the leaf valve when the piston speed is in the medium and high speed range.
  • the valve characteristics are proportional to the unique piston speed.
  • the proportion of the liquid passing through the extension side damping element of the soft side damping element FS decreases and the hard side damping element FS is hardened.
  • the proportion of liquid passing through the damping element on the extension side of the side damping element FH increases. Since the orifice 52, which is the expansion side damping element of the soft side damping element FS, is a large diameter orifice having a larger opening area than the orifice 22 which is the expansion side damping element of the hard side damping element FH, the soft side damping element FS.
  • the damping coefficient increases in both the low speed region and the medium and high speed regions, and the expansion side damping force generated with respect to the piston speed increases. Then, when the amount of current supplied to the solenoid valve V is maximized, the expansion side port 7a is closed and the entire flow rate passes through the expansion side damping element of the hard side damping element FH. Then, the damping coefficient becomes maximum, and the extension side damping force generated with respect to the piston speed becomes maximum.
  • the damping coefficient becomes large and small.
  • the inclination of the characteristic line indicating the damping force characteristic on the extension side changes. Then, the extension side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
  • the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and the medium and high speed regions. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
  • the extension side damping element of the soft side damping element FS has a soft leaf valve 50, which is a leaf valve having low valve rigidity, in parallel with the orifice 52.
  • a hard leaf valve with high valve rigidity and high valve opening pressure is used as the leaf valve that constitutes the extension side damping element of the hard side damping element FH, and the adjustment range in the direction of increasing the extension side damping force is adjusted. Even if it is increased, the damping force in soft mode does not become excessive.
  • the pressure in the expansion side chamber L1 becomes higher than the pressure in the compression side chamber L2, and the pressure side chamber L2 on the low pressure side is connected to the tank T by the low pressure priority valve 6. Therefore, when the shock absorber A is extended, the pressure in the compression side chamber L2 becomes the tank pressure, and the liquid corresponding to 3 volumes of the piston rod discharged from the cylinder 1 is supplied from the tank T to the compression side chamber L2.
  • the piston rod 3 enters the cylinder 1 and the piston 2 compresses the pressure side chamber L2. Then, the liquid in the compression side chamber L2 moves to the extension side chamber L1 through the hard side damping element FH or the soft side damping element FS of the bypass passage B. A resistance is applied to the flow of the liquid by the hard damping element FH or the soft damping element FS, and a compression damping force due to the resistance is generated. Then, even when the shock absorber A contracts, the distribution ratio of the liquid passing through the hard side damping element FH and the soft side damping element FS changes according to the amount of energization to the solenoid valve V.
  • the liquid is the hard side leaf valve 21 or the orifice 22 on the pressure side that constitutes the first damping element on the pressure side of the hard side damping element FH, or the liquid on the soft side damping element FS. It passes through the compression side soft leaf valve 51 or orifice 52 that constitutes the compression side second damping element.
  • the first and second damping elements on the compression side are configured to include the orifices 22 and 52 and the hard leaf valve 21 or the soft leaf valve 51 which are leaf valves parallel thereto.
  • the damping force characteristic on the compression side becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and is peculiar to the leaf valve when the piston speed is in the medium and high speed range.
  • the valve characteristics are proportional to the piston speed of.
  • the damping coefficient becomes smaller in both the low speed region and the medium and high speed regions, and the compression side damping force generated with respect to the piston speed becomes smaller. Then, when the amount of current supplied to the solenoid valve V is maximized, the port 7b on the compression side is fully opened. Then, the damping coefficient becomes the minimum, and the compression side damping force generated with respect to the piston speed becomes the minimum.
  • the damping coefficient increases and decreases, and the expansion-side damping increases. Similar to the force, the slope of the characteristic line indicating the damping force characteristic on the compression side changes. Then, the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
  • the compression side damping element of the soft side damping element FS also has the soft leaf valve 51, which is a leaf valve having low valve rigidity, in parallel with the orifice 52, so that the compression side damping element of the hard side damping element FH is Even if a hard leaf valve with high valve rigidity and high opening pressure is adopted as the leaf valve to be configured, the damping force in the soft mode does not become excessive.
  • shock absorber A The action and effect of the shock absorber A according to the embodiment of the present invention will be described below.
  • the shock absorber A includes a cylinder 1, a piston 2 that is movably inserted in the cylinder 1 in the axial direction and divides the inside of the cylinder 1 into an extension side chamber L1 and a compression side chamber L2, and this piston. It includes a piston rod 3 which is connected to 2 and one end of which protrudes to the outside of the cylinder 1, and a tank T which is connected to the low pressure side of the extension side chamber L1 and the compression side chamber L2 by a low pressure priority valve 6.
  • the shock absorber A communicates between the extension side chamber L1 and the compression side chamber L2 by bypassing the hard side damping element FH that gives resistance to the flow of the liquid moving between the extension side chamber L1 and the compression side chamber L2.
  • the bypass valve B includes a solenoid valve V capable of changing the opening area of the bypass passage B, and a soft side damping element FS provided in the bypass passage B in series with the solenoid valve V.
  • the hard side damping element FH includes an orifice 22 and hard leaf valves 20 and 21 on the extension side and the compression side, which are leaf valves provided in parallel with the orifice 22.
  • the soft side damping element FS is configured to have an orifice (large diameter orifice) 52 having an opening area larger than that of the orifice 22.
  • the characteristic of the damping force generated when the shock absorber A expands and contracts has an orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium to high speed range, The valve characteristics are peculiar to leaf valves. If the opening area of the bypass passage B is changed by the solenoid valve V, the hard-side damping element FH and the soft-side damping element of the liquid that moves between the expansion side chamber L1 and the compression side chamber L2 when the shock absorber A expands and contracts.
  • the soft side damping element is the orifice (large diameter orifice) 52 and the extension side and compression side soft leaf valves 50, 51 which are leaf valves provided in parallel with the orifice 52. And is configured.
  • the soft-side damping element FS is also provided with a leaf valve, even if the hard leaf valves 20 and 21 which are the leaf valves of the hard-side damping element FH have high valve rigidity and high valve opening pressure, they are soft.
  • the damping force in the mode does not become excessive. That is, according to the above configuration, valves having high valve rigidity can be adopted as the hard leaf valves 20 and 21 which are leaf valves of the hard side damping element. Then, since the adjustment range of the damping force increases in the direction of increasing the damping force, the adjustment range of the damping force can be further increased when the piston speed is in the middle and high speed range.
  • the extension side hard leaf valve 20 that gives resistance to the flow of the liquid from the extension side chamber L1 to the compression side chamber L2, and the extension side chamber L2 to the extension side chamber L1
  • a hard leaf valve 21 on the compression side that resists the flow of liquid toward is provided.
  • the bypass path B is extended from the extension side chamber L1 to the extension side soft leaf valve 50 that resists the flow of the liquid toward the compression side chamber L2, and the bypass path B is extended from the compression side chamber L2.
  • a soft leaf valve 51 on the compression side that resists the flow of liquid toward the concubine L1 is provided.
  • the adjustment range of the damping force increases in the direction of increasing the damping force both during expansion and contraction of the shock absorber A, so that the damping force on both sides of the extension when the piston speed is in the medium-high speed range
  • the adjustment range can be further increased.
  • the solenoid valve V is a cylindrical holder 7 in which the expansion-side and pressure-side ports 7a and 7b connected to the bypass B are formed, and is movably inserted into the holder 7.
  • the spool 8 capable of opening and closing the expansion side and compression side ports 7a, 7b, a biasing spring 80 for biasing the spool 8 in one of the moving directions of the spool 8, and a direction opposite to the biasing force of the biasing spring 80.
  • a solenoid 9 that applies the thrust of
  • a needle valve that can reciprocate as a valve body is provided, and the opening degree is increased or decreased by increasing or decreasing the gap formed between the tip of the needle valve and the valve seat.
  • the stroke amount of the valve element must be increased in order to increase the adjustment range of the opening, but this may not be possible.
  • the stroke amount of the needle valve is increased, the movable space of the needle valve increases and it becomes difficult to secure the accommodation space.
  • the stroke amount of the solenoid plunger is increased in order to increase the stroke amount of the needle valve, the solenoid design must be changed, which is complicated.
  • parts are needed to increase the travel of the needle valve relative to the travel of the plunger, increasing the number of parts and accommodating space. It becomes difficult to secure.
  • the spool 8 reciprocally inserted into the tubular holder 7 opens and closes the extension side and compression side ports 7a and 7b formed in the holder 7.
  • this allows the solenoid valve V to open and close.
  • the electromagnetic force can be increased without increasing the stroke amount of the spool 8 that is the valve body of the electromagnetic valve V.
  • the opening degree of the valve V can be increased. Therefore, the adjustment range of the opening degree of the solenoid valve V can be increased, and the adjustment range of the damping force can be easily increased.
  • the extension side port 7a where the unidirectional flow of the liquid from the extension side chamber L1 to the compression side chamber L2 is allowed, and the liquid from the compression side chamber L2 to the extension side chamber L1.
  • the port 7b on the pressure side that allows the unidirectional flow is provided.
  • the opening degree of the pressure side port 7b increases and the opening degree of the extension side port 7a decreases as the energization amount increases. For this reason, when the extension side damping force is adjusted to be large, the compression side damping force is automatically reduced, and the vehicle height can be reduced. On the contrary, if the compression side damping force is adjusted to be large, the extension side damping force is automatically reduced and the vehicle height can be increased.
  • the expansion side damping force may be increased and the compression side damping force may be decreased as the energization amount to the solenoid valve V is increased from zero. In such a case, all ports 7a on the expansion side are not energized. For closing, the ports 7a and 7b or the annular grooves 8b and 8d for opening the ports 7a and 7b may be arranged so as to fully open the port 7b on the compression side. Further, the damping force on both sides of the expansion pressure may be increased as the amount of electricity supplied to the solenoid valve V is increased.
  • the port formed in the holder may be the port 7c that allows the bidirectional flow of the liquid.
  • the structure of the solenoid valve V1 can be simplified and miniaturized.
  • the solenoid valve V1 shown in FIG. 6 is set so that the opening degree of the port 7c increases as the energization amount increases, but the solenoid valve V1 increases as the energization amount increases.
  • the opening of the port 7c may be set to be small.
  • the solenoid valves V, V1 including the holder 7, the spool 8, the biasing spring 80, and the solenoid 9 are used, a port and an annular groove for opening and closing the port are provided.
  • the relationship between the opening degree of the solenoid valve and the amount of energization can be set according to the positional relationship of. Therefore, according to the above configuration, the degree of freedom in setting the relationship between the opening degree of the solenoid valve and the amount of energization can be extremely increased.
  • shock absorbers A and A1 shown in FIGS. 1 and 6 exhibit damping forces on both sides of compression and can be adjusted by solenoid valves V and V1.
  • one of the extension side and compression side hard leaf valves 20 and 21 of the hard side damping element FH and one or both of the extension side and compression side soft leaf valves 50 and 51 of the soft side damping element FS may be omitted.
  • the shock absorbers A and A1 can be used as a one-sided shock absorber that exerts a damping force only at the time of extension or contraction, or the damping force of either the extension side or the compression side can be used by the solenoid valves V and V1. You may adjust it.
  • the spool 8 and the low pressure priority valve 6 move along the central axis Y of the bottomed cylindrical housing 4. Since the housing 4 is arranged so that its central axis Y is along a straight line Z (FIG. 1) orthogonal to the central axis X passing through the center of the piston rod 3, the spool 8 and the low pressure priority valve 6 are aligned with the straight line Z. It can be said to move along.
  • the spool 8 and the low pressure priority valve 6 move in a direction orthogonal to the expansion / contraction direction of the shock absorber A, and the moving direction does not match the vibration direction of the vehicle. Therefore, it is not necessary to vibrate the spool 8 and the low-pressure priority valve 6 in the moving direction due to vibration during vehicle travel.
  • the moving directions of the spool 8 and the low pressure priority valve 6 are not necessarily limited to this.
  • the shock absorber A of the present embodiment includes a housing 4 and a sub-cylinder 41 provided in the housing 4 and accommodating the soft side damping element FS inside.
  • a low-pressure priority valve 6 is provided between the housing 4 and the sub-cylinder 41.
  • the housing 4 that houses the soft side damping element FS, the solenoid valve V, and the low pressure priority valve 6 from increasing. Therefore, even if the housing 4 is arranged so that the moving directions of the spool 8 and the low pressure priority valve 6 do not match the vibration direction of the vehicle, the left and right widths of the shock absorber A in FIG. 1 are not bulky, and the vehicle of the shock absorber A Can be mounted on the vehicle well.
  • the housing 4 is integrated with the cylinder 1.
  • the state where the cylinder 1 and the housing 4 are integrated means that the housing 4 is fixed so as not to move freely with respect to the cylinder 1 when the shock absorber A is handled as a single unit.
  • the inside of the housing 4 and the inside of the cylinder 1 can be communicated with each other by utilizing the holes formed in the portion connecting the housing 4 and the cylinder 1 such as the end cap 11. Therefore, it is not necessary to connect the housing 4 and the cylinder 1 with a hose, and it is possible to prevent an unintended damping force from being generated due to the resistance when the liquid passes through the hose. Furthermore, since the hose can be omitted, the cost can be reduced.
  • the mounting method of the damping force adjusting unit including the housing 4 can be changed as appropriate.
  • the housing 4 and the cylinder 1 may be connected by a hose.
  • the housing 4 and the tank T are connected by a hose, but the tank T and the housing 4 may be integrated.
  • the housing 4, the end cap 11, the vehicle body side bracket 12, and the tank T may be integrally formed.
  • compression side hard leaf valve (leaf valve), 22 ... orifice, 41 ... sub cylinder, 50 ... extension side soft leaf valve (leaf valve), 51 ... compression side soft leaf valve (leaf valve), 52 ... orifice (large diameter orifice), 80 ... urging spring

Abstract

This shock absorber (A) is provided with a hard-side attenuating element (FH) which imparts a resistance to a flow of a liquid that moves between an expansion side chamber (L1) and a compression side chamber (L2), an electromagnetic valve (V) capable of changing an opening surface area of a bypass path (B) which bypasses the hard-side attenuating element (FH) and provides communication between the expansion side chamber (L1) and the compression side chamber (L2), a soft-side attenuating element (FS) provided in the bypass path (B) in series with the electromagnetic valve (V), and a tank (T) connected to a low-pressure side among the expansion side chamber (L1) and the compression side chamber (L2) by means of a low-pressure priority valve (6), wherein: the hard-side attenuating element (FH) is configured to include orifices (22) and hard leaf valves (20, 21) in parallel therewith; and the soft-side attenuating element (FS) is configured to include orifices (52) having an opening surface area larger than that of the orifices (22).

Description

緩衝器Buffer
 本発明は、緩衝器の改良に関する。 The present invention relates to an improvement of a shock absorber.
 従来、緩衝器の中には、シリンダ内に作動油等の液体を収容し、ピストンがシリンダ内を移動する際に生じる液体の流れに減衰要素で抵抗を与えて、その抵抗に起因する減衰力を発揮するものがある。 Conventionally, a liquid such as hydraulic oil is stored in a shock absorber, and a damping element gives resistance to the flow of the liquid generated when the piston moves in the cylinder, and a damping force caused by the resistance is given. There is something that demonstrates.
 その減衰要素は、例えば、オリフィスと、このオリフィスに並列に設けられるリーフバルブとを有して構成される。そして、ピストン速度が低速域にあり、減衰要素の上流側と下流側の差圧がリーフバルブの開弁圧に満たない場合には、液体がオリフィスのみを通過する。その一方、ピストン速度が中高速域にあり、上記差圧がリーフバルブの開弁圧以上になる場合には、液体がリーフバルブを通過するようになる。 The damping element is composed of, for example, an orifice and a leaf valve provided in parallel with this orifice. When the piston speed is in the low speed range and the differential pressure between the upstream side and the downstream side of the damping element is less than the valve opening pressure of the leaf valve, the liquid passes only through the orifice. On the other hand, when the piston speed is in the medium to high speed range and the differential pressure is equal to or higher than the valve opening pressure of the leaf valve, the liquid passes through the leaf valve.
 このため、上記緩衝器のピストン速度に対する減衰力の特性(以下、「減衰力特性」という)は、リーフバルブが開弁するのを境に、オリフィス特有のピストン速度の二乗に比例するオリフィス特性から、リーフバルブ特有のピストン速度に比例するバルブ特性へと変化する。 Therefore, the characteristic of the damping force with respect to the piston speed of the shock absorber (hereinafter referred to as "damping force characteristic") is based on the orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the leaf valve is opened. , The valve characteristics change to be proportional to the piston speed peculiar to leaf valves.
 また、緩衝器の中には、発生する減衰力を調節するのを目的として、減衰要素を迂回するバイパス路と、このバイパス路の開口面積を大小調節するニードルバルブとを設けたり、減衰要素を構成するリーフバルブの背圧を制御するパイロットバルブを設けたりするものがある(例えば、特許文献1,2)。 Further, in the shock absorber, for the purpose of adjusting the generated damping force, a bypass path that bypasses the damping element and a needle valve that adjusts the opening area of the bypass path are provided, or a damping element is provided. A pilot valve for controlling the back pressure of the constituent leaf valves may be provided (for example, Patent Documents 1 and 2).
JP2010-7758AJP2010-7758A JP2014-156885AJP2014-156885A
 例えば、JP2010-7758Aに記載のニードルバルブを備えた緩衝器では、ニードルバルブを駆動してバイパス路の開口面積を大きくすると、減衰要素を通過する液体の流量が少なくなって発生する減衰力が小さくなる(図7中ソフトモード)。反対に、バイパス路の開口面積を小さくすると、減衰要素を通過する液体の流量が増えて発生する減衰力が大きくなる(図7中ハードモード)。 For example, in the shock absorber provided with the needle valve described in JP2010-7758A, when the needle valve is driven to increase the opening area of the bypass passage, the flow rate of the liquid passing through the damping element decreases and the damping force generated decreases. (Soft mode in Fig. 7). On the contrary, when the opening area of the bypass path is reduced, the flow rate of the liquid passing through the damping element increases and the damping force generated increases (hard mode in FIG. 7).
 このようなニードルバルブによる減衰力の調整は、主に、ピストン速度が低速域にある場合の減衰力を大小調節するのに利用されている。そして、上記ニードルバルブでバイパス路の開口面積を調節すると、ピストン速度が中高速域にある場合の減衰力も多少は大小調節されるのではあるが、その調整幅を大きくするのが難しい。 The adjustment of the damping force by such a needle valve is mainly used to adjust the damping force when the piston speed is in the low speed range. When the opening area of the bypass path is adjusted by the needle valve, the damping force when the piston speed is in the middle and high speed range is adjusted to some extent, but it is difficult to increase the adjustment range.
 その一方、JP2014-156885Aに記載のパイロットバルブを備えた緩衝器では、パイロットバルブの開弁圧を低くしてリーフバルブの背圧を小さくすると、リーフバルブの開弁圧が低くなって発生する減衰力が小さくなる(図8中ソフトモード)。反対に、パイロットバルブの開弁圧を高くしてリーフバルブの背圧を大きくすると、リーフバルブの開弁圧が大きくなって発生する減衰力が大きくなる(図8中ハードモード)。 On the other hand, in the shock absorber provided with the pilot valve described in JP2014-156885A, when the valve opening pressure of the pilot valve is made low and the back pressure of the leaf valve is made small, the valve opening pressure of the leaf valve becomes low and damping occurs. The force becomes smaller (soft mode in FIG. 8). On the contrary, when the valve opening pressure of the pilot valve is increased and the back pressure of the leaf valve is increased, the valve opening pressure of the leaf valve is increased and the damping force generated is increased (hard mode in FIG. 8).
 このように、リーフバルブの背圧を制御してその開弁圧を変更する場合、ピストン速度が中高速域にある場合の減衰力の調整幅を大きくできる。しかし、この場合、中高速域での減衰力特性を示す特性線は、その傾きを変えずに上下にシフトするので、特に、ハードモードでは、低速域から中高速域へ移行する際に特性線の傾きが急激に変化する。このため、緩衝器を車両に搭載した場合に乗員へ違和感を与えて乗り心地の悪化につながる可能性がある。 In this way, when controlling the back pressure of the leaf valve and changing its opening pressure, the adjustment range of the damping force can be increased when the piston speed is in the middle and high speed range. However, in this case, the characteristic line showing the damping force characteristic in the medium and high speed range shifts up and down without changing its inclination. Therefore, especially in the hard mode, the characteristic line when shifting from the low speed range to the medium and high speed range. The slope of is changed rapidly. For this reason, when the shock absorber is mounted on the vehicle, the occupant may feel uncomfortable and the ride quality may be deteriorated.
 そこで、本発明は、これらの問題を解決し、ピストン速度が中高速域にある場合の減衰力の調整幅を大きくできるとともに、車両に搭載した場合の乗り心地を向上できる緩衝器の提供を目的とする。 Therefore, an object of the present invention is to provide a shock absorber that can solve these problems, increase the adjustment range of the damping force when the piston speed is in the medium to high speed range, and improve the riding comfort when mounted on a vehicle. And.
 上記課題を解決する緩衝器は、シリンダ内に移動可能に挿入されるピストンで区画された伸側室と圧側室との間を移動する液体の流れに抵抗を与えるハード側減衰要素と、ハード側減衰要素を迂回して伸側室と圧側室とを連通するバイパス路の開口面積を変更可能な電磁弁と、バイパス路に電磁弁と直列に設けられるソフト側減衰要素と、低圧優先バルブによって伸側室と圧側室のうちの低圧側に接続されるタンクとを備えている。そして、ハード側減衰要素がオリフィスと、このオリフィスと並列に設けられるリーフバルブを有して構成され、ソフト側減衰要素が前記オリフィスより開口面積の大きい大径オリフィスを有して構成されている。 A shock absorber that solves the above problems includes a hard side damping element that resists the flow of liquid moving between the extension side chamber and the compression side chamber, which are partitioned by a piston that is movably inserted into the cylinder, and a hard side damping element. A solenoid valve capable of changing the opening area of a bypass passage that bypasses the element and connects the expansion side chamber and the compression side chamber, a soft side damping element provided in series with the solenoid valve in the bypass passage, and a low pressure priority valve And a tank connected to the low pressure side of the pressure side chamber. The hard damping element has an orifice and a leaf valve provided in parallel with the orifice, and the soft damping element has a large-diameter orifice having an opening area larger than that of the orifice.
 上記構成によれば、緩衝器の発生する減衰力の特性は、ピストン速度が低速域にある場合には、オリフィス特有のオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のバルブ特性となる。そして、電磁弁でバイパス路の開口面積を変更すれば、伸側室と圧側室との間を移動する液体のうち、ハード側減衰要素とソフト側減衰要素のそれぞれを通過する流量の分配比が変わるので、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を自由に設定できて、発生する減衰力の調整幅を大きくできる。 According to the above configuration, the damping force generated by the shock absorber has an orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and is peculiar to the leaf valve when the piston speed is in the medium to high speed range. It becomes the valve characteristic of. Then, if the opening area of the bypass passage is changed by the solenoid valve, the distribution ratio of the flow rate of each of the liquids moving between the expansion side chamber and the compression side chamber that passes through the hard side damping element and the soft side damping element changes. Therefore, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the middle and high speed ranges can be freely set, and the adjustment range of the generated damping force can be increased.
 さらには、ソフト側減衰要素を通過する液体の分配比率を大きくするソフトモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を小さくできる。反対に、ソフト側減衰要素を通過する液体の分配比率を小さくするハードモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を大きくできる。これにより、減衰力特性が、低速域でのオリフィス特性から中高速域でのバルブ特性に変化する際に、その特性線の傾きの変化をどのモードにおいても緩やかにできるので、本発明に係る緩衝器を車両に搭載した場合には、車両の乗り心地を良好にできる。 Furthermore, in the soft mode in which the distribution ratio of the liquid passing through the soft side damping element is increased, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be reduced. On the contrary, in the hard mode in which the distribution ratio of the liquid passing through the soft damping element is reduced, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range can be increased. As a result, when the damping force characteristic changes from the orifice characteristic in the low speed range to the valve characteristic in the medium and high speed range, the change in the slope of the characteristic line can be made gentle in any mode, and thus the buffer according to the present invention. When the device is mounted on a vehicle, the ride comfort of the vehicle can be improved.
 また、上記緩衝器では、ソフト側減衰要素が大径オリフィスと並列に設けられるリーフバルブを有して構成されていてもよい。これにより、ハード側減衰要素のリーフバルブとしてバルブ剛性の高いバルブを採用しても、ソフトモードでの減衰力が過大にならない。このため、ピストン速度が中高速域にある場合の減衰力の調整幅を一層大きくできる。 Further, in the above shock absorber, the soft side damping element may be configured to have a leaf valve provided in parallel with the large diameter orifice. As a result, even if a valve with high valve rigidity is adopted as the leaf valve of the damping element on the hard side, the damping force in the soft mode does not become excessive. Therefore, the adjustment range of the damping force can be further increased when the piston speed is in the middle-high speed range.
 また、上記緩衝器では、電磁弁がバイパス路に接続されるポートが形成される筒状のホルダと、ホルダ内に往復動可能に挿入されてポートを開閉可能なスプールと、スプールの移動方向の一方へスプールを付勢する付勢ばねと、付勢ばねの付勢力と反対方向の推力をスプールに与えるソレノイドとを有していてもよい。このようにすると、電磁弁の弁体となるスプールのストローク量を大きくせずに電磁弁の開度を容易に大きくできるので、バイパス路の開口面積の調整幅を容易に大きくできる。さらには、電磁弁の開度と通電量との関係の設定自由度を高くできる。 Further, in the above-mentioned shock absorber, a cylindrical holder in which a port where the solenoid valve is connected to the bypass path is formed, a spool which is reciprocally inserted in the holder and which can open and close the port, and a moving direction of the spool. It may have an urging spring that urges the spool to one side and a solenoid that applies a thrust in the direction opposite to the urging force of the urging spring to the spool. With this configuration, the opening degree of the solenoid valve can be easily increased without increasing the stroke amount of the spool serving as the valve body of the solenoid valve, so that the adjustment range of the opening area of the bypass passage can be easily increased. Further, the degree of freedom in setting the relationship between the opening degree of the solenoid valve and the amount of energization can be increased.
 また、上記緩衝器では、ハード側の減衰要素のリーフバルブとして、伸側室から圧側室へ向かう液体の流れに抵抗を与える伸側のハードリーフバルブと、圧側室から伸側室へ向かう液体の流れに抵抗を与える圧側のハードリーフバルブが設けられるとともに、ソフト側減衰要素のリーフバルブとして、バイパス路を伸側室から圧側室へ向かう液体の流れに抵抗を与える伸側のソフトリーフバルブと、バイパス路を圧側室から伸側室へ向かう液体の流れに抵抗を与える圧側のソフトリーフバルブが設けられていてもよい。このようにすると、ピストン速度が中高速域にある場合の伸圧両側の減衰力の調整幅を大きくできる。 Further, in the above-mentioned shock absorber, as a leaf valve of the damping element on the hard side, a hard leaf valve on the expansion side that gives resistance to the flow of liquid from the expansion side chamber to the compression side chamber and a liquid flow from the compression side chamber to the expansion side chamber are provided. A hard leaf valve on the pressure side that provides resistance is provided, and as a leaf valve for the damping element on the soft side, the soft path valve on the expansion side that provides resistance to the flow of liquid from the expansion side chamber to the pressure side chamber and the bypass path are used as the bypass valve. A soft leaf valve on the pressure side may be provided that provides resistance to the flow of liquid from the pressure side chamber to the expansion side chamber. In this way, it is possible to increase the adjustment range of the damping force on both sides of the extension when the piston speed is in the medium to high speed range.
 また、上記緩衝器では、ポートとして、伸側室から圧側室へ向かう液体の一方向流れが許容される伸側のポートと、圧側室から伸側室へ向かう液体の一方向流れが許容される圧側のポートが設けられ、電磁弁への通電量を大きくしていくと、伸側のポートと圧側のポートのうちの一方のポートの開度が大きくなり、他方のポートの開度が小さくなるように設定されていてもよい。このようにすると、伸側と圧側の一方の減衰力を高くなるように調節すると、他方の減衰力が自動的に低くなるように調節されて、緩衝器を車両に搭載した場合には、車高を高く又は低くするように誘導できる。 Further, in the above-mentioned shock absorber, the ports on the extension side where the unidirectional flow of the liquid from the extension side chamber to the compression side chamber is allowed and the port on the compression side where the unidirectional flow of the liquid from the compression side chamber to the compression side chamber is allowed. When a port is provided and the amount of electricity supplied to the solenoid valve is increased, the opening degree of one of the extension side port and the compression side port increases and the opening degree of the other port decreases. It may be set. In this way, when one of the extension side and the compression side is adjusted to have a high damping force, the other damping force is automatically adjusted to be low. The height can be induced to be higher or lower.
 また、上記緩衝器では、ポートが液体の双方向流れが許容されていてもよい。このようにすると、ポートを一方通行にするための部材が不要になるので、電磁弁の構成を簡易且つ小型にできる。 Further, in the above shock absorber, the port may allow bidirectional flow of liquid. In this way, a member for making the port one-way is not required, so that the solenoid valve configuration can be simplified and miniaturized.
 また、上記緩衝器では、スプールと低圧優先バルブがピストンロッドの中心を通る中心軸に直交する直線に沿って移動するとしてもよい。このようにすると、緩衝器を車両に搭載した場合に、車両走行時の振動によってスプール及び低圧優先バルブをその移動方向へ加振するのを防止できる。 Further, in the above shock absorber, the spool and the low pressure priority valve may move along a straight line orthogonal to the central axis passing through the center of the piston rod. With this configuration, when the shock absorber is mounted on the vehicle, it is possible to prevent the spool and the low pressure priority valve from being vibrated in the moving direction thereof due to the vibration during traveling of the vehicle.
 また、上記緩衝器では、ハウジングと、ハウジング内に設けられて内部にソフト側減衰要素を収容するサブシリンダとを備え、低圧優先バルブがハウジングとサブシリンダとの間に設けられていてもよい。このようにすると、ハウジングの軸方向長さが長くなるのを防止できる。 Further, the shock absorber may include a housing and a sub-cylinder provided in the housing to accommodate a soft-side damping element, and a low-pressure priority valve may be provided between the housing and the sub-cylinder. By doing so, it is possible to prevent the axial length of the housing from increasing.
 また、上記緩衝器では、ハウジングがシリンダと一体化されていてもよい。このようにすると、ハウジングとシリンダとをホースで接続せずに済むので、液体がホースを通過する際の抵抗によって意図しない減衰力が生じるのを防止できる。さらには、ホースを省略できるのでコストを低減できる。 Also, in the above shock absorber, the housing may be integrated with the cylinder. In this way, it is not necessary to connect the housing and the cylinder with a hose, so that it is possible to prevent an unintended damping force from being generated due to resistance when the liquid passes through the hose. Furthermore, since the hose can be omitted, the cost can be reduced.
 本発明に係る緩衝器によれば、ピストン速度が中高速域にある場合の減衰力の調整幅を大きくできるとともに、車両に搭載した場合の乗り心地を向上できる。 According to the shock absorber according to the present invention, the adjustment range of the damping force can be increased when the piston speed is in the middle and high speed range, and the riding comfort when mounted on the vehicle can be improved.
図1は、本発明の一実施の形態に係る緩衝器を部分的に切欠いて示した正面図である。FIG. 1 is a front view in which a shock absorber according to an embodiment of the present invention is partially cut away. 図2は、本発明の一実施の形態に係る緩衝器の減衰力調整部を拡大して示した部分拡大縦断面図である。FIG. 2 is a partially enlarged vertical sectional view showing an enlarged damping force adjusting portion of the shock absorber according to the embodiment of the present invention. 図3は、図2の一部を拡大して示した縦断面図である。FIG. 3 is a vertical cross-sectional view showing a part of FIG. 2 in an enlarged manner. 図4は、本発明の一実施の形態に係る緩衝器の液圧回路図である。FIG. 4 is a hydraulic circuit diagram of a shock absorber according to an embodiment of the present invention. 図5は、本発明の一実施の形態に係る緩衝器のピストン速度に対する減衰力の特性を示した減衰力特性図である。FIG. 5 is a damping force characteristic diagram showing the characteristic of the damping force with respect to the piston speed of the shock absorber according to the embodiment of the present invention. 図6は、本発明の一実施の形態に係る緩衝器の変形例を示した液圧回路図である。FIG. 6 is a hydraulic circuit diagram showing a modified example of the shock absorber according to the embodiment of the present invention. 図7は、従来のニードルバルブを備えた緩衝器のピストン速度に対する減衰力の特性を示した減衰力特性図である。FIG. 7 is a damping force characteristic diagram showing the characteristics of the damping force with respect to the piston speed of the shock absorber provided with the conventional needle valve. 図8は、従来のパイロットバルブを備えた緩衝器のピストン速度に対する減衰力の特性を示した減衰力特性図である。FIG. 8 is a damping force characteristic diagram showing the characteristics of the damping force with respect to the piston speed of a shock absorber provided with a conventional pilot valve.
 以下に本発明の実施の形態の緩衝器について、図面を参照しながら説明する。いくつかの図面を通して付された同じ符号は、同じ部品或いは対応する部品を示す。また、本発明の実施の形態に係る緩衝器は、鞍乗型車両の後輪を懸架するリアクッション装置に利用されている。以下の説明では、緩衝器が車両に取り付けられた状態での上下を、特別な説明がない限り、単に「上」「下」という。 A buffer device according to an embodiment of the present invention will be described below with reference to the drawings. The same reference numerals allotted throughout the several figures refer to the same or corresponding parts. Further, the shock absorber according to the embodiment of the present invention is used for a rear cushion device for suspending the rear wheels of a saddle-type vehicle. In the following description, the upper and lower sides with the shock absorber attached to the vehicle are simply referred to as “upper” and “lower” unless otherwise specified.
 図1に示すように、本発明の一実施の形態に係る緩衝器Aは、アウターシェル10と、このアウターシェル10に出入りするピストンロッド3とを有して伸縮可能な緩衝器本体Dと、この緩衝器本体Dの外周に設けられる懸架ばねSと、緩衝器本体Dと一体的に設けられた減衰力調整部Eと、この減衰力調整部Eとホースで接続されるタンクTとを備えている。 As shown in FIG. 1, the shock absorber A according to the embodiment of the present invention includes an outer shell 10 and a retractable shock absorber main body D having a piston rod 3 that goes in and out of the outer shell 10. A suspension spring S provided on the outer periphery of the shock absorber main body D, a damping force adjusting portion E provided integrally with the shock absorber main body D, and a tank T connected to the damping force adjusting portion E with a hose are provided. ing.
 また、緩衝器Aは倒立型であり、ピストンロッド3がアウターシェル10から下方へ突出する。そのピストンロッド3の下端には、車軸側のブラケット30が設けられている。このブラケット30は、車体に揺動自在に連結されるスイングアームに連結される。このスイングアームには、後輪が回転自在に支持されているので、ピストンロッド3は後輪の車軸に連結されるといえる。 Further, the shock absorber A is an inverted type, and the piston rod 3 projects downward from the outer shell 10. An axle-side bracket 30 is provided at the lower end of the piston rod 3. The bracket 30 is connected to a swing arm that is swingably connected to the vehicle body. Since the rear wheel is rotatably supported by the swing arm, it can be said that the piston rod 3 is connected to the axle of the rear wheel.
 その一方、アウターシェル10の上端外周には、有頂筒状のエンドキャップ11が螺合されている。このエンドキャップ11の頂部には、車体側のブラケット12が設けられ、アウターシェル10がそのブラケット12を介して車体に連結される。 On the other hand, a ridged tubular end cap 11 is screwed around the upper end of the outer shell 10. A bracket 12 on the vehicle body side is provided on the top of the end cap 11, and the outer shell 10 is connected to the vehicle body via the bracket 12.
 このようにして緩衝器本体Dは、車両における車体と後輪の車軸との間に介装される。そして、車両が凹凸のある路面を走行する等して後輪が車体に対して上下に振動すると、ピストンロッド3がアウターシェル10に出入りして緩衝器本体Dが伸縮する。このように、緩衝器本体Dが伸縮することを、緩衝器Aが伸縮するともいう。 In this way, the shock absorber body D is interposed between the vehicle body of the vehicle and the rear wheel axle. When the rear wheel vibrates vertically with respect to the vehicle body as the vehicle travels on an uneven road surface, the piston rod 3 moves in and out of the outer shell 10 and the shock absorber body D expands and contracts. The expansion and contraction of the shock absorber main body D is also referred to as the expansion and contraction of the shock absorber A.
 また、本実施の形態において、懸架ばねSはコイルばねである。この懸架ばねSの上端は、アウターシェル10の外周に装着された上側ばね受け13で支持される。その一方、懸架ばねSの下端は、車軸側のブラケット30に取り付けられた下側ばね受け31で支持される。車軸側のブラケット30は、ピストンロッド3に連結されているので、懸架ばねSは、その一端をアウターシェル10で支えられ、他端をピストンロッド3で支えられているといえる。 Further, in the present embodiment, the suspension spring S is a coil spring. The upper end of the suspension spring S is supported by an upper spring receiver 13 mounted on the outer circumference of the outer shell 10. On the other hand, the lower end of the suspension spring S is supported by the lower spring bearing 31 attached to the bracket 30 on the axle side. Since the bracket 30 on the axle side is connected to the piston rod 3, it can be said that the suspension spring S has one end supported by the outer shell 10 and the other end supported by the piston rod 3.
 そして、緩衝器Aが収縮してピストンロッド3がアウターシェル10内へと侵入すると、懸架ばねSが圧縮されて弾性力を発揮して緩衝器Aを伸長方向へ付勢する。このように、懸架ばねSは圧縮量に応じた弾性力を発揮して、車体を弾性支持する。 Then, when the shock absorber A contracts and the piston rod 3 enters the outer shell 10, the suspension spring S is compressed and exerts an elastic force to urge the shock absorber A in the extension direction. In this way, the suspension spring S exerts an elastic force according to the amount of compression to elastically support the vehicle body.
 なお、緩衝器Aを取り付ける向きは、図示する限りではなく、例えば、図1中上下を逆向きにしてもよい。また、緩衝器Aの取付対象は、車両に限らず適宜変更できる。さらに、懸架ばねSは、エアばね等のコイルばね以外のばねであってもよいのは勿論、緩衝器Aの取付対象によっては懸架ばねSを省略してもよい。 The direction in which the shock absorber A is attached is not limited to that shown in the figure, and for example, the top and bottom in FIG. Further, the mounting target of the shock absorber A is not limited to the vehicle and can be changed as appropriate. Further, the suspension spring S may be a spring other than a coil spring such as an air spring, and the suspension spring S may be omitted depending on the object to which the shock absorber A is attached.
 つづいて、緩衝器本体Dは、複筒型であり、アウターシェル10の内側に内筒としてのシリンダ1が設けられている。このシリンダ1内には、ピストン2が摺動自在に挿入されている。このピストン2は、ピストンロッド3の上端外周にナット32で連結されている。そして、緩衝器Aの伸縮時には、ピストンロッド3がシリンダ1に出入りして、ピストン2がシリンダ1内を上下(軸方向)に移動する。 Next, the shock absorber main body D is a double cylinder type, and the cylinder 1 as an inner cylinder is provided inside the outer shell 10. A piston 2 is slidably inserted in the cylinder 1. The piston 2 is connected to the outer periphery of the upper end of the piston rod 3 by a nut 32. When the shock absorber A expands and contracts, the piston rod 3 moves in and out of the cylinder 1, and the piston 2 moves up and down (axial direction) in the cylinder 1.
 また、前述のように、アウターシェル10の上端外周には、有頂筒状のエンドキャップ11が螺合され、このエンドキャップ11でアウターシェル10の上端が塞がれている。その一方、アウターシェル10の下端には、ピストンロッド3を摺動自在に支える環状のロッドガイド14が装着されている。このロッドガイド14には、シール15,16,17が装着されており、ピストンロッド3の外周と、アウターシェル10の内周がそれぞれシールされている。 Further, as described above, a capped cylindrical end cap 11 is screwed onto the outer periphery of the upper end of the outer shell 10, and the upper end of the outer shell 10 is closed by this end cap 11. On the other hand, an annular rod guide 14 that slidably supports the piston rod 3 is attached to the lower end of the outer shell 10. Seals 15, 16 and 17 are attached to the rod guide 14, and the outer circumference of the piston rod 3 and the inner circumference of the outer shell 10 are sealed.
 このようにしてアウターシェル10内は密閉空間となっており、シリンダ1内を含むアウターシェル10内に収容される液体が外方へ漏れるのが防止されている。そして、シリンダ1内には、作動油等の液体が充填された作動室Lが形成されており、この作動室Lがピストン2で下側の伸側室L1と上側の圧側室L2とに区画されている。 In this way, the inside of the outer shell 10 is a sealed space, and the liquid contained in the outer shell 10 including the inside of the cylinder 1 is prevented from leaking to the outside. A working chamber L filled with a liquid such as working oil is formed in the cylinder 1, and the working chamber L is partitioned by the piston 2 into a lower expansion side chamber L1 and an upper compression side chamber L2. ing.
 ここでいう伸側室L1とは、ピストンで区画される二室のうち、緩衝器Aの伸長時にピストン2で圧縮される方の部屋のことである。その一方、圧側室L2とは、ピストン2で区画される二室のうち、緩衝器Aの収縮時にピストン2で圧縮される方の部屋のことである。 The expansion side chamber L1 here is the one of the two chambers partitioned by the piston that is compressed by the piston 2 when the shock absorber A extends. On the other hand, the pressure side chamber L2 is one of the two chambers partitioned by the piston 2 that is compressed by the piston 2 when the shock absorber A contracts.
 ピストン2には、伸側室L1と圧側室L2とを連通する伸側通路2aと圧側通路2bが形成されるとともに、伸側通路2aおよび圧側通路2bを通って伸側室L1と圧側室L2との間を移動する液体の流れに抵抗を与えるハード側減衰要素FHが取り付けられている。このハード側減衰要素FHは、伸側通路2aを開閉するリーフバルブである伸側のハードリーフバルブ20と、圧側通路2bを開閉するリーフバルブである圧側のハードリーフバルブ21と、オリフィス22(図4)とを有して構成されている。 The piston 2 is formed with an extension side passage 2a and a compression side passage 2b that communicate the extension side chamber L1 and the compression side chamber L2, and the extension side chamber L1 and the compression side chamber L2 pass through the extension side passage 2a and the compression side passage 2b. A hard side damping element FH is attached that resists the flow of liquid moving between them. This hard side damping element FH includes an expansion side hard leaf valve 20 that is a leaf valve that opens and closes the expansion side passage 2a, a compression side hard leaf valve 21 that is a leaf valve that opens and closes the compression side passage 2b, and an orifice 22 (see FIG. 4) and is configured.
 伸側と圧側のハードリーフバルブ20,21は、それぞれ金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有する。伸側のハードリーフバルブ20は、その外周側の撓みを許容された状態でピストン2の上側に積層されており、伸側のハードリーフバルブ20には伸側室L1の圧力が外周部を上側へ撓ませる方向へ作用する。圧側のハードリーフバルブ21は、その外周側の撓みを許容された状態でピストン2の下側に積層されており、圧側のハードリーフバルブ21には圧側室L2の圧力が外周部を下側へ撓ませる方向へ作用する。 The hard leaf valves 20 and 21 on the expansion side and the compression side are thin annular plates made of metal or the like, or a laminated body in which the annular plates are stacked, and have elasticity. The extension side hard leaf valve 20 is laminated on the upper side of the piston 2 in a state where the outer peripheral side is allowed to bend, and the pressure of the extension side chamber L1 is applied to the extension side hard leaf valve 20 so that the outer peripheral portion is upward. Acts in the direction of bending. The compression side hard leaf valve 21 is laminated on the lower side of the piston 2 in a state where the outer peripheral side is allowed to bend, and the pressure of the compression side chamber L2 is applied to the compression side hard leaf valve 21 on the outer peripheral side downward. Acts in the direction of bending.
 オリフィス22は、ピストン2の弁座に離着座する伸側と圧側のハードリーフバルブ20,21の一方又は両方の外周部に設けられた切欠き、或いは、上記弁座に設けられた打刻等によって形成されている。このため、オリフィス22は、伸側通路2aと圧側通路2bの一方又は両方に、伸側及び圧側のハードリーフバルブ20,21と並列に設けられているといえる。 The orifice 22 has a notch provided on the outer peripheral portion of one or both of the hard leaf valves 20 and 21 on the extension side and the compression side that are detached and seated on the valve seat of the piston 2, or a stamp provided on the valve seat or the like. Is formed by. Therefore, it can be said that the orifice 22 is provided in one or both of the expansion side passage 2a and the compression side passage 2b in parallel with the expansion side and compression side hard leaf valves 20 and 21.
 伸側室L1は、緩衝器Aの伸長時にピストン2で圧縮されてその内圧が上昇し、圧側室L2の圧力よりも高くなる。その一方、圧側室L2は、緩衝器Aの収縮時にピストン2で圧縮されてその内圧が上昇し、伸側室L1の圧力よりも高くなる。このように、緩衝器Aの伸縮時には伸側室L1と圧側室L2に差圧が生じる。そして、緩衝器Aの伸縮時にピストン速度が低速域にあり、上記差圧が伸側及び圧側のハードリーフバルブ20,21の開弁圧に満たない場合には、液体がオリフィス22を通って伸長時には伸側室L1から圧側室L2へと向かい、収縮時には圧側室L2から伸側室L1へと向かい、その液体の流れに対してオリフィス22により抵抗が付与される。 The expansion side chamber L1 is compressed by the piston 2 when the shock absorber A extends and the internal pressure thereof rises, and becomes higher than the pressure of the compression side chamber L2. On the other hand, the pressure side chamber L2 is compressed by the piston 2 when the shock absorber A contracts and its internal pressure rises, and becomes higher than the pressure of the extension side chamber L1. As described above, when the shock absorber A expands and contracts, a differential pressure is generated between the extension side chamber L1 and the compression side chamber L2. When the piston speed is in the low speed range when the shock absorber A is expanded and contracted, and the differential pressure is less than the opening pressure of the hard leaf valves 20 and 21 on the expansion side and the compression side, the liquid expands through the orifice 22. Occasionally, the expansion side chamber L1 moves toward the compression side chamber L2, and when contracting, the compression side chamber L2 moves toward the expansion side chamber L1. The orifice 22 provides resistance to the liquid flow.
 また、緩衝器Aの伸長時にピストン速度が高まって中高速域にあり、上記差圧が大きくなって伸側のハードリーフバルブ20の開弁圧以上になると、伸側のハードリーフバルブ20の外周部が上側へ撓んでその外周部とピストン2との間に隙間ができて、液体がその隙間を通って伸側室L1から圧側室L2へと向かうとともに、その液体の流れに対して抵抗が付与される。また、緩衝器Aの収縮時にピストン速度が中高速域にあり、伸側室L1と圧側室L2の差圧が大きくなって圧側のハードリーフバルブ21の開弁圧以上になると、圧側のハードリーフバルブ21の外周部が下側へ撓んでその外周部とピストン2との間
に隙間ができて、液体がその隙間を通って圧側室L2から伸側室L1へと向かうとともに、その液体の流れに対して抵抗が付与される。
Further, when the shock absorber A is extended, the piston speed increases and is in the medium to high speed range, and when the differential pressure becomes large and exceeds the valve opening pressure of the extension side hard leaf valve 20, the outer circumference of the extension side hard leaf valve 20 The portion bends upward to form a gap between the outer peripheral portion and the piston 2, and the liquid passes through the gap from the extension side chamber L1 to the compression side chamber L2 and imparts resistance to the flow of the liquid. Will be done. Further, when the piston speed is in the medium to high speed range when the shock absorber A contracts, and the differential pressure between the extension side chamber L1 and the compression side chamber L2 becomes large and exceeds the valve opening pressure of the compression side hard leaf valve 21, the compression side hard leaf valve The outer peripheral portion of 21 bends downward to form a gap between the outer peripheral portion and the piston 2, and the liquid passes through the gap from the compression side chamber L2 to the extension side chamber L1 and with respect to the flow of the liquid. Resistance is given.
 以上からわかるように、ハード側減衰要素FHのオリフィス22と、伸側のハードリーフバルブ20は、緩衝器Aの伸長時に伸側室L1から圧側室L2へと向かう液体の流れに抵抗を与える伸側の第一の減衰要素として機能する。また、ハード側減衰要素FHのオリフィス22と、圧側のハードリーフバルブ21は、緩衝器Aの収縮時に圧側室L2から伸側室L1へと向かう液体の流れに抵抗を与える圧側の第一の減衰要素として機能する。そして、これら第一の減衰要素による抵抗は、ピストン速度が低速域にある場合にはオリフィス22に起因し、中高速域にある場合には伸側又は圧側のハードリーフバルブ20,21に起因する。 As can be seen from the above, the orifice 22 of the hard-side damping element FH and the hard-leaf valve 20 on the expansion side provide resistance to the flow of liquid from the expansion-side chamber L1 to the compression-side chamber L2 when the shock absorber A extends. Acts as the first damping element of. Further, the orifice 22 of the hard side damping element FH and the compression side hard leaf valve 21 are the first compression side damping elements that give resistance to the flow of liquid from the compression side chamber L2 to the extension side chamber L1 when the shock absorber A contracts. Function as. The resistance due to these first damping elements is caused by the orifice 22 when the piston speed is in the low speed range, and is caused by the expansion side or pressure side hard leaf valves 20, 21 when the piston speed is in the medium and high speed ranges. ..
 つづいて、シリンダ1とアウターシェル10との間には、筒状の隙間C1が形成されている。その隙間C1は、シリンダ1の下端部に形成された孔1aを介して常に伸側室L1と連通されている。さらに、その隙間C1は、アウターシェル10の上端部に形成された孔10aと、エンドキャップ11に形成された伸側開口11aを通じて減衰力調整部Eに連通されている。また、エンドキャップ11には、圧側開口11bが形成されており、圧側室L2がその圧側開口11bを通じて減衰力調整部Eに連通されている。 Subsequently, a tubular gap C1 is formed between the cylinder 1 and the outer shell 10. The gap C1 is always communicated with the extension side chamber L1 through a hole 1a formed at the lower end of the cylinder 1. Further, the gap C1 communicates with the damping force adjusting portion E through a hole 10a formed in the upper end portion of the outer shell 10 and an extension side opening 11a formed in the end cap 11. A pressure side opening 11b is formed in the end cap 11, and the pressure side chamber L2 communicates with the damping force adjusting portion E through the pressure side opening 11b.
 図2に示すように、その減衰力調整部Eは、有底筒状のハウジング4と、このハウジング4の開口を塞ぐキャップ40と、一端をこのキャップ40に支持されてハウジング4内に収容されるサブシリンダ41と、このサブシリンダ41内に固定されるバルブケース5と、サブシリンダ41内におけるバルブケース5のキャップ40側に設けられる電磁弁Vとを備えている。 As shown in FIG. 2, the damping force adjusting portion E is housed in the housing 4 with a bottomed tubular housing 4, a cap 40 that closes an opening of the housing 4, and one end supported by the cap 40. The sub-cylinder 41, the valve case 5 fixed in the sub-cylinder 41, and the electromagnetic valve V provided on the cap 40 side of the valve case 5 in the sub-cylinder 41 are provided.
 さらに、ハウジング4とサブシリンダ41との間にできる筒状の隙間には、その隙間を伸側開口11a(図1)に通じる伸側隙間C2と、圧側開口11b(図1)に通じる圧側隙間C3とに仕切るとともに、伸側隙間C2と圧側隙間C3のうちの低圧側をタンクT(図1)に接続する低圧優先バルブ6が設けられている。前述のように、伸側隙間C2に通じる伸側開口11aは伸側室L1に連通されるとともに、圧側隙間C3に通じる圧側開口11bは圧側室L2に連通されている。このため、低圧優先バルブ6は、伸側室L1と圧側室L2のうちの低圧側をタンクTに接続するともいえる。 Further, in the tubular gap formed between the housing 4 and the sub-cylinder 41, the extension side gap C2 that leads the gap to the extension side opening 11a (FIG. 1) and the compression side gap that leads to the compression side opening 11b (FIG. 1) A low-pressure priority valve 6 is provided for partitioning into C3 and connecting the low-pressure side of the expansion-side clearance C2 and the compression-side clearance C3 to the tank T (FIG. 1). As described above, the extension side opening 11a leading to the extension side gap C2 is communicated with the extension side chamber L1, and the compression side opening 11b communicating with the compression side gap C3 is communicated with the compression side chamber L2. Therefore, it can be said that the low pressure priority valve 6 connects the low pressure side of the expansion side chamber L1 and the compression side chamber L2 to the tank T.
 また、本実施の形態において、ハウジング4の中心を通る減衰力調整部Eの中心軸Yは、図1に示すピストンロッド3の中心を通る緩衝器本体Dの中心軸Xに対して直交する直線Zに沿うように配置されている。以下、説明の便宜上、減衰力調整部Eの図2中左右を単に「左」「右」というが、減衰力調整部Eを取り付ける向きは適宜変更可能である。例えば、減衰力調整部Eを中心軸Yが車両の車幅(左右)方向へ延びるように配置しても、前後方向へ延びるように配置してもよい。 Further, in the present embodiment, the central axis Y of the damping force adjusting portion E passing through the center of the housing 4 is a straight line orthogonal to the central axis X of the shock absorber body D passing through the center of the piston rod 3 shown in FIG. It is arranged along Z. Hereinafter, for convenience of description, the left and right of the damping force adjusting section E in FIG. 2 are simply referred to as “left” and “right”, but the direction in which the damping force adjusting section E is attached can be appropriately changed. For example, the damping force adjusting unit E may be arranged such that the central axis Y extends in the vehicle width (left and right) direction of the vehicle or the longitudinal direction.
 また、本実施の形態において、減衰力調整部Eのハウジング4は、アウターシェル10の上端を塞ぐエンドキャップ11、及び車体側のブラケット12と一体成形されている。ここでいう一体成形とは、別個に成形した複数の部材を接着又は接合するのではなく、複数の部材を成形と同時に接合して一体とするとの意味である。 Further, in the present embodiment, the housing 4 of the damping force adjusting portion E is integrally molded with the end cap 11 that closes the upper end of the outer shell 10 and the bracket 12 on the vehicle body side. The integral molding mentioned here does not mean that a plurality of members that have been molded separately are bonded or joined, but that a plurality of members are joined together at the same time as molding to be integrated.
 つづいて、図2に示すように、そのハウジング4に収容されるサブシリンダ41内は、バルブケース5によって左側(キャップ40側)の第一室L3と、右側(反キャップ側)の第二室L4とに仕切られている。そして、そのバルブケース5には、第一室L3と第二室L4を連通する伸側ソフト通路5aと圧側ソフト通路5bが形成されるとともに、伸側ソフト通路5a又は圧側ソフト通路5bを通って第一室L3と第二室L4との間を移動する液体の流れに対して抵抗を与えるソフト側減衰要素FSが取り付けられている。 Next, as shown in FIG. 2, the inside of the sub-cylinder 41 housed in the housing 4 is the first chamber L3 on the left side (cap 40 side) and the second chamber on the right side (anti-cap side) by the valve case 5. It is partitioned into L4. The valve case 5 is formed with an expansion-side soft passage 5a and a compression-side soft passage 5b which communicate the first chamber L3 and the second chamber L4, and through the expansion-side soft passage 5a or the compression-side soft passage 5b. A soft damping element FS is attached that provides resistance to the flow of liquid moving between the first chamber L3 and the second chamber L4.
 また、サブシリンダ41のバルブケース5より左側には、伸側隙間C2に開口する横孔41aが形成されており、その横孔41aと第一室L3とをつなぐ通路の途中に電磁弁Vが設けられている。前述のように、伸側隙間C2は、エンドキャップ11(図1)の伸側開口11aを通じて伸側室L1に連通されている。その一方、第二室L4は、圧側隙間C3と常に連通されており、その圧側隙間C3は、エンドキャップ11(図1)の圧側開口11bを通じて圧側室L2に連通されている。 On the left side of the valve case 5 of the sub-cylinder 41, a lateral hole 41a opening to the expansion side clearance C2 is formed, and the solenoid valve V is provided in the middle of the passage connecting the lateral hole 41a and the first chamber L3. It is provided. As described above, the expansion side gap C2 communicates with the expansion side chamber L1 through the expansion side opening 11a of the end cap 11 (FIG. 1). On the other hand, the second chamber L4 is always communicated with the compression side gap C3, and the compression side gap C3 is communicated with the compression side chamber L2 through the compression side opening 11b of the end cap 11 (FIG. 1).
 つまり、本実施の形態では、前述のシリンダ1とアウターシェル10との間にできる筒状の隙間C1、伸側隙間C2、横孔41a、第一室L3、第二室L4及び圧側隙間C3を有してハード側減衰要素FHを迂回して伸側室L1と圧側室L2とを連通するバイパス路Bが形成されている。そして、そのバイパス路Bの途中に電磁弁Vとソフト側減衰要素FSが直列に設けられている。ソフト側減衰要素FSは、伸側ソフト通路5aを開閉するリーフバルブである伸側のソフトリーフバルブ50と、圧側ソフト通路5bを開閉するリーフバルブである圧側のソフトリーフバルブ51と、オリフィス52(図4)とを有して構成されている。 That is, in the present embodiment, the cylindrical gap C1, the expansion side gap C2, the lateral hole 41a, the first chamber L3, the second chamber L4, and the pressure side gap C3 formed between the cylinder 1 and the outer shell 10 are formed. A bypass passage B is formed which bypasses the hard side damping element FH and connects the extension side chamber L1 and the compression side chamber L2. Then, the solenoid valve V and the soft side damping element FS are provided in series in the middle of the bypass path B. The soft-side damping element FS includes an expansion-side soft leaf valve 50 that is a leaf valve that opens and closes the expansion-side soft passage 5a, a compression-side soft leaf valve 51 that is a leaf valve that opens and closes the compression-side soft passage 5b, and an orifice 52 ( It is configured to have FIG. 4).
 伸側と圧側のソフトリーフバルブ50,51は、それぞれ金属等で形成された薄い環状板、又はその環状板を積み重ねた積層体であって弾性を有する。伸側のソフトリーフバルブ50は、その外周側の撓みを許容された状態でバルブケース5の右側に積層されており、伸側のソフトリーフバルブ50には第一室L3の圧力が外周部を右側へ撓ませる方向へ作用する。圧側のソフトリーフバルブ51は、その外周側の撓みを許容された状態でバルブケース5の左側に積層されており、圧側のソフトリーフバルブ51には第二室L4の圧力が外周部を左側へ撓ませる方向へ作用する。 The soft leaf valves 50 and 51 on the extension side and the compression side are thin annular plates made of metal or the like, or a laminated body in which the annular plates are stacked, and have elasticity. The extension side soft leaf valve 50 is laminated on the right side of the valve case 5 in a state where the outer peripheral side is allowed to bend, and the pressure of the first chamber L3 is applied to the outer peripheral portion of the extension side soft leaf valve 50. It acts in the direction of bending to the right. The pressure side soft leaf valve 51 is laminated on the left side of the valve case 5 in a state where the outer peripheral side is allowed to bend, and the pressure side soft leaf valve 51 has the pressure in the second chamber L4 on the outer peripheral side to the left side. Acts in the direction of bending.
 オリフィス52は、バルブケース5の弁座に離着座する伸側と圧側のソフトリーフバルブ50,51の外周部に設けられた切欠き、或いは上記弁座に設けられた打刻等によって形成されている。このため、オリフィス52は、伸側ソフト通路5aと圧側ソフト通路5bの一方又は両方に、伸側及び圧側のソフトリーフバルブ50,51と並列に設けられているといえる。 The orifice 52 is formed by a notch provided on the outer peripheral portion of the soft leaf valves 50 and 51 on the extension side and the compression side that are detached and seated on the valve seat of the valve case 5, or a stamp provided on the valve seat. There is. Therefore, it can be said that the orifice 52 is provided in one or both of the expansion side soft passage 5a and the compression side soft passage 5b in parallel with the expansion side and compression side soft leaf valves 50 and 51.
 第一室L3の圧力は、緩衝器Aの伸長時であって電磁弁Vが後述する伸側のポート7aを開いているときに伸側室L1の圧力を受けて上昇し、第二室L4の圧力よりも高くなり、これにより第一室L3と第二室L4に差圧が生じる。このような緩衝器Aの伸長時であって電磁弁Vが伸側のポート7aを開いているときにピストン速度が低速域にあり、上記差圧が伸側のソフトリーフバルブ50の開弁圧に満たない場合には、液体がオリフィス52を通って第一室L3から第二室L4、即ち、伸側室L1から圧側室L2へと向かい、この液体の流れに対して抵抗が付与される。 The pressure in the first chamber L3 rises under the pressure of the extension side chamber L1 when the solenoid valve V opens the extension side port 7a, which will be described later, when the shock absorber A is extended, and the pressure in the second chamber L4 rises. It becomes higher than the pressure, which causes a differential pressure between the first chamber L3 and the second chamber L4. When the shock absorber A is extended and the solenoid valve V opens the extension side port 7a, the piston speed is in the low speed range, and the differential pressure is the opening pressure of the extension side soft leaf valve 50. If the amount is less than the above, the liquid flows from the first chamber L3 to the second chamber L4, that is, from the extension side chamber L1 to the compression side chamber L2 through the orifice 52, and resistance is imparted to the flow of the liquid.
 また、緩衝器Aの伸長時であって電磁弁Vが伸側のポート7aを開いているときにピストン速度が高まって中高速域にあり、上記差圧が大きくなって伸側のソフトリーフバルブ50の開弁圧以上になると、伸側のソフトリーフバルブ50の外周部が撓んでその外周部とバルブケース5との間に隙間ができて、液体がその隙間を通って第一室L3から第二室L4、即ち、伸側室L1から圧側室L2へと向かうとともに、この液体の流れに対して抵抗が付与される。 Further, when the shock absorber A is expanded and the solenoid valve V is opening the expansion side port 7a, the piston speed increases and is in the middle-high speed range, and the differential pressure increases and the expansion side soft leaf valve increases. When the valve opening pressure of 50 or more is reached, the outer peripheral portion of the expansion side soft leaf valve 50 bends to form a gap between the outer peripheral portion and the valve case 5, and the liquid passes through the gap and leaves the first chamber L3. Along with moving from the second chamber L4, that is, the extension side chamber L1 to the compression side chamber L2, resistance is imparted to the flow of this liquid.
 つづいて、第二室L4の圧力は、緩衝器Aの収縮時であって電磁弁Vが後述する圧側のポート7bを開いているときに圧側室L2の圧力を受けて上昇し、第一室L3の圧力よりも高くなり、これにより第二室L4と第一室L3に差圧が生じる。このような緩衝器Aの収縮時であって電磁弁Vが圧側のポート7bを開いているときにピストン速度が低速域にあり、上記差圧が圧側のソフトリーフバルブ51の開弁圧に満たない場合には、液体がオリフィス52を通って第二室L4から第一室L3、即ち、圧側室L2から伸側室L1へと向かい、この液体の流れに対して抵抗が付与される。 Subsequently, the pressure in the second chamber L4 rises under the pressure of the compression side chamber L2 when the solenoid valve V opens the port 7b on the compression side, which will be described later, when the shock absorber A contracts, and the pressure in the first chamber L4 rises. It becomes higher than the pressure of L3, which causes a differential pressure between the second chamber L4 and the first chamber L3. When the shock absorber A is contracted and the solenoid valve V is opening the port 7b on the compression side, the piston speed is in the low speed range, and the differential pressure satisfies the valve opening pressure of the soft leaf valve 51 on the compression side. When there is no liquid, the liquid flows from the second chamber L4 to the first chamber L3, that is, from the pressure side chamber L2 to the extension side chamber L1 through the orifice 52, and resistance is imparted to the flow of the liquid.
 また、緩衝器Aの収縮時であって電磁弁Vが圧側のポート7bを開いているときにピストン速度が高まって中高速域にあり、上記差圧が大きくなって圧側のソフトリーフバルブ51の開弁圧以上になると、圧側のソフトリーフバルブ51の外周部が撓んでその外周部とバルブケース5との間に隙間ができて、液体がその隙間を通って第二室L4から第一室L3、即ち、圧側室L2から伸側室L1へと向かうとともに、この液体の流れに対して抵抗が付与される。 Further, when the shock absorber A is contracted and the solenoid valve V opens the pressure side port 7b, the piston speed increases and is in the middle and high speed range, and the differential pressure increases and the soft leaf valve 51 on the pressure side increases. When the pressure exceeds the valve opening pressure, the outer peripheral portion of the pressure side soft leaf valve 51 bends to form a gap between the outer peripheral portion and the valve case 5, and the liquid passes through the gap to move from the second chamber L4 to the first chamber. Along with going from L3, that is, the compression side chamber L2 to the extension side chamber L1, resistance is imparted to the flow of this liquid.
 以上からわかるように、ソフト側減衰要素FSのオリフィス52と、伸側のソフトリーフバルブ50は、緩衝器Aの伸長時にバイパス路Bを伸側室L1から圧側室L2へと向かう液体の流れに抵抗を与える伸側の第二の減衰要素として機能する。また、ソフト側減衰要素FSのオリフィス52と、圧側のソフトリーフバルブ51は、緩衝器Aの収縮時にバイパス路Bを圧側室L2から伸側室L1へと向かう液体の流れに抵抗を与える圧側の第二の減衰要素として機能する。そして、これら第一、第二の減衰要素による抵抗は、ピストン速度が低速域にある場合にはオリフィス52に起因し、中高速域にある場合には伸側又は圧側のソフトリーフバルブ50,51に起因する。 As can be seen from the above, the orifice 52 of the soft side damping element FS and the extension side soft leaf valve 50 resist the flow of liquid from the extension side chamber L1 to the compression side chamber L2 through the bypass path B when the shock absorber A is extended. Acts as a second damping element on the extension side that gives. Further, the orifice 52 of the soft damping element FS and the soft leaf valve 51 on the compression side give resistance to the flow of liquid from the compression side chamber L2 to the extension side chamber L1 on the bypass path B when the shock absorber A contracts. It functions as a secondary damping element. The resistance due to the first and second damping elements is caused by the orifice 52 when the piston speed is in the low speed range, and is extended or compressed by the soft leaf valves 50, 51 when the piston speed is in the medium and high speed ranges. caused by.
 また、ソフト側減衰要素FSの伸側のソフトリーフバルブ50は、ハード側減衰要素FHの伸側のハードリーフバルブ20よりもバルブ剛性の低い(撓みやすい)バルブであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。同様に、ソフト側減衰要素FSの圧側のソフトリーフバルブ51は、ハード側減衰要素FHの圧側のハードリーフバルブ21よりもバルブ剛性の低い(撓みやすい)バルブであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。換言すると、液体は、同一条件下において、ハードリーフバルブ20,21よりもソフトリーフバルブ50,51の方を通過しやすい。さらに、ソフト側減衰要素FSのオリフィス52は、ハード側減衰要素FHのオリフィス22よりも開口面積が大きい大径オリフィスであり、流量が同じである場合、液体の流れに与える抵抗(圧力損失)が小さい。 Further, the soft leaf valve 50 on the extension side of the soft side damping element FS is a valve having a valve rigidity lower (easy to bend) than the hard leaf valve 20 on the extension side of the hard side damping element FH, and has the same flow rate. , The resistance (pressure loss) applied to the liquid flow is small. Similarly, the soft leaf valve 51 on the compression side of the soft side damping element FS is a valve having a lower valve rigidity (easier to bend) than the hard leaf valve 21 on the compression side of the hard side damping element FH, and when the flow rates are the same, The resistance (pressure loss) applied to the liquid flow is small. In other words, the liquid passes through the soft leaf valves 50 and 51 more easily than the hard leaf valves 20 and 21 under the same conditions. Further, the orifice 52 of the soft side damping element FS is a large diameter orifice having a larger opening area than the orifice 22 of the hard side damping element FH, and when the flow rates are the same, the resistance (pressure loss) given to the liquid flow is small.
 つづいて、電磁弁Vは、サブシリンダ41内に固定される筒状のホルダ7と、このホルダ7内に往復動可能に挿入されるスプール8と、このスプール8をその移動方向の一方へ付勢する付勢ばね80と、この付勢ばね80の付勢力と反対方向の推力をスプール8へ与えるソレノイド9とを有して構成されている。そして、ホルダ7には、伸側と圧側のポート7a,7bが形成されていて、ホルダ7内におけるスプール8位置の変更により、各ポート7a,7bの開度が大小調節されるようになっている。 Subsequently, the solenoid valve V includes a cylindrical holder 7 fixed in the sub-cylinder 41, a spool 8 reciprocally inserted in the holder 7, and a spool 8 attached in one of the moving directions. A biasing spring 80 for biasing and a solenoid 9 for applying a thrust in a direction opposite to the biasing force of the biasing spring 80 to the spool 8 are configured. The holder 7 is formed with ports 7a and 7b on the extension side and the compression side, and the opening degree of each port 7a and 7b can be adjusted by changing the position of the spool 8 in the holder 7. There is.
 より具体的には、ホルダ7は、サブシリンダ41内に軸方向の一端を左側(キャップ40側)へ、他端を右側(バルブケース5側)へ向けた状態で、ハウジング4の中心軸Yに沿って配置されている。そして、伸側と圧側のポート7a,7bは、それぞれホルダ7の肉厚を径方向へ貫通するとともに、軸方向に所定の間隔をあけて配置される。 More specifically, the holder 7 is arranged such that one end of the holder 7 in the axial direction is directed to the left side (cap 40 side) and the other end is directed to the right side (valve case 5 side) in the sub-cylinder 41, with the central axis Y of the housing 4 being held. It is arranged along. The expansion side and compression side ports 7a and 7b respectively penetrate through the wall thickness of the holder 7 in the radial direction and are arranged at a predetermined interval in the axial direction.
 そのホルダ7とハウジング4との間には、伸側と圧側のポート7a,7bの間であって横孔41aを挟んで両側に環状の伸側バルブシート70と圧側バルブシート72が設けられている。そして、伸側バルブシート70には、伸側隙間C2から横孔41aを通じて伸側のポート7aへ向かう液体の一方向流れのみを許容する伸側チェックバルブ71が装着されている。その一方、圧側バルブシート72には、圧側のポート7bから横孔41aを通じて伸側隙間C2へ向かう液体の一方向流れのみを許容する圧側チェックバルブ73が装着されている。 An annular extension-side valve seat 70 and a compression-side valve seat 72 are provided between the holder 7 and the housing 4 on both sides of the lateral hole 41a between the extension-side and compression- side ports 7a and 7b. There is. The expansion side valve seat 70 is equipped with an expansion side check valve 71 that allows only one-way flow of the liquid from the expansion side gap C2 through the lateral hole 41a to the expansion side port 7a. On the other hand, the pressure side valve seat 72 is provided with a pressure side check valve 73 that allows only one-way flow of the liquid from the pressure side port 7b through the lateral hole 41a toward the expansion side gap C2.
 そして、伸側と圧側のポート7a,7bがスプール8で個別に開閉されるようになっている。そのスプール8は、筒状で、ホルダ7内に摺動自在に挿入されている。このスプール8の左端には、プレート81が積層されており、そのプレート81に後述するソレノイド9のプランジャ9aが当接している。その一方、スプール8の右端には、付勢ばね80が当接し、当該付勢ばね80でスプール8を左側(ソレノイド9側)へ付勢している。 The expansion side and compression side ports 7a and 7b are individually opened and closed by the spool 8. The spool 8 has a tubular shape and is slidably inserted into the holder 7. A plate 81 is laminated on the left end of the spool 8, and a plunger 9a of a solenoid 9 described later is in contact with the plate 81. On the other hand, a biasing spring 80 contacts the right end of the spool 8, and the biasing spring 80 biases the spool 8 to the left side (the solenoid 9 side).
 また、スプール8の中心部に形成された中心孔8aは、スプール8の右端開口を介して第一室L3と連通している。さらに、スプール8には、その外周の周方向に沿う伸側と圧側の環状溝8b,8dが軸方向に所定の間隔をあけて形成されるとともに、各環状溝8b,8dの内側と中心孔8aとを連通する側孔8c,8eが形成されている。これにより、各環状溝8b,8dの内側が側孔8c,8eと中心孔8aを介して第一室L3と連通される。 Also, the center hole 8a formed in the center of the spool 8 communicates with the first chamber L3 through the right end opening of the spool 8. Further, the spool 8 is formed with annular grooves 8b, 8d on the extension side and the compression side along the circumferential direction of the outer circumference thereof at predetermined intervals in the axial direction, and inside and the center hole of each annular groove 8b, 8d. Side holes 8c and 8e that communicate with 8a are formed. As a result, the inside of each annular groove 8b, 8d communicates with the first chamber L3 via the side holes 8c, 8e and the central hole 8a.
 上記構成によれば、図2に示すように、ホルダ7の伸側のポート7aに伸側の環状溝8bが対向する位置にスプール8がある場合には、伸側のポート7aと第一室L3との連通が許容され、伸側室L1から伸側隙間C2、横孔41a、伸側チェックバルブ71及び伸側のポート7aを通って第一室L3へ向かう液体の流れが許容される。 According to the above configuration, as shown in FIG. 2, when the spool 8 is located at a position where the extending side port 7a of the holder 7 faces the extending side annular groove 8b, the extending side port 7a and the first chamber Communication with L3 is permitted, and the flow of liquid from the extension side chamber L1 to the first chamber L3 through the extension side gap C2, the lateral hole 41a, the extension side check valve 71 and the extension side port 7a is allowed.
 また、図2に記載のスプール8が右方へ移動して、ホルダ7の圧側のポート7bに圧側の環状溝8dが対向する位置にスプール8がある場合には、圧側のポート7bと第一室L3との連通が許容され、第一室L3から圧側のポート7b、圧側チェックバルブ73、横孔41a及び伸側隙間C2を通って伸側室L1へ向かう液体の流れが許容される。 Further, when the spool 8 shown in FIG. 2 moves to the right and the spool 8 is located at a position where the pressure-side annular groove 8d faces the compression-side port 7b of the holder 7, the pressure-side port 7b and the first Communication with the chamber L3 is allowed, and the flow of liquid from the first chamber L3 to the extension side chamber L1 through the compression side port 7b, the compression side check valve 73, the lateral hole 41a and the extension side gap C2 is allowed.
 なお、ここでいう環状溝とポートが対向した状態とは、径方向視で環状溝とポートとが重なり合う状態をいい、その重複量に応じて各ポートの開度が変わる。例えば、環状溝と対応するポートの重複量が増えるとそのポートの開度が大きくなり、反対に、環状溝と対応するポートの重複量が減るとそのポートの開度が小さくなる。さらに、環状溝と対応するポートが完全に重ならない位置までスプールが移動すると、そのポートが閉塞される。 Note that the state where the annular groove and the port face each other here means a state where the annular groove and the port overlap each other when viewed in the radial direction, and the opening degree of each port changes depending on the overlapping amount. For example, when the overlapping amount of the annular groove and the corresponding port increases, the opening degree of the port increases, and conversely, when the overlapping amount of the annular groove and the corresponding port decreases, the opening degree of the port decreases. Further, when the spool moves to a position where the annular groove and the corresponding port do not completely overlap, the port is blocked.
 また、本実施の形態のスプール8は、図2に示すように、伸側のポート7aの開度が最大(全開)となったとき、圧側のポート7bの開度が最小(全閉)となり、伸側のポート7aの開度を小さくしていくと圧側のポート7bの開度が大きくなって、圧側のポート7bの開度が最大(全開)となったときに伸側のポート7aの開度が最小(全閉)となるように設定されている。 Further, in the spool 8 of the present embodiment, as shown in FIG. 2, when the opening degree of the port 7a on the extension side becomes the maximum (fully open), the opening degree of the port 7b on the compression side becomes the minimum (fully closed). As the opening degree of the port 7a on the extension side is decreased, the opening degree of the port 7b on the compression side becomes larger, and when the opening degree of the port 7b on the compression side becomes the maximum (fully open), the port 7a on the extension side The opening is set to the minimum (fully closed).
 そのスプール8に推力を与え、スプール8を駆動するソレノイド9は、キャップ40に保持されており、詳細な図示を省略するが、コイルを含む筒状のステータと、このステータ内に移動自在に挿入される筒状の可動鉄心と、この可動鉄心の内周に装着されて先端がプレート81に当接するプランジャ9aとを有している。このソレノイド9に電力供給するハーネス90は、キャップ40から外方へ突出し、電源に接続されている。 The solenoid 9 that applies thrust to the spool 8 and drives the spool 8 is held by the cap 40, and although detailed illustration is omitted, a tubular stator including a coil and a movably inserted into the stator. The movable core has a cylindrical shape, and the plunger 9a is attached to the inner periphery of the movable core and has a tip abutting against the plate 81. The harness 90 for supplying power to the solenoid 9 projects outward from the cap 40 and is connected to a power source.
 そして、そのハーネス90を通じてソレノイド9へ通電すると、可動鉄心が右側へ引き寄せられてプランジャ9aが右方へ移動し、スプール8が付勢ばね80の付勢力に抗して右向きに移動する。すると、圧側の環状溝8dと圧側のポート7bが対向するようになって圧側のポート7bが開くとともに、伸側の環状溝8bと伸側のポート7aの重複量が減少して伸側のポート7aが閉じていく。 Then, when the solenoid 9 is energized through the harness 90, the movable iron core is pulled to the right, the plunger 9a moves to the right, and the spool 8 moves to the right against the urging force of the urging spring 80. Then, the compression side annular groove 8d and the compression side port 7b face each other to open the compression side port 7b, and the amount of overlap between the extension side annular groove 8b and the extension side port 7a is reduced to reduce the extension side port. 7a closes.
 つまり、付勢ばね80は伸側のポート7aを開き、圧側のポート7bを閉じる方向へスプール8を付勢する。その一方、ソレノイド9は、付勢ばね80の付勢力と反対方向の推力、即ち、伸側のポート7aを閉じ、圧側のポート7bを開く方向の推力をスプール8へ与えるようになっている。 That is, the urging spring 80 urges the spool 8 in the direction of opening the port 7a on the extension side and closing the port 7b on the compression side. On the other hand, the solenoid 9 applies a thrust in the direction opposite to the urging force of the urging spring 80, that is, a thrust in the direction of closing the port 7a on the extension side and opening the port 7b on the compression side to the spool 8.
 このため、伸側のポート7aの開度とソレノイド9への通電量との関係は、負の比例定数をもつ負の比例関係となり、通電量をゼロから増やすほど伸側のポート7aの開度が小さくなる。そして、この伸側のポート7aは、伸側チェックバルブ71により一方通行とされていて、液体が伸側隙間C2から第一室L3へ向けて流れる。このため、伸側のポート7aの開度を調節すると、その下流にある伸側のソフトリーフバルブ50及びオリフィス52の流量が大小調節される。 Therefore, the relationship between the opening degree of the expansion side port 7a and the energization amount to the solenoid 9 is a negative proportional relationship having a negative proportional constant, and the opening degree of the expansion side port 7a increases as the energization amount increases from zero. Becomes smaller. The expansion side port 7a is one-wayed by the expansion side check valve 71, and the liquid flows from the expansion side gap C2 toward the first chamber L3. Therefore, when the opening degree of the expansion side port 7a is adjusted, the flow rates of the expansion side soft leaf valve 50 and the orifice 52 located downstream of the adjustment are adjusted.
 その一方、圧側のポート7bの開度とソレノイド9への通電量との関係は、正の比例定数をもつ比例関係となり、通電量をゼロから増やすほど圧側のポート7bの開度が大きくなる。そして、この圧側のポート7bは、圧側チェックバルブ73により一方通行とされていて、液体が第一室L3から伸側隙間C2へ向けて流れる。このため、圧側のポート7bの開度を調節すると、その上流にある圧側のソフトリーフバルブ51及びオリフィス52の流量が大小調節される。 On the other hand, the relationship between the opening degree of the pressure side port 7b and the energization amount to the solenoid 9 is a proportional relationship having a positive proportional constant, and the opening degree of the pressure side port 7b increases as the energization quantity increases from zero. The pressure side port 7b is one-way by the pressure side check valve 73, and the liquid flows from the first chamber L3 toward the extension side gap C2. Therefore, when the opening degree of the pressure side port 7b is adjusted, the flow rates of the pressure side soft leaf valve 51 and the orifice 52 located upstream thereof are adjusted.
 つまり、電磁弁Vの伸側のポート7aの開度を大小させると、液体がソフト側減衰要素FSを通ってバイパス路Bを伸側室L1から圧側室L2へ向かう際のバイパス路Bの開口面積が調節される。同様に、電磁弁Vの圧側のポート7bの開度を大小させると、ソフト側減衰要素FSを通ってバイパス路Bを圧側室L2から伸側室L1へ向かう際のバイパス路Bの開口面積が調節される。 That is, when the opening degree of the port 7a on the extension side of the solenoid valve V is increased or decreased, the opening area of the bypass path B when the liquid passes through the soft side damping element FS and goes through the bypass path B from the extension side chamber L1 to the compression side chamber L2. Is adjusted. Similarly, when the opening degree of the port 7b on the compression side of the solenoid valve V is increased or decreased, the opening area of the bypass path B when the bypass path B is directed from the compression side chamber L2 to the extension side chamber L1 through the soft side damping element FS is adjusted. Will be done.
 つづいて、サブシリンダ41の外周に設けられた低圧優先バルブ6は、シャトルバルブであり、図3に示すように、サブシリンダ41の外周に設けられた環状の弁座部42の両端に離着座する環状の二つの弁体60,61と、これら二つの弁体60,61を連結するとともにハウジング4との間に隙間C4をあけて配置される連結部62とを含む。そして、低圧優先バルブ6は、二つの弁体60,61をハウジング4の内周に摺接させるとともに、連結部62を弁座部42の外周に摺接させつつ、サブシリンダ41の外周に設けられた二つのストッパ43,44の間を往復動するようになっている。 Next, the low-pressure priority valve 6 provided on the outer circumference of the sub-cylinder 41 is a shuttle valve, and as shown in FIG. 3, it is seated on both ends of an annular valve seat portion 42 provided on the outer circumference of the sub-cylinder 41. Includes two annular valve bodies 60, 61 and a connecting portion 62 that connects the two valve bodies 60, 61 and is arranged with a gap C4 between the two valve bodies 60 and 61 and the housing 4. The low-pressure priority valve 6 is provided on the outer periphery of the sub-cylinder 41 while the two valve bodies 60 and 61 are in sliding contact with the inner circumference of the housing 4 and the connecting portion 62 is in sliding contact with the outer circumference of the valve seat portion 42. It is designed to reciprocate between the two stoppers 43 and 44.
 また、各弁体60,61において対応するストッパ43,44に対向する部分と、連結部62における両弁体60,61側の端部には、それぞれ切欠き6a,6b,6c,6dが形成されている。そして、一方の弁体60(61)が弁座部42に着座した状態では、他方の弁体61(60)が弁座部42から離れて隙間ができる。すると、他方の弁体61(60)の切欠き6c(6a)、上記隙間、及び連結部62の切欠き6d(6b)を介して伸側隙間C2又は圧側隙間C3と、連結部62の外周にできる隙間C4とが連通される。 Notches 6a, 6b, 6c, and 6d are formed at the portions of the valve bodies 60 and 61 facing the corresponding stoppers 43 and 44 and at the ends of the connecting portions 62 on both valve bodies 60 and 61, respectively. Has been done. Then, when one valve body 60 (61) is seated on the valve seat portion 42, the other valve body 61 (60) is separated from the valve seat portion 42 to form a gap. Then, through the notch 6c (6a) of the other valve body 61 (60), the above gap, and the notch 6d (6b) of the connecting portion 62, the extension side gap C2 or the compression side gap C3 and the outer circumference of the connecting portion 62. The gap C4 that can be formed is communicated.
 その隙間C4は、タンクTと接続されている。図1に示すように、そのタンクT内はブラダ18で液室L5とガス室Gとに仕切られている。本実施の形態では、そのガス室Gには高圧ガスが封入されており、ガス室Gの圧力で液室L5を加圧し、その圧力が減衰力調整部Eを通じてシリンダ1内に作用するようになっている。 The gap C4 is connected to the tank T. As shown in FIG. 1, the inside of the tank T is divided into a liquid chamber L5 and a gas chamber G by a bladder 18. In the present embodiment, the gas chamber G is filled with high-pressure gas, the liquid chamber L5 is pressurized by the pressure of the gas chamber G, and the pressure acts on the cylinder 1 through the damping force adjusting unit E. It has become.
 上記構成によれば、緩衝器Aの伸長時に伸側室L1がピストン2で加圧され、その伸側室L1の圧力を受けて伸側隙間C2の圧力が高くなると、図3に示すように、その圧力を受けて低圧優先バルブ6が右側へ移動して左側の弁体60が弁座部42に着座する。すると、右側の弁体61と弁座部42との間に隙間ができて、タンクTと圧側隙間C3が連通される。この圧側隙間C3は、圧側室L2と連通されているので、緩衝器Aの伸長時には、圧側室L2の圧力がタンクT内の圧力と略同圧(タンク圧)となる。 According to the above configuration, when the expansion side chamber L1 is pressurized by the piston 2 when the shock absorber A extends, and the pressure in the expansion side gap C2 increases due to the pressure in the expansion side chamber L1, as shown in FIG. Upon receiving the pressure, the low pressure priority valve 6 moves to the right side, and the valve body 60 on the left side is seated on the valve seat portion 42. Then, a gap is formed between the right valve element 61 and the valve seat portion 42, and the tank T and the pressure side gap C3 are communicated with each other. Since the pressure side gap C3 communicates with the pressure side chamber L2, when the shock absorber A extends, the pressure of the pressure side chamber L2 becomes substantially the same as the pressure in the tank T (tank pressure).
 反対に、緩衝器Aの収縮時に圧側室L2がピストン2で加圧され、その圧側室L2の圧力を受けて圧側隙間C3の圧力が高くなると、その圧力を受けて低圧優先バルブ6が左側へ移動して右側の弁体61が弁座部42に着座する。すると、左側の弁体60と弁座部42との間に隙間ができて、タンクTと伸側隙間C2が連通される。この伸側隙間C2は、伸側室L1と連通されているので、緩衝器Aの収縮時には、伸側室L1の圧力がタンクT内の圧力と略同圧(タンク圧)となる。 On the contrary, when the pressure side chamber L2 is pressurized by the piston 2 when the shock absorber A contracts, and the pressure of the pressure side chamber L2 increases and the pressure of the pressure side gap C3 increases, the pressure is received and the low pressure priority valve 6 moves to the left side. The valve body 61 on the right side moves and is seated on the valve seat portion 42. Then, a gap is formed between the valve body 60 on the left side and the valve seat portion 42, and the tank T and the extension side gap C2 are communicated with each other. Since the extension side gap C2 communicates with the extension side chamber L1, the pressure in the extension side chamber L1 becomes substantially the same as the pressure in the tank T (tank pressure) when the shock absorber A contracts.
 なお、タンクTの構成は適宜変更できる。例えば、液室L5とガス室Gとをフリーピストンで区画して、このフリーピストンをコイルばね又はエアばね等のばねで液室側へ付勢してもよい。また、シリンダ1内が負圧にならなければ、液室L5は必ずしも加圧されていなくてもよい。 The configuration of the tank T can be changed as appropriate. For example, the liquid chamber L5 and the gas chamber G may be partitioned by a free piston, and the free piston may be biased toward the liquid chamber by a spring such as a coil spring or an air spring. Further, the liquid chamber L5 does not necessarily have to be pressurized as long as the pressure inside the cylinder 1 does not become negative.
 以上をまとめると、本実施の形態に係る緩衝器Aは、図4に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されてシリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、先端がピストン2に連結されるとともに末端がシリンダ1外へと突出するピストンロッド3と、低圧優先バルブ6によって伸側室L1と圧側室L2のうちの低圧側に接続されるタンクTとを備えている。さらに、緩衝器Aには、伸側室L1と圧側室L2とを連通する通路として、伸側通路2a、圧側通路2b及びバイパス路Bが設けられている。 Summarizing the above, as shown in FIG. 4, the shock absorber A according to the present embodiment is slidably inserted into the cylinder 1 and the cylinder 1, and the inside of the cylinder 1 is the extension side chamber L1 and the compression side chamber L2. It is connected to the low pressure side of the extension side chamber L1 and the compression side chamber L2 by a piston 2 which is divided into two parts, a piston rod 3 whose tip is connected to the piston 2 and whose end protrudes to the outside of the cylinder 1, and a low pressure priority valve 6. It is equipped with a cylinder T. Further, the shock absorber A is provided with an extension side passage 2a, a compression side passage 2b, and a bypass passage B as passages that connect the extension side chamber L1 and the compression side chamber L2.
 そして、伸側通路2aと圧側通路2bには、それぞれを開閉する伸側のハードリーフバルブ20と圧側のハードリーフバルブ21が設けられ、伸側通路2aと圧側通路2bの一方又は両方に伸側及び圧側のハードリーフバルブ20,21と並列にオリフィス22が設けられている。そして、伸側のハードリーフバルブ20、圧側のハードリーフバルブ21、及びオリフィス22を有して液体の流れに抵抗を与えるハード側減衰要素FHが構成されている。 The extension side passage 2a and the compression side passage 2b are provided with an extension side hard leaf valve 20 and a compression side hard leaf valve 21 that open and close each of them, and one or both of the extension side passage 2a and the compression side passage 2b are provided with an extension side. An orifice 22 is provided in parallel with the hard leaf valves 20 and 21 on the compression side. A hard-side damping element FH having a hard leaf valve 20 on the expansion side, a hard leaf valve 21 on the pressure side, and an orifice 22 and configured to provide resistance to the flow of liquid is configured.
 その一方、バイパス路Bは途中で伸側ソフト通路5aと圧側ソフト通路5bに分岐している。伸側ソフト通路5aと圧側ソフト通路5bには、それぞれを開閉する伸側のソフトリーフバルブ50と圧側のソフトリーフバルブ51が設けられ、伸側ソフト通路5aと圧側ソフト通路5bの一方又は両方に伸側及び圧側のソフトリーフバルブ50,51と並列にオリフィス52が設けられている。 On the other hand, the bypass path B branches into an extension side soft passage 5a and a compression side soft passage 5b on the way. The extension side soft passage 5a and the compression side soft passage 5b are provided with an extension side soft leaf valve 50 and a compression side soft leaf valve 51 that open and close each of them, and one or both of the extension side soft passage 5a and the compression side soft passage 5b are provided. An orifice 52 is provided in parallel with the soft leaf valves 50 and 51 on the extension side and the compression side.
 このオリフィス52は、オリフィス22より開口面積の大きい大径オリフィスである。また、ソフトリーフバルブ50,51は、ハードリーフバルブ20,21よりバルブ剛性の低いリーフバルブである。そして、伸側のソフトリーフバルブ50、圧側のソフトリーフバルブ51、及びオリフィス52を有して液体の流れに与える抵抗を小さくしたソフト側減衰要素FSが構成されている。 This orifice 52 is a large-diameter orifice having a larger opening area than the orifice 22. Further, the soft leaf valves 50 and 51 are leaf valves having lower valve rigidity than the hard leaf valves 20 and 21. A soft leaf valve 50 on the extension side, a soft leaf valve 51 on the compression side, and an orifice 52 are provided to form a soft side damping element FS that reduces resistance to the flow of liquid.
 さらに、バイパス路Bには、ソフト側減衰要素FSと直列に電磁弁Vが設けられている。その電磁弁Vは、非通電時において、伸側室L1から圧側室L2へ向かう液体の一方向流れを許容する伸側のポート7aを全開にするとともに、圧側室L2から伸側室L1へ向かう液体の一方向流れを許容する圧側のポート7bを全閉にするように設定されている。そして、伸側のポート7aの開度は、通電量が大きくなるほど小さくなり、これにより液体が伸側室L1から圧側室L2へ向かう際のバイパス路Bの開口面積が小さくなる。その一方、圧側のポート7bの開度は、通電量が大きくなるほど大きくなり、これにより液体が圧側室L2から伸側室L1へ向かう際のバイパス路Bの開口面積が大きくなる。 Further, the bypass path B is provided with a solenoid valve V in series with the soft side damping element FS. The solenoid valve V fully opens the port 7a on the extension side that allows one-way flow of the liquid from the extension side chamber L1 to the compression side chamber L2 when the electricity is not supplied, and also allows the liquid from the compression side chamber L2 to the extension side chamber L1. The compression side port 7b that allows unidirectional flow is set to be fully closed. Then, the opening degree of the port 7a on the extension side becomes smaller as the amount of energization increases, so that the opening area of the bypass path B when the liquid goes from the extension side chamber L1 to the compression side chamber L2 becomes smaller. On the other hand, the opening degree of the port 7b on the compression side increases as the amount of energization increases, so that the opening area of the bypass path B when the liquid flows from the compression side chamber L2 to the extension side chamber L1 increases.
 以下に、本発明の一実施の形態に係る緩衝器Aの作動について説明する。 The operation of the shock absorber A according to the embodiment of the present invention will be described below.
 緩衝器Aの伸長時には、ピストンロッド3がシリンダ1から退出してピストン2が伸側室L1を圧縮する。すると、伸側室L1の液体がハード側減衰要素FH又はバイパス路Bのソフト側減衰要素FSを通って圧側室L2へと移動する。当該液体の流れに対しては、ハード側減衰要素FH又はソフト側減衰要素FSによって抵抗が付与されて、その抵抗に起因する伸側減衰力が発生する。そして、この緩衝器Aの伸長時にハード側減衰要素FHとソフト側減衰要素FSを通過する液体の分配比が電磁弁Vへの通電量に応じて変わる。 When the shock absorber A extends, the piston rod 3 retracts from the cylinder 1 and the piston 2 compresses the expansion side chamber L1. Then, the liquid in the expansion side chamber L1 moves to the compression side chamber L2 through the hard side damping element FH or the soft side damping element FS of the bypass passage B. A resistance is applied to the flow of the liquid by the hard damping element FH or the soft damping element FS, and an extension damping force due to the resistance is generated. Then, when the shock absorber A extends, the distribution ratio of the liquid passing through the hard damping element FH and the soft damping element FS changes according to the amount of electricity supplied to the solenoid valve V.
 具体的には、緩衝器Aの伸長時において、液体は、ハード側減衰要素FHの伸側の第一の減衰要素を構成する伸側のハードリーフバルブ20又はオリフィス22、或いは、ソフト側減衰要素FSの伸側の第二の減衰要素を構成する伸側のソフトリーフバルブ50又はオリフィス52を通過する。このように、伸側の第一、第二の減衰要素は、それぞれオリフィス22,52と、これに並列されるリーフバルブであるハードリーフバルブ20又はソフトリーフバルブ50とを有して構成される。このため、伸側の減衰力特性は、ピストン速度が低速域にある場合には、オリフィス特有のピストン速度の二乗に比例するオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のピストン速度に比例するバルブ特性となる。 Specifically, when the shock absorber A is extended, the liquid is the extension-side hard leaf valve 20 or orifice 22 that constitutes the extension-side first damping element of the hard-side damping element FH, or the soft-side damping element. It passes through the extension-side soft leaf valve 50 or orifice 52 that constitutes the second extension-side damping element of the FS. As described above, the first and second damping elements on the extension side are configured to have orifices 22 and 52, respectively, and a hard leaf valve 20 or a soft leaf valve 50 which are leaf valves parallel thereto. .. Therefore, the damping force characteristic on the extension side becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and the leaf valve when the piston speed is in the medium and high speed range. The valve characteristics are proportional to the unique piston speed.
 そして、電磁弁Vへ供給する電流量を増やして伸側のポート7aの開度を小さくしていくと、ソフト側減衰要素FSの伸側の減衰要素を通過する液体の割合が減るとともに、ハード側減衰要素FHの伸側の減衰要素を通過する液体の割合が増える。ソフト側減衰要素FSの伸側の減衰要素であるオリフィス52は、ハード側減衰要素FHの伸側の減衰要素であるオリフィス22よりも開口面積の大きい大径オリフィスであるので、ソフト側減衰要素FS側へ向かう液体の割合が減ると、減衰係数が低速域と中高速域の両方で大きくなってピストン速度に対して発生する伸側減衰力が大きくなる。そして、電磁弁Vへ供給する電流量を最大にしたときに、伸側のポート7aが閉塞されて全流量がハード側減衰要素FHの伸側の減衰要素を通過するようになる。すると、減衰係数が最大になってピストン速度に対して発生する伸側減衰力が最大となる。 Then, when the amount of current supplied to the solenoid valve V is increased to reduce the opening degree of the extension side port 7a, the proportion of the liquid passing through the extension side damping element of the soft side damping element FS decreases and the hard side damping element FS is hardened. The proportion of liquid passing through the damping element on the extension side of the side damping element FH increases. Since the orifice 52, which is the expansion side damping element of the soft side damping element FS, is a large diameter orifice having a larger opening area than the orifice 22 which is the expansion side damping element of the hard side damping element FH, the soft side damping element FS. When the ratio of the liquid heading to the side decreases, the damping coefficient increases in both the low speed region and the medium and high speed regions, and the expansion side damping force generated with respect to the piston speed increases. Then, when the amount of current supplied to the solenoid valve V is maximized, the expansion side port 7a is closed and the entire flow rate passes through the expansion side damping element of the hard side damping element FH. Then, the damping coefficient becomes maximum, and the extension side damping force generated with respect to the piston speed becomes maximum.
 また、これとは逆に、電磁弁Vへ供給する電流量を減らして伸側のポート7aの開度を大きくしていくと、ソフト側減衰要素FSの伸側の減衰要素を通過する液体の割合が増えるとともに、ハード側減衰要素FHの伸側の減衰要素を通過する液体の割合が減る。すると、減衰係数が低速域と中高速域の両方で小さくなってピストン速度に対して発生する伸側減衰力が小さくなる。そして、電磁弁Vへの通電を断つと、伸側のポート7aが全開となる。すると、減衰係数が最小になってピストン速度に対して発生する伸側減衰力が最小となる。 On the contrary, when the amount of current supplied to the solenoid valve V is reduced and the opening degree of the extension side port 7a is increased, the liquid passing through the extension side damping element of the soft side damping element FS is increased. As the ratio increases, the ratio of the liquid passing through the extension side damping element of the hard side damping element FH decreases. Then, the damping coefficient becomes small in both the low speed region and the medium / high speed region, and the extension side damping force generated with respect to the piston speed becomes small. Then, when the energization of the solenoid valve V is cut off, the port 7a on the extension side is fully opened. Then, the damping coefficient becomes the minimum, and the extension side damping force generated with respect to the piston speed becomes the minimum.
 このように、ハード側減衰要素FHとソフト側減衰要素FSの伸側の第一、第二の減衰要素を通過する液体の分配比を電磁弁Vで変えると減衰係数が大小し、図5に示すように、伸側の減衰力特性を示す特性線の傾きが変わる。そして、その特性線の傾きを最大にして発生する減衰力を大きくするハードモードと、傾きを最小にして発生する減衰力を小さくするソフトモードとの間で伸側減衰力が調節される。 As described above, when the distribution ratio of the liquid passing through the first and second damping elements on the expansion side of the hard-side damping element FH and the soft-side damping element FS is changed by the solenoid valve V, the damping coefficient becomes large and small. As shown, the inclination of the characteristic line indicating the damping force characteristic on the extension side changes. Then, the extension side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
 また、ソフトモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で小さくなるとともに、ハードモードでは、減衰力特性を示す特性線の傾きが低速域と中高速域の両方で大きくなる。このため、減衰力特性がオリフィス特性からバルブ特性へと移行する際の変化がどのモードでも緩やかである。 In the soft mode, the slope of the characteristic line showing the damping force characteristic becomes smaller in both the low speed region and the medium and high speed regions. It gets bigger in both. Therefore, the change in the damping force characteristic from the orifice characteristic to the valve characteristic is gradual in any mode.
 さらに、ソフト側減衰要素FSの伸側の減衰要素は、オリフィス52と並列に、バルブ剛性の低いリーフバルブであるソフトリーフバルブ50を有している。このため、ハード側減衰要素FHの伸側の減衰要素を構成するリーフバルブとして、バルブ剛性が高く、開弁圧の高いハードリーフバルブを採用し、伸側減衰力を大きくする方向の調整幅を大きくしても、ソフトモードでの減衰力が過大にならない。 Further, the extension side damping element of the soft side damping element FS has a soft leaf valve 50, which is a leaf valve having low valve rigidity, in parallel with the orifice 52. For this reason, a hard leaf valve with high valve rigidity and high valve opening pressure is used as the leaf valve that constitutes the extension side damping element of the hard side damping element FH, and the adjustment range in the direction of increasing the extension side damping force is adjusted. Even if it is increased, the damping force in soft mode does not become excessive.
 また、緩衝器Aの伸長時には、伸側室L1の圧力が圧側室L2の圧力よりも高くなり、低圧側となる圧側室L2が低圧優先バルブ6によってタンクTと連通される。このため、緩衝器Aの伸長時には、圧側室L2の圧力がタンク圧になるとともに、シリンダ1から退出したピストンロッド3体積分の液体がタンクTから圧側室L2へと供給される。 Further, when the shock absorber A extends, the pressure in the expansion side chamber L1 becomes higher than the pressure in the compression side chamber L2, and the pressure side chamber L2 on the low pressure side is connected to the tank T by the low pressure priority valve 6. Therefore, when the shock absorber A is extended, the pressure in the compression side chamber L2 becomes the tank pressure, and the liquid corresponding to 3 volumes of the piston rod discharged from the cylinder 1 is supplied from the tank T to the compression side chamber L2.
 反対に、緩衝器Aの収縮時には、ピストンロッド3がシリンダ1内へ侵入してピストン2が圧側室L2を圧縮する。すると、圧側室L2の液体がハード側減衰要素FH又はバイパス路Bのソフト側減衰要素FSを通って伸側室L1へと移動する。当該液体の流れに対しては、ハード側減衰要素FH又はソフト側減衰要素FSによって抵抗が付与されて、その抵抗に起因する圧側減衰力が発生する。そして、この緩衝器Aの収縮時にも、ハード側減衰要素FHとソフト側減衰要素FSを通過する液体の分配比が電磁弁Vへの通電量に応じて変わる。 Conversely, when the shock absorber A contracts, the piston rod 3 enters the cylinder 1 and the piston 2 compresses the pressure side chamber L2. Then, the liquid in the compression side chamber L2 moves to the extension side chamber L1 through the hard side damping element FH or the soft side damping element FS of the bypass passage B. A resistance is applied to the flow of the liquid by the hard damping element FH or the soft damping element FS, and a compression damping force due to the resistance is generated. Then, even when the shock absorber A contracts, the distribution ratio of the liquid passing through the hard side damping element FH and the soft side damping element FS changes according to the amount of energization to the solenoid valve V.
 具体的には、緩衝器Aの収縮時において、液体は、ハード側減衰要素FHの圧側の第一の減衰要素を構成する圧側のハードリーフバルブ21又はオリフィス22、或いは、ソフト側減衰要素FSの圧側の第二の減衰要素を構成する圧側のソフトリーフバルブ51又はオリフィス52を通過する。このように、圧側の第一、第二の減衰要素は、オリフィス22,52と、これに並列されるリーフバルブであるハードリーフバルブ21又はソフトリーフバルブ51とを有して構成される。このため、圧側の減衰力特性は、ピストン速度が低速域にある場合には、オリフィス特有のピストン速度の二乗に比例するオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のピストン速度に比例するバルブ特性となる。 Specifically, when the shock absorber A is contracted, the liquid is the hard side leaf valve 21 or the orifice 22 on the pressure side that constitutes the first damping element on the pressure side of the hard side damping element FH, or the liquid on the soft side damping element FS. It passes through the compression side soft leaf valve 51 or orifice 52 that constitutes the compression side second damping element. As described above, the first and second damping elements on the compression side are configured to include the orifices 22 and 52 and the hard leaf valve 21 or the soft leaf valve 51 which are leaf valves parallel thereto. Therefore, the damping force characteristic on the compression side becomes an orifice characteristic proportional to the square of the piston speed peculiar to the orifice when the piston speed is in the low speed range, and is peculiar to the leaf valve when the piston speed is in the medium and high speed range. The valve characteristics are proportional to the piston speed of.
 そして、電磁弁Vへ供給する電流量を増やして圧側のポート7bの開度を大きくしていくと、ソフト側減衰要素FSの圧側の減衰要素を通過する液体の割合が増えるとともに、ハード側減衰要素FHの圧側の減衰要素を通過する液体の割合が減る。ソフト側減衰要素FSの圧側の減衰要素であるオリフィス52は、ハード側減衰要素FHの圧側の減衰要素であるオリフィス22よりも開口面積の大きい大径オリフィスであるので、ソフト側減衰要素FS側へ向かう形態の割合が増えると、減衰係数が低速域と中高速域の両方で小さくなってピストン速度に対して発生する圧側減衰力が小さくなる。そして、電磁弁Vへ供給する電流量を最大にしたときに、圧側のポート7bが全開となる。すると、減衰係数が最小になってピストン速度に対して発生する圧側減衰力が最小になる。 When the amount of current supplied to the solenoid valve V is increased to increase the opening degree of the pressure side port 7b, the proportion of the liquid passing through the pressure side damping element of the soft side damping element FS increases and the hard side damping element increases. The proportion of liquid passing through the damping element on the pressure side of element FH is reduced. Since the orifice 52, which is the damping element on the compression side of the soft side damping element FS, is a large-diameter orifice having a larger opening area than the orifice 22 which is the damping element on the compression side of the hard side damping element FH, it is moved to the soft side damping element FS side. When the ratio of the heading direction increases, the damping coefficient becomes smaller in both the low speed region and the medium and high speed regions, and the compression side damping force generated with respect to the piston speed becomes smaller. Then, when the amount of current supplied to the solenoid valve V is maximized, the port 7b on the compression side is fully opened. Then, the damping coefficient becomes the minimum, and the compression side damping force generated with respect to the piston speed becomes the minimum.
 また、これとは逆に、電磁弁Vへ供給する電流量を減らして圧側のポート7bの開度を小さくしていくと、ソフト側減衰要素FSの圧側の減衰要素を通過する液体の割合が減るとともに、ハード側減衰要素FHの圧側の減衰要素を通過する液体の割合が増える。すると、減衰係数が低速域と中高速域の両方で大きくなってピストン速度に対して発生する圧側減衰力が大きくなる。そして、電磁弁Vへの通電を断つと、圧側のポート7bが閉塞されて全流量がハード側減衰要素FHを通過するようになる。すると、減衰係数が最大になってピストン速度に対して発生する圧側減衰力が最大となる。 On the contrary, when the amount of current supplied to the solenoid valve V is reduced and the opening degree of the pressure side port 7b is reduced, the proportion of the liquid passing through the pressure side damping element of the soft side damping element FS is reduced. As it decreases, the proportion of liquid passing through the compression side damping element of the hard side damping element FH increases. Then, the damping coefficient increases in both the low speed region and the medium and high speed regions, and the compression side damping force generated with respect to the piston speed increases. When the solenoid valve V is de-energized, the pressure side port 7b is closed and the entire flow rate passes through the hard side damping element FH. Then, the damping coefficient becomes maximum, and the compression side damping force generated with respect to the piston speed becomes maximum.
 このように、ハード側減衰要素FHとソフト側減衰要素FSの圧側の第一、第二の減衰要素を通過する液体の分配比を電磁弁Vで変えると減衰係数が大小し、伸側の減衰力と同様に、圧側の減衰力特性を示す特性線の傾きが変わる。そして、その特性線の傾きを最大にして発生する減衰力を大きくするハードモードと、傾きを最小にして発生する減衰力を小さくするソフトモードとの間で圧側減衰力が調節される。 As described above, when the distribution ratio of the liquid passing through the pressure-side first and second damping elements of the hard-side damping element FH and the soft-side damping element FS is changed by the solenoid valve V, the damping coefficient increases and decreases, and the expansion-side damping increases. Similar to the force, the slope of the characteristic line indicating the damping force characteristic on the compression side changes. Then, the compression side damping force is adjusted between the hard mode in which the inclination of the characteristic line is maximized to increase the damping force generated and the soft mode in which the inclination is minimized to decrease the damping force generated.
 また、伸長時と同様に、収縮時においても、減衰力特性を示す特性線の傾きがソフトモードでは低速域と中高速域の両方で小さくなり、ハードモードでは低速域と中高速域の両方で大きくなるので、減衰力特性がオリフィス特性からバルブ特性へと移行する際の変化がどのモードでも緩やかである。さらに、ソフト側減衰要素FSの圧側の減衰要素も、オリフィス52と並列に、バルブ剛性の低いリーフバルブであるソフトリーフバルブ51を有しているので、ハード側減衰要素FHの圧側の減衰要素を構成するリーフバルブとして、バルブ剛性が高く、開弁圧の高いハードリーフバルブを採用しても、ソフトモードでの減衰力が過大にならない。 In addition, as in the case of expansion, the slope of the characteristic line indicating the damping force characteristic becomes smaller in both the low speed range and the medium and high speed range in the soft mode, and in both the low speed range and the medium and high speed range in the hard mode. As the damping force characteristic changes from the orifice characteristic to the valve characteristic, the change is gentle in any mode. Further, the compression side damping element of the soft side damping element FS also has the soft leaf valve 51, which is a leaf valve having low valve rigidity, in parallel with the orifice 52, so that the compression side damping element of the hard side damping element FH is Even if a hard leaf valve with high valve rigidity and high opening pressure is adopted as the leaf valve to be configured, the damping force in the soft mode does not become excessive.
 以下に、本発明の一実施の形態に係る緩衝器Aの作用効果について説明する。 The action and effect of the shock absorber A according to the embodiment of the present invention will be described below.
 本実施の形態に係る緩衝器Aは、シリンダ1と、このシリンダ1内に軸方向へ移動可能に挿入されてシリンダ1内を伸側室L1と圧側室L2とに区画するピストン2と、このピストン2に連結されるとともに一端がシリンダ1外へと突出するピストンロッド3と、低圧優先バルブ6によって伸側室L1と圧側室L2のうちの低圧側に接続されるタンクTとを備えている。 The shock absorber A according to the present embodiment includes a cylinder 1, a piston 2 that is movably inserted in the cylinder 1 in the axial direction and divides the inside of the cylinder 1 into an extension side chamber L1 and a compression side chamber L2, and this piston. It includes a piston rod 3 which is connected to 2 and one end of which protrudes to the outside of the cylinder 1, and a tank T which is connected to the low pressure side of the extension side chamber L1 and the compression side chamber L2 by a low pressure priority valve 6.
 さらに、上記緩衝器Aは、伸側室L1と圧側室L2との間を移動する液体の流れに抵抗を与えるハード側減衰要素FHと、これを迂回して伸側室L1と圧側室L2とを連通するバイパス路Bの開口面積を変更可能な電磁弁Vと、バイパス路Bに電磁弁Vと直列に設けられるソフト側減衰要素FSとを備えている。そして、ハード側減衰要素FHが、オリフィス22と、これに並列に設けられるリーフバルブである伸側と圧側のハードリーフバルブ20,21とを有して構成されている。その一方、ソフト側減衰要素FSが、オリフィス22よりも開口面積の大きいオリフィス(大径オリフィス)52を有して構成されている。 Further, the shock absorber A communicates between the extension side chamber L1 and the compression side chamber L2 by bypassing the hard side damping element FH that gives resistance to the flow of the liquid moving between the extension side chamber L1 and the compression side chamber L2. The bypass valve B includes a solenoid valve V capable of changing the opening area of the bypass passage B, and a soft side damping element FS provided in the bypass passage B in series with the solenoid valve V. The hard side damping element FH includes an orifice 22 and hard leaf valves 20 and 21 on the extension side and the compression side, which are leaf valves provided in parallel with the orifice 22. On the other hand, the soft side damping element FS is configured to have an orifice (large diameter orifice) 52 having an opening area larger than that of the orifice 22.
 上記構成によれば、緩衝器Aの伸縮時に発生する減衰力の特性は、ピストン速度が低速域にある場合には、オリフィス特有のオリフィス特性となり、ピストン速度が中高速域にある場合には、リーフバルブ特有のバルブ特性となる。そして、電磁弁Vでバイパス路Bの開口面積を変更すれば、緩衝器Aの伸縮時に伸側室L1と圧側室L2との間を移動する液体のうち、ハード側減衰要素FHとソフト側減衰要素FSを通過する液体の流量の分配比が変わるので、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方を自由に設定できて、ピストン速度が中高速域にある場合の減衰力の調整幅を大きくできる。 According to the above-mentioned configuration, the characteristic of the damping force generated when the shock absorber A expands and contracts has an orifice characteristic peculiar to the orifice when the piston speed is in the low speed range, and when the piston speed is in the medium to high speed range, The valve characteristics are peculiar to leaf valves. If the opening area of the bypass passage B is changed by the solenoid valve V, the hard-side damping element FH and the soft-side damping element of the liquid that moves between the expansion side chamber L1 and the compression side chamber L2 when the shock absorber A expands and contracts. Since the distribution ratio of the flow rate of the liquid passing through the FS changes, it is possible to freely set both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the middle and high speed ranges, and The adjustment range of the damping force when in the range can be increased.
 さらに、バイパス路Bの開口面積を変更してソフト側減衰要素FSへ向かう液体の分配比率を大きくするソフトモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が小さくなる。その一方、ソフト側減衰要素FSへ向かう液体の分配比率を小さくするハードモードでは、ピストン速度が低速域にある場合の減衰係数と、中高速域にある場合の減衰係数の両方が大きくなる。このため、減衰力の特性が低速域でのオリフィス特性から中高速域でのバルブ特性へ変化する際に、その特性線の傾きの変化は、どのモードにおいても緩やかになる。これにより、本実施の形態に係る緩衝器Aを車両に搭載した場合には、上記傾きの変化に起因する違和感を軽減し、車両の乗り心地を良好にできる。 Further, in the soft mode in which the opening area of the bypass path B is changed to increase the distribution ratio of the liquid toward the soft side damping element FS, the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range. Both damping factors are small. On the other hand, in the hard mode in which the distribution ratio of the liquid toward the soft damping element FS is reduced, both the damping coefficient when the piston speed is in the low speed range and the damping coefficient when the piston speed is in the medium and high speed range are large. Therefore, when the damping force characteristic changes from the orifice characteristic in the low speed region to the valve characteristic in the medium and high speed region, the change in the slope of the characteristic line becomes gentle in any mode. As a result, when the shock absorber A according to the present embodiment is mounted on the vehicle, the discomfort caused by the change in inclination can be reduced and the riding comfort of the vehicle can be improved.
 また、本実施の形態の緩衝器Aでは、ソフト側減衰要素が上記オリフィス(大径オリフィス)52と、このオリフィス52と並列に設けられるリーフバルブである伸側と圧側のソフトリーフバルブ50,51とを有して構成されている。このように、ソフト側減衰要素FSにもリーフバルブを設けると、ハード側減衰要素FHのリーフバルブであるハードリーフバルブ20,21をバルブ剛性が高く、開弁圧の高いバルブにしても、ソフトモードでの減衰力が過大にならない。つまり、上記構成によれば、ハード側減衰要素のリーフバルブであるハードリーフバルブ20,21として、バルブ剛性の高いバルブを採用できる。そして、そのようにすると、減衰力を大きくする方向へ減衰力の調整幅が大きくなるので、ピストン速度が中高速域にある場合の減衰力の調整幅を一層大きくできる。 Further, in the shock absorber A of the present embodiment, the soft side damping element is the orifice (large diameter orifice) 52 and the extension side and compression side soft leaf valves 50, 51 which are leaf valves provided in parallel with the orifice 52. And is configured. In this way, if the soft-side damping element FS is also provided with a leaf valve, even if the hard leaf valves 20 and 21 which are the leaf valves of the hard-side damping element FH have high valve rigidity and high valve opening pressure, they are soft. The damping force in the mode does not become excessive. That is, according to the above configuration, valves having high valve rigidity can be adopted as the hard leaf valves 20 and 21 which are leaf valves of the hard side damping element. Then, since the adjustment range of the damping force increases in the direction of increasing the damping force, the adjustment range of the damping force can be further increased when the piston speed is in the middle and high speed range.
 さらに、本実施の形態では、ハード側減衰要素FHのリーフバルブとして、伸側室L1から圧側室L2へ向かう液体の流れに抵抗を与える伸側のハードリーフバルブ20と、圧側室L2から伸側室L1へ向かう液体の流れに抵抗を与える圧側のハードリーフバルブ21が設けられている。また、ソフト側減衰要素FSのリーフバルブとして、バイパス路Bを伸側室L1から圧側室L2へ向かう液体の流れに抵抗を与える伸側のソフトリーフバルブ50と、バイパス路Bを圧側室L2から伸側室L1へ向かう液体の流れに抵抗を与える圧側のソフトリーフバルブ51が設けられている。これにより、緩衝器Aの伸長時と収縮時の両方で、減衰力を大きくする方向へ減衰力の調整幅が大きくなるので、ピストン速度が中高速域にある場合の伸圧両側の減衰力の調整幅を一層大きくできる。 Further, in the present embodiment, as the leaf valve of the hard side damping element FH, the extension side hard leaf valve 20 that gives resistance to the flow of the liquid from the extension side chamber L1 to the compression side chamber L2, and the extension side chamber L2 to the extension side chamber L1 A hard leaf valve 21 on the compression side that resists the flow of liquid toward is provided. Further, as the leaf valve of the soft side damping element FS, the bypass path B is extended from the extension side chamber L1 to the extension side soft leaf valve 50 that resists the flow of the liquid toward the compression side chamber L2, and the bypass path B is extended from the compression side chamber L2. A soft leaf valve 51 on the compression side that resists the flow of liquid toward the concubine L1 is provided. As a result, the adjustment range of the damping force increases in the direction of increasing the damping force both during expansion and contraction of the shock absorber A, so that the damping force on both sides of the extension when the piston speed is in the medium-high speed range The adjustment range can be further increased.
 また、本実施の形態において、電磁弁Vは、バイパス路Bに接続される伸側と圧側のポート7a,7bが形成される筒状のホルダ7と、このホルダ7内に移動可能に挿入されて伸側と圧側のポート7a,7bを開閉可能なスプール8と、このスプール8の移動方向の一方へスプール8を付勢する付勢ばね80と、この付勢ばね80の付勢力と反対方向の推力をスプール8に与えるソレノイド9とを有する。 Further, in the present embodiment, the solenoid valve V is a cylindrical holder 7 in which the expansion-side and pressure- side ports 7a and 7b connected to the bypass B are formed, and is movably inserted into the holder 7. The spool 8 capable of opening and closing the expansion side and compression side ports 7a, 7b, a biasing spring 80 for biasing the spool 8 in one of the moving directions of the spool 8, and a direction opposite to the biasing force of the biasing spring 80. And a solenoid 9 that applies the thrust of
 ここで、例えば、JP2010-7758Aに記載の電磁弁のように、弁体として往復動可能なニードルバルブを有し、そのニードルバルブの尖端と弁座との間にできる隙間を大小させて開度を変更する場合、開度の調整幅を大きくするには弁体のストローク量を大きくする必要があるが、そのようにはできない場合がある。 Here, for example, like the solenoid valve described in JP2010-7758A, a needle valve that can reciprocate as a valve body is provided, and the opening degree is increased or decreased by increasing or decreasing the gap formed between the tip of the needle valve and the valve seat. When changing, the stroke amount of the valve element must be increased in order to increase the adjustment range of the opening, but this may not be possible.
 具体的には、ニードルバルブのストローク量を大きくすると、そのニードルバルブの可動スペースが大きくなって収容スペースの確保が難しくなる。また、ニードルバルブのストローク量を大きくするため、ソレノイドのプランジャのストローク量を大きくしようとすると、ソレノイドの設計変更が必要になって煩雑である。さらには、ソレノイドの設計変更をせずにニードルバルブのストローク量を大きくしようとすると、プランジャの移動量に対するニードルバルブの移動量を大きくするための部品が必要になって部品数が増えるとともに収容スペースを確保するのが難しくなる。 Specifically, if the stroke amount of the needle valve is increased, the movable space of the needle valve increases and it becomes difficult to secure the accommodation space. Further, if the stroke amount of the solenoid plunger is increased in order to increase the stroke amount of the needle valve, the solenoid design must be changed, which is complicated. Furthermore, if it is attempted to increase the stroke of the needle valve without changing the design of the solenoid, parts are needed to increase the travel of the needle valve relative to the travel of the plunger, increasing the number of parts and accommodating space. It becomes difficult to secure.
 これに対して、本実施の形態の電磁弁Vでは、筒状のホルダ7内に往復動可能に挿入されるスプール8で、ホルダ7に形成された伸側と圧側のポート7a,7bを開閉し、これにより電磁弁Vが開閉するようになっている。このため、各ポート7a,7bをホルダ7の周方向に複数形成したり、周方向に長い形状にしたりすれば、電磁弁Vの弁体であるスプール8のストローク量を大きくしなくても電磁弁Vの開度を大きくできる。よって、電磁弁Vの開度の調整幅を大きくして、減衰力の調整幅を容易に大きくできる。 On the other hand, in the solenoid valve V of the present embodiment, the spool 8 reciprocally inserted into the tubular holder 7 opens and closes the extension side and compression side ports 7a and 7b formed in the holder 7. However, this allows the solenoid valve V to open and close. For this reason, if a plurality of ports 7a and 7b are formed in the circumferential direction of the holder 7 or have a shape that is long in the circumferential direction, the electromagnetic force can be increased without increasing the stroke amount of the spool 8 that is the valve body of the electromagnetic valve V. The opening degree of the valve V can be increased. Therefore, the adjustment range of the opening degree of the solenoid valve V can be increased, and the adjustment range of the damping force can be easily increased.
 さらに、本実施の形態では、電磁弁Vのポートとして、伸側室L1から圧側室L2へ向かう液体の一方向流れが許容される伸側のポート7aと、圧側室L2から伸側室L1へ向かう液体の一方向流れが許容される圧側のポート7bが設けられている。そして、本実施の形態の電磁弁Vでは、通電量を大きくするほど圧側のポート7bの開度が大きくなり、伸側のポート7aの開度が小さくなるように設定されている。このため、伸側減衰力が大きくなるように調節すると自動的に圧側減衰力が小さくなって、車高を下げるほうへ誘導できる。反対に、圧側減衰力が大きくなるように調節すると自動的に伸側減衰力が小さくなって、車高を上げる方向へ誘導できる。 Further, in the present embodiment, as the ports of the solenoid valve V, the extension side port 7a where the unidirectional flow of the liquid from the extension side chamber L1 to the compression side chamber L2 is allowed, and the liquid from the compression side chamber L2 to the extension side chamber L1. The port 7b on the pressure side that allows the unidirectional flow is provided. In the solenoid valve V of the present embodiment, the opening degree of the pressure side port 7b increases and the opening degree of the extension side port 7a decreases as the energization amount increases. For this reason, when the extension side damping force is adjusted to be large, the compression side damping force is automatically reduced, and the vehicle height can be reduced. On the contrary, if the compression side damping force is adjusted to be large, the extension side damping force is automatically reduced and the vehicle height can be increased.
 しかし、電磁弁Vへの通電量をゼロから大きくするほど伸側減衰力を大きく、圧側減衰力を小さくしてもよく、このようにする場合には、非通電時に伸側のポート7aを全閉に、圧側のポート7bを全開にするように各ポート7a,7b、又は各ポート7a,7bを開くための環状溝8b,8dを配置すればよい。さらには、電磁弁Vへの通電量を大きくするほど伸圧両側の減衰力を大きくしてもよい。 However, the expansion side damping force may be increased and the compression side damping force may be decreased as the energization amount to the solenoid valve V is increased from zero. In such a case, all ports 7a on the expansion side are not energized. For closing, the ports 7a and 7b or the annular grooves 8b and 8d for opening the ports 7a and 7b may be arranged so as to fully open the port 7b on the compression side. Further, the damping force on both sides of the expansion pressure may be increased as the amount of electricity supplied to the solenoid valve V is increased.
 このような場合には、図6に示す電磁弁V1のように、ホルダに形成されるポートを液体の双方向流の許容されたポート7cにすればよい。そして、当該構成によれば、伸側バルブシート70、圧側バルブシート72、伸側チェックバルブ71、圧側チェックバルブ73を省略できるので、電磁弁V1の構成を簡易且つ小型にできる。なお、図6に示す電磁弁V1では、通電量を大きくしていくと、ポート7cの開度が大きくなるように設定されているが、電磁弁V1は、通電量を大きくしていくと、ポート7cの開度が小さくなるように設定されていてもよい。 In such a case, like the solenoid valve V1 shown in FIG. 6, the port formed in the holder may be the port 7c that allows the bidirectional flow of the liquid. And according to the said structure, since the expansion side valve seat 70, the compression side valve seat 72, the expansion side check valve 71, and the compression side check valve 73 can be omitted, the structure of the solenoid valve V1 can be simplified and miniaturized. The solenoid valve V1 shown in FIG. 6 is set so that the opening degree of the port 7c increases as the energization amount increases, but the solenoid valve V1 increases as the energization amount increases. The opening of the port 7c may be set to be small.
 また、上記したように、ホルダ7、スプール8、付勢ばね80、及びソレノイド9を有して構成される電磁弁V,V1を利用した場合、ポートと、そのポートを開閉する環状溝等との位置関係に応じてその電磁弁の開度と通電量との関係を設定できる。このため、上記構成によれば、電磁弁の開度と通電量との関係の設定自由度を極めて高くできる。 Further, as described above, when the solenoid valves V, V1 including the holder 7, the spool 8, the biasing spring 80, and the solenoid 9 are used, a port and an annular groove for opening and closing the port are provided. The relationship between the opening degree of the solenoid valve and the amount of energization can be set according to the positional relationship of. Therefore, according to the above configuration, the degree of freedom in setting the relationship between the opening degree of the solenoid valve and the amount of energization can be extremely increased.
 なお、図1,6に示す緩衝器A,A1では、伸圧両側の減衰力を発揮するとともに、伸圧両側の減衰力を電磁弁V,V1で調節できるようになっている。しかし、ハード側減衰要素FHの伸側と圧側のハードリーフバルブ20,21の一方と、ソフト側減衰要素FSの伸側と圧側のソフトリーフバルブ50,51の一方又は両方を省略してもよく、緩衝器A,A1を伸長時と収縮時の何れか一方でのみ減衰力を発揮する片効きの緩衝器にしたり、伸側又は圧側の何れか一方の減衰力のみを電磁弁V,V1で調節したりしてもよい。 In addition, the shock absorbers A and A1 shown in FIGS. 1 and 6 exhibit damping forces on both sides of compression and can be adjusted by solenoid valves V and V1. However, one of the extension side and compression side hard leaf valves 20 and 21 of the hard side damping element FH and one or both of the extension side and compression side soft leaf valves 50 and 51 of the soft side damping element FS may be omitted. , The shock absorbers A and A1 can be used as a one-sided shock absorber that exerts a damping force only at the time of extension or contraction, or the damping force of either the extension side or the compression side can be used by the solenoid valves V and V1. You may adjust it.
 また、本実施の形態では、スプール8と低圧優先バルブ6は、有底筒状のハウジング4の中心軸Yに沿って移動する。ハウジング4は、その中心軸Yがピストンロッド3の中心を通る中心軸Xに直交する直線Z(図1)に沿うように配置されるので、スプール8と低圧優先バルブ6は、その直線Zに沿って移動するともいえる。 Further, in the present embodiment, the spool 8 and the low pressure priority valve 6 move along the central axis Y of the bottomed cylindrical housing 4. Since the housing 4 is arranged so that its central axis Y is along a straight line Z (FIG. 1) orthogonal to the central axis X passing through the center of the piston rod 3, the spool 8 and the low pressure priority valve 6 are aligned with the straight line Z. It can be said to move along.
 上記構成によれば、緩衝器Aの伸縮方向と直交する方向へスプール8と低圧優先バルブ6とが移動し、その移動方向が車両の振動方向とが一致しない。このため、車両走行時の振動によりスプール8及び低圧優先バルブ6をその移動方向へ加振せずに済む。しかし、スプール8と低圧優先バルブ6の移動方向は、必ずしもその限りではない。 According to the above configuration, the spool 8 and the low pressure priority valve 6 move in a direction orthogonal to the expansion / contraction direction of the shock absorber A, and the moving direction does not match the vibration direction of the vehicle. Therefore, it is not necessary to vibrate the spool 8 and the low-pressure priority valve 6 in the moving direction due to vibration during vehicle travel. However, the moving directions of the spool 8 and the low pressure priority valve 6 are not necessarily limited to this.
 また、本実施の形態の緩衝器Aは、ハウジング4と、このハウジング4内に設けられて内部にソフト側減衰要素FSを収容するサブシリンダ41とを備えている。そして、低圧優先バルブ6がハウジング4とサブシリンダ41との間に設けられている。 Further, the shock absorber A of the present embodiment includes a housing 4 and a sub-cylinder 41 provided in the housing 4 and accommodating the soft side damping element FS inside. A low-pressure priority valve 6 is provided between the housing 4 and the sub-cylinder 41.
 上記構成によれば、ソフト側減衰要素FS、電磁弁V、並びに低圧優先バルブ6を収容するハウジング4の軸方向長さが長くなるのを防止できる。このため、スプール8と低圧優先バルブ6の移動方向が車両の振動方向と一致しないようにハウジング4を配置したとしても、緩衝器Aの図1中左右の幅が嵩張らず、緩衝器Aの車両への搭載性を良好にできる。 According to the above configuration, it is possible to prevent the axial length of the housing 4 that houses the soft side damping element FS, the solenoid valve V, and the low pressure priority valve 6 from increasing. Therefore, even if the housing 4 is arranged so that the moving directions of the spool 8 and the low pressure priority valve 6 do not match the vibration direction of the vehicle, the left and right widths of the shock absorber A in FIG. 1 are not bulky, and the vehicle of the shock absorber A Can be mounted on the vehicle well.
 さらに、本実施の形態では、ハウジング4がシリンダ1と一体化されている。ここでいう、シリンダ1とハウジング4が一体化された状態とは、緩衝器Aを単体で取り扱う際にハウジング4がシリンダ1に対して自由に動かないように固定されていて、これらを一つ(一体)の部材の如く取り扱い可能な状態をいう。 Further, in the present embodiment, the housing 4 is integrated with the cylinder 1. Here, the state where the cylinder 1 and the housing 4 are integrated means that the housing 4 is fixed so as not to move freely with respect to the cylinder 1 when the shock absorber A is handled as a single unit. A state in which it can be handled like an (integral) member.
 上記構成によれば、エンドキャップ11等のハウジング4とシリンダ1とを連結する部分に形成される孔を利用してハウジング4内とシリンダ1内とを連通できる。このため、ハウジング4とシリンダ1とをホースで接続する必要がなく、液体がホースを通過する際の抵抗によって意図しない減衰力が生じるのを防止できる。さらには、ホースを省略できるのでコストを低減できる。 According to the above configuration, the inside of the housing 4 and the inside of the cylinder 1 can be communicated with each other by utilizing the holes formed in the portion connecting the housing 4 and the cylinder 1 such as the end cap 11. Therefore, it is not necessary to connect the housing 4 and the cylinder 1 with a hose, and it is possible to prevent an unintended damping force from being generated due to the resistance when the liquid passes through the hose. Furthermore, since the hose can be omitted, the cost can be reduced.
 しかし、ハウジング4を含む減衰力調整部の取付方法は適宜変更できる。例えば、ハウジング4とシリンダ1とをホースで接続してもよい。また、本実施の形態では、ハウジング4とタンクTとをホースで接続しているが、タンクTとハウジング4を一体化してもよい。そして、このような場合には、ハウジング4、エンドキャップ11、車体側のブラケット12、及びタンクTを一体成形してもよい。 However, the mounting method of the damping force adjusting unit including the housing 4 can be changed as appropriate. For example, the housing 4 and the cylinder 1 may be connected by a hose. Further, in the present embodiment, the housing 4 and the tank T are connected by a hose, but the tank T and the housing 4 may be integrated. In such a case, the housing 4, the end cap 11, the vehicle body side bracket 12, and the tank T may be integrally formed.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、及び変更が可能である。本願は、2019年3月4日に日本国特許庁に出願された特願2019-038128に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The preferred embodiments of the present invention have been described above in detail, but modifications, variations, and changes can be made without departing from the scope of the claims. This application claims priority based on Japanese Patent Application No. 2019-038128 filed with the Japan Patent Office on Mar. 4, 2019, the entire contents of which are incorporated herein by reference.
A,A1・・・緩衝器、B・・・バイパス路、L1・・・伸側室、L2・・・圧側室、FH・・・ハード側減衰要素、FS・・・ソフト側減衰要素、T・・・タンク、V,V1・・・電磁弁、X・・・中心線、Z・・・直線、1・・・シリンダ、2・・・ピストン、3・・・ピストンロッド、4・・・ハウジング、5a・・・伸側ソフト通路、5b・・・圧側ソフト通路、6・・・・・・低圧優先バルブ、7・・・ホルダ、7a,7b,7c・・・ポート、8・・・スプール、9・・・ソレノイド、20・・・伸側のハードリーフバルブ(リーフバルブ)、21・・・圧側のハードリーフバルブ(リーフバルブ)、22・・・オリフィス、41・・・サブシリンダ、50・・・伸側のソフトリーフバルブ(リーフバルブ)、51・・・圧側のソフトリーフバルブ(リーフバルブ)、52・・・オリフィス(大径オリフィス)、80・・・付勢ばね
 
A, A1 ... shock absorber, B ... bypass path, L1 ... extension side chamber, L2 ... compression side chamber, FH ... hard side damping element, FS ... soft side damping element, T. ... Tank, V, V1 ... Solenoid valve, X ... Center line, Z ... Straight line, 1 ... Cylinder, 2 ... Piston, 3 ... Piston rod, 4 ... Housing 5, 5a ... extension side soft passage, 5b ... compression side soft passage, 6 ... low pressure priority valve, 7 ... holder, 7a, 7b, 7c ... port, 8 ... spool , 9 ... solenoid, 20 ... extension side hard leaf valve (leaf valve), 21 ... compression side hard leaf valve (leaf valve), 22 ... orifice, 41 ... sub cylinder, 50 ... extension side soft leaf valve (leaf valve), 51 ... compression side soft leaf valve (leaf valve), 52 ... orifice (large diameter orifice), 80 ... urging spring

Claims (9)

  1.  緩衝器であって、
     シリンダと、
     前記シリンダ内に軸方向へ移動可能に挿入されて前記シリンダ内を伸側室と圧側室とに区画するピストンと、
     前記ピストンに連結されるとともに一端が前記シリンダ外へと突出するピストンロッドと、
     前記伸側室と前記圧側室との間を移動する液体の流れに抵抗を与えるハード側減衰要素と、
     前記ハード側減衰要素を迂回して前記伸側室と前記圧側室とを連通するバイパス路の開口面積を変更可能な電磁弁と、
     前記バイパス路に前記電磁弁と直列に設けられるソフト側減衰要素と、
     低圧優先バルブによって前記伸側室と前記圧側室のうちの低圧側に接続されるタンクとを備え、
     前記ハード側減衰要素は、オリフィスと、前記オリフィスと並列に設けられるリーフバルブとを有して構成されており、
     前記ソフト側減衰要素は、前記オリフィスよりも開口面積の大きい大径オリフィスを有して構成されている
     緩衝器。
    It ’s a shock absorber,
    Cylinder and
    A piston that is movably inserted in the cylinder in the axial direction to partition the inside of the cylinder into an expansion side chamber and a compression side chamber,
    A piston rod that is connected to the piston and one end of which protrudes out of the cylinder.
    A hard damping element that provides resistance to the flow of liquid moving between the expansion side chamber and the compression side chamber;
    A solenoid valve capable of changing the opening area of a bypass path that bypasses the hard side damping element and communicates the extension side chamber and the compression side chamber.
    A soft side damping element provided in series with the solenoid valve in the bypass path,
    A tank connected to the extension side chamber and the low pressure side of the compression side chamber by a low pressure priority valve is provided.
    The hard-side damping element is configured to have an orifice and a leaf valve provided in parallel with the orifice,
    The soft-side damping element has a large-diameter orifice having an opening area larger than that of the orifice.
  2.  請求項1に記載の緩衝器であって、
     前記ソフト側減衰要素は、前記大径オリフィスと並列に設けられるリーフバルブを有して構成されている
     緩衝器。
    The shock absorber according to claim 1.
    The soft side damping element is a shock absorber having a leaf valve provided in parallel with the large diameter orifice.
  3.  請求項1に記載の緩衝器であって、
     前記電磁弁は、前記バイパス路に接続されるポートが形成される筒状のホルダと、前記ホルダ内に移動可能に挿入されて前記ポートを開閉可能なスプールと、前記スプールの移動方向の一方へ前記スプールを付勢する付勢ばねと、前記付勢ばねの付勢力と反対方向の推力を前記スプールに与えるソレノイドとを有する
     緩衝器。
    The shock absorber according to claim 1.
    The solenoid valve is provided in one of a tubular holder in which a port connected to the bypass path is formed, a spool that is movably inserted into the holder and can open and close the port, and a spool in the moving direction. A shock absorber, comprising: a biasing spring that biases the spool; and a solenoid that applies a thrust in a direction opposite to the biasing force of the biasing spring to the spool.
  4.  請求項2に記載の緩衝器であって、
     前記ハード側減衰要素の前記リーフバルブとして、前記伸側室から前記圧側室へ向かう液体の流れに抵抗を与える伸側のハードリーフバルブと、前記圧側室から前記伸側室へ向かう液体の流れに抵抗を与える圧側のハードリーフバルブが設けられ、
     前記ソフト側減衰要素の前記リーフバルブとして、前記バイパス路を前記伸側室から前記圧側室へ向かう液体の流れに抵抗を与える伸側のソフトリーフバルブと、前記バイパス路を前記圧側室から前記伸側室へ向かう液体の流れに抵抗を与える圧側のソフトリーフバルブが設けられている
     緩衝器。
    The shock absorber according to claim 2, wherein
    As the leaf valve of the hard side damping element, a hard leaf valve on the extension side that gives resistance to the flow of liquid from the extension side chamber to the compression side chamber and a resistance to the flow of liquid from the compression side chamber to the extension side chamber. A hard leaf valve on the pressure side to give is provided,
    As the leaf valve of the soft-side damping element, an expansion-side soft leaf valve that gives resistance to the flow of liquid from the expansion-side chamber to the compression-side chamber in the bypass path, and the bypass path from the compression-side chamber to the expansion-side chamber A shock absorber equipped with a soft leaf valve on the compression side that resists the flow of liquid toward.
  5.  請求項3に記載の緩衝器であって、
     前記ポートとして、前記伸側室から前記圧側室へ向かう液体の一方向流れが許容される伸側のポートと、前記圧側室から前記伸側室へ向かう液体の一方向流れが許容される圧側のポートが設けられ、
     前記電磁弁への通電量を大きくしていくと、前記伸側のポートと前記圧側のポートのうちの一方のポートの開度が大きくなり、他方のポートの開度が小さくなる
     緩衝器。
    The shock absorber according to claim 3, wherein
    The ports include an extension port that allows one-way flow of liquid from the extension chamber to the compression side chamber and a compression side port that allows one-way flow of liquid from the compression side chamber to the extension chamber. Provided,
    A shock absorber in which the opening degree of one of the extension side port and the compression side port increases and the opening degree of the other port decreases as the amount of energization to the solenoid valve increases.
  6.  請求項3に記載の緩衝器であって、
     前記ポートは、液体の双方向流れが許容されている
     緩衝器。
    The shock absorber according to claim 3, wherein
    The port allows bidirectional flow of liquid.
  7.  請求項3に記載の緩衝器であって、
     前記スプールと前記低圧優先バルブは、前記ピストンロッドの中心を通る中心軸に直交する直線に沿って移動する
     緩衝器。
    The shock absorber according to claim 3, wherein
    The spool and the low pressure priority valve are shock absorbers that move along a straight line that passes through the center of the piston rod and is orthogonal to the central axis.
  8.  請求項1から7のいずれか一項に記載の緩衝器であって、
     ハウジングと、
     前記ハウジング内に設けられて内部に前記ソフト側減衰要素を収容するサブシリンダとを備え、
     前記低圧優先バルブは、前記ハウジングと前記サブシリンダとの間に設けられている
     緩衝器。
    The shock absorber according to any one of claims 1 to 7.
    Housing,
    A sub-cylinder provided in the housing and accommodating the soft side damping element is provided inside.
    The low pressure priority valve is a shock absorber provided between the housing and the sub cylinder.
  9.  請求項8に記載の緩衝器であって、
     前記ハウジングは、前記シリンダと一体化されている
     緩衝器。
     
    The shock absorber according to claim 8, wherein
    A shock absorber in which the housing is integrated with the cylinder.
PCT/JP2020/008378 2019-03-04 2020-02-28 Shock absorber WO2020179682A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019038128A JP2020143682A (en) 2019-03-04 2019-03-04 Damper
JP2019-038128 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179682A1 true WO2020179682A1 (en) 2020-09-10

Family

ID=72337795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008378 WO2020179682A1 (en) 2019-03-04 2020-02-28 Shock absorber

Country Status (2)

Country Link
JP (1) JP2020143682A (en)
WO (1) WO2020179682A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036436A1 (en) * 2021-02-01 2022-08-03 Fox Factory, Inc. Three-port adjuster

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022147806A (en) * 2021-03-23 2022-10-06 Kyb株式会社 Fluid shock absorber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185687A (en) * 2013-03-22 2014-10-02 Kayaba Ind Co Ltd Shock absorber
JP2017002983A (en) * 2015-06-10 2017-01-05 Kyb株式会社 Buffer
JP2018004023A (en) * 2016-07-07 2018-01-11 Kyb株式会社 Damping valve and damper

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185687A (en) * 2013-03-22 2014-10-02 Kayaba Ind Co Ltd Shock absorber
JP2017002983A (en) * 2015-06-10 2017-01-05 Kyb株式会社 Buffer
JP2018004023A (en) * 2016-07-07 2018-01-11 Kyb株式会社 Damping valve and damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4036436A1 (en) * 2021-02-01 2022-08-03 Fox Factory, Inc. Three-port adjuster

Also Published As

Publication number Publication date
JP2020143682A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
CN108626294B (en) Vehicle shock absorber and control method thereof
KR101454050B1 (en) Shock absorber having a continuously variable valve with base line valving
US8794405B2 (en) Damping force control type shock absorber
JP4729512B2 (en) Variable damping force type valve and shock absorber using the same
CN100567764C (en) Damping force variable shock absorber
US9550545B2 (en) Shock absorber
WO2020179676A1 (en) Shock absorber
WO2020179682A1 (en) Shock absorber
WO2020179684A1 (en) Shock absorber
CN113474587B (en) Buffer device
JPH08207545A (en) Self pumping type shock absorber
WO2020179683A1 (en) Shock absorber
JP4868130B2 (en) Hydraulic shock absorber
JP2003194133A (en) Damping-force-adjustable hydraulic shock absorber
WO2020179680A1 (en) Damper
JP2004340174A (en) Pneumatic shock absorber
WO2020179675A1 (en) Solenoid valve and buffer
WO2020179679A1 (en) Shock damper
WO2020179677A1 (en) Spool valve and shock damper
JP2019158001A (en) Valve device and shock absorber
WO2004111488A1 (en) Hydraulic shock-absorbing device for motor vehicle
WO2020179681A1 (en) Damper
JPH07149134A (en) Suspension for four-wheel vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767011

Country of ref document: EP

Kind code of ref document: A1