JPH0122068B2 - - Google Patents

Info

Publication number
JPH0122068B2
JPH0122068B2 JP57023645A JP2364582A JPH0122068B2 JP H0122068 B2 JPH0122068 B2 JP H0122068B2 JP 57023645 A JP57023645 A JP 57023645A JP 2364582 A JP2364582 A JP 2364582A JP H0122068 B2 JPH0122068 B2 JP H0122068B2
Authority
JP
Japan
Prior art keywords
welding
cooling
pipe
welded
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57023645A
Other languages
Japanese (ja)
Other versions
JPS58141852A (en
Inventor
Masayuki Moryama
Hiroshi Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2364582A priority Critical patent/JPS58141852A/en
Publication of JPS58141852A publication Critical patent/JPS58141852A/en
Publication of JPH0122068B2 publication Critical patent/JPH0122068B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 本発明は、溶接時に被溶接材を冷却する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling materials to be welded during welding.

管と管とを継ぎ合わせるのに溶接が行なわれ
る。この場合において直管どうしを溶接するには
第1図のように行なわれる。直管1どうしを突き
合せて該直管1の軸心を中心として直管1を回転
させる。そして溶接トーチ2を上から下向きに設
置して直管1の全周に亘つて設けられた開先3の
部分を溶接する。このような溶接では直管1が回
転するので、冷却を必要とする材料の場合には図
のように下方から直管1に向けてノズル4で放水
すれば直管1自体が回転するため直管1の全周が
冷却されることとなる。
Welding is used to join pipes together. In this case, the straight pipes are welded together as shown in FIG. The straight pipes 1 are butted against each other and the straight pipes 1 are rotated around the axis of the straight pipes 1. Then, the welding torch 2 is installed downward from above to weld the groove 3 provided around the entire circumference of the straight pipe 1. In this type of welding, the straight pipe 1 rotates, so if the material requires cooling, you can spray water from below toward the straight pipe 1 with the nozzle 4 as shown in the figure, and the straight pipe 1 itself will rotate. The entire circumference of the tube 1 will be cooled.

これに対し管が曲がつており、この曲管を回転
させながら溶接するのが困難な場合には、曲管を
固定してこの曲管のまわりに溶接トーチを回転さ
せる所謂全姿勢溶接が行なわれる。
On the other hand, if the pipe is curved and it is difficult to weld while rotating the curved pipe, so-called all-position welding is performed in which the curved pipe is fixed and the welding torch is rotated around the curved pipe. It will be done.

従来の全姿勢溶接用溶接装置の正面図、側面図
を夫々第2図,第3図に示す。ヘツドクランプハ
ンドル6を回すことにより溶接ヘツド7が回転可
能に曲管8に装着される。溶接トーチ9から曲管
8に向かつてアークを飛ばすとともにワイヤリー
ル10からワイヤ送給モータ11の駆動力により
ワイヤケーブル14′及びワイヤガイドチツプ1
3を通して溶接ワイヤ14を供給する。このよう
に溶接しながら図示しない駆動モータにより溶接
トーチ9を具える溶接ヘツド7が曲管8のまわり
を1回転すると1パス溶接が終了する。このとき
前記ワイヤケーブル14′、電気を供給するパワ
ーケーブル12、不活性ガスを供給するガスケー
ブル15が第4図,第5図に示すように曲管8に
巻き付いてしまう。それゆえ1パス溶接終了毎
に、アークを止めた状態で溶接ヘツド7を前記溶
接時とは逆方向に回転させワイヤケーブル14′、
パワーケーブル12、ガスケーブル15を解放し
ている。以上のように溶接ヘツド7の曲管8まわ
りの正転、逆転を繰り返すことにより全パス溶接
が完了する。
A front view and a side view of a conventional welding device for all-position welding are shown in FIGS. 2 and 3, respectively. By turning the head clamp handle 6, the welding head 7 is rotatably attached to the bent pipe 8. An arc is ejected from the welding torch 9 toward the bent pipe 8, and the wire cable 14' and wire guide tip 1 are moved from the wire reel 10 by the driving force of the wire feeding motor 11.
A welding wire 14 is fed through 3. While welding in this manner, the welding head 7 equipped with the welding torch 9 rotates once around the curved pipe 8 by a drive motor (not shown), thereby completing one pass welding. At this time, the wire cable 14', the power cable 12 for supplying electricity, and the gas cable 15 for supplying inert gas wind around the bent pipe 8 as shown in FIGS. 4 and 5. Therefore, every time one pass of welding is completed, the welding head 7 is rotated in the opposite direction to that during welding while the arc is stopped, and the wire cable 14' is
The power cable 12 and gas cable 15 are released. As described above, all pass welding is completed by repeating forward and reverse rotation of the welding head 7 around the curved pipe 8.

ところがこのように被溶接材のまわりを溶接ヘ
ツドが回転する溶接方法においては曲管の冷却が
行なわれておらず、かといつて前記直管の溶接の
ように一定方向から放水冷却すると溶接ヘツド自
体が回転するので溶接ヘツドに水がかかり、都合
が悪い。したがつて前記全姿勢溶接の場合には溶
接パスを重ねる都度に溶接の熱が被溶接材に蓄積
され溶接部の温度が上昇する。そのためこの温度
上昇による溶接割れ、炭化物の析出による耐食性
の劣化、酸化など溶接欠陥が発生し、品質の低下
を招いている。
However, in this welding method in which the welding head rotates around the material to be welded, the bent pipe is not cooled, and on the other hand, if water is sprayed from a fixed direction as in the case of straight pipe welding, the welding head itself will be damaged. As the welding head rotates, water splashes onto the welding head, which is inconvenient. Therefore, in the case of all-position welding, the welding heat is accumulated in the welded material each time welding passes are repeated, and the temperature of the welded part increases. Therefore, welding defects such as weld cracking due to this temperature rise, deterioration of corrosion resistance due to carbide precipitation, and oxidation occur, leading to a decline in quality.

そこで本発明はかかる欠点を解消し、高品質の
溶接を行ない得る被溶接材の冷却方法を提供する
ものである。斯る目的を達成する本発明の構成
は、被溶接材を中心に溶接トーチを回転させて溶
接を行なう溶接方法において、圧縮気体を一旦冷
却した後被溶接材に対し常に前記溶接トーチの略
反対側から被溶接材に向けて噴射することによつ
て被溶接材を冷却することを特徴とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for cooling materials to be welded, which eliminates these drawbacks and enables high-quality welding. The configuration of the present invention that achieves such an object is such that in a welding method in which welding is performed by rotating a welding torch around the workpiece, the welding torch is always positioned approximately opposite to the workpiece after the compressed gas has been cooled once. It is characterized by cooling the material to be welded by spraying it from the side toward the material to be welded.

以下、本発明を図面に示す一実施例に基づいて
詳細に説明する。
Hereinafter, the present invention will be explained in detail based on an embodiment shown in the drawings.

本発明に係る被溶接材の冷却方法は、被溶接材
を中心に溶接トーチを回転させて溶接を行なう場
合に用いられるので、本実施例では前述した従来
の溶接装置に本発明の係る冷却方法を実施するた
めの装置を取り付けたものを示す。なお従来の溶
接装置と同一部品には同一番号を付し、異なると
ころのみを説明する。
The method for cooling a material to be welded according to the present invention is used when welding is performed by rotating a welding torch around the material to be welded. Shown is the equipment installed to carry out the process. Note that parts that are the same as those of the conventional welding device are given the same numbers, and only the differences will be explained.

第6図,第7図,第8図のように、被溶接材と
しての前記曲管8に対し前記溶接トーチ9の略反
対側にノズル16が具えられる。該ノズル16は
連結管22を介してボルテツクスチユーブ17に
接続され、更に該ボルテツクスチユーブ17は供
給口21からパイプ24によつて図示しないエア
コンプレツサに接続される。これらノズル16及
びボルテツクスチユーブ17は溶接ヘツド7に取
り付けられている。したがつて溶接トーチ9、ノ
ズル16、ボルテツクスチユーブ17は溶接ヘツ
ド7と共に曲管8の周囲を回転し、常にノズル1
6は曲管8に対し溶接トーチ9の略反対側に位置
する。
As shown in FIGS. 6, 7, and 8, a nozzle 16 is provided on a side substantially opposite to the welding torch 9 with respect to the bent pipe 8 as the material to be welded. The nozzle 16 is connected to a vortex tube 17 via a connecting pipe 22, and the vortex tube 17 is further connected from a supply port 21 to an air compressor (not shown) via a pipe 24. These nozzles 16 and vortex tubes 17 are attached to the welding head 7. Therefore, the welding torch 9, nozzle 16, and vortex tube 17 rotate together with the welding head 7 around the bent pipe 8, and the nozzle 1
6 is located on the substantially opposite side of the welding torch 9 to the bent pipe 8.

ボルテツクスチユーブ17はよく知られている
ように第9図のような構造となつている。図中、
筒状の本体18の上部にはオリフイス19、下部
には流量比調節弁20が設けられている。エアコ
ンプレツサと接続された供給口21から本体18
内周の接線方向へ圧縮空気が吹き込まれると、本
体18内部に矢印で示すような超高速回転の渦が
できる(毎分20〜30万回転)。この渦の中心部と
外周部との間に大きな圧力差を生じ、中心部に向
つて空気の移動がおこり膨張によつて温度が下が
る。この中心部に発生した冷気はオリフイス19
から流出し、外周部の空気は流量比調節弁20の
ドーナツ状隙間から外部へ放出される。
As is well known, the vortex tube 17 has a structure as shown in FIG. In the figure,
An orifice 19 is provided in the upper part of the cylindrical main body 18, and a flow ratio control valve 20 is provided in the lower part. From the supply port 21 connected to the air compressor to the main body 18
When compressed air is blown in the tangential direction of the inner circumference, an ultra-high-speed rotating vortex is created inside the main body 18 as shown by the arrow (200,000 to 300,000 revolutions per minute). A large pressure difference is created between the center and the outer periphery of this vortex, and air moves toward the center, causing its temperature to drop due to expansion. The cold air generated in this center is the orifice 19
The air at the outer periphery is discharged to the outside through the donut-shaped gap of the flow ratio control valve 20.

ノズル16を第10図に示す。該ノズル16
は、曲管8と対向する面が凹状のアールをなす筐
体であり、接続管22によつて前記ボルテツクス
チユーブ17と接続される。そして曲管8と対向
する面には多数の噴出口23が設けられ、該噴出
口23から冷却空気が噴出される。
The nozzle 16 is shown in FIG. The nozzle 16
is a housing whose surface facing the curved pipe 8 forms a concave radius, and is connected to the vortex tube 17 through a connecting pipe 22. A large number of jet ports 23 are provided on the surface facing the curved pipe 8, and cooling air is jetted from the jet ports 23.

なお本実施例では圧縮気体として圧縮空気を用
いているが空気に限定されるものではない。そし
て気体の冷却にボルテツクスチユーブを用いてい
るが他に色々の冷却方法が考えられる。また本実
施例では溶接ヘツドにノズルを取り付けて溶接ヘ
ツドと一体に回転する構成であるがノズルが別個
の駆動手段によつて回転するものでもよい。
Although compressed air is used as the compressed gas in this embodiment, it is not limited to air. A vortex tube is used to cool the gas, but various other cooling methods are possible. Further, in this embodiment, the nozzle is attached to the welding head and rotates together with the welding head, but the nozzle may be rotated by a separate driving means.

斯る被溶接材の冷却方法を使用して次のように
溶接が行なわれる。エアコンプレツサから供給さ
れた圧縮空気は供給口21よりボルテツクスチユ
ーブ17内へはいり、暖い空気は流量比調節弁2
0より外部へ放出され冷却空気のみが連結管22
を通つてノズル16内へはいる。そして噴出口3
3から曲管8に向けてこの冷却空気は噴出され
る。この場合において曲管8に対し溶接トーチ9
とは常に略反対側から冷却空気が噴出されるので
溶接を妨げることなく曲管8の冷却が行なわれ
る。
Welding is performed as follows using this method of cooling the materials to be welded. Compressed air supplied from the air compressor enters the vortex tube 17 through the supply port 21, and warm air enters the vortex tube 17 through the flow ratio control valve 2.
Only the cooling air discharged to the outside from the connecting pipe 22
It enters the nozzle 16 through. and spout 3
This cooling air is blown out from 3 toward the bent pipe 8. In this case, the welding torch 9 is connected to the bent pipe 8.
Since cooling air is always blown out from the substantially opposite side, the bent pipe 8 can be cooled without interfering with welding.

以上、一実施例を図面と共に説明したように本
発明によれば次のような効果がある。溶接部に冷
却気体を吹き付けるため温度上昇を防ぐことがで
き溶接欠陥の防止と品質向上が図れる。また冷却
ができないことにより溶接不可能であつた材質の
溶接が可能である。溶接中に限らず非溶接中も被
溶接材に冷却気体を吹き付けることができるため
冷却効果が大きい。そして気体を用いて冷却を行
なうため液体による冷却と異なり取り扱いが極め
て容易でしかも使用後の処理が不要である。気体
を噴出するノズルを溶接ヘツドに取り付けること
により溶接ヘツド回転用の駆動モータをノズルの
回転に兼用できる。
As described above with reference to the drawings, the present invention has the following effects. Since cooling gas is sprayed onto the welded area, temperature rise can be prevented, preventing welding defects and improving quality. Furthermore, it is possible to weld materials that were previously impossible to weld due to the inability to cool them. Cooling gas can be blown onto the welded material not only during welding but also during non-welding, resulting in a large cooling effect. Since cooling is performed using gas, it is extremely easy to handle and does not require treatment after use, unlike cooling using liquid. By attaching a nozzle that spouts gas to the welding head, the drive motor for rotating the welding head can also be used to rotate the nozzle.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直管溶接の場合の冷却方法を示す説明
図、第2図〜第5図は曲管の溶接装置に係り、第
2図は正面図、第3図は側面図、第4図は作用を
説明するための正面図、第5図は作用を説明する
ための側面図、第6図〜第10図は本発明による
被溶接材の冷却方法を実施するための溶接装置に
係り、第6図は正面図、第7図は側面図、第8図
は平面図、第9図はボルテツクスチユーブの説明
図、第10図はノズルの説明図である。 図面中、6はヘツドクランプハンドル、7は溶
接ヘツド、8は曲管、9は溶接トーチ、10はワ
イヤリール、11はワイヤ送給モータ、12はパ
ワーケーブル、13はワイヤガイドチツプ、14
は溶接ワイヤ、14′はワイヤケーブル、15は
ガスケーブル、16はノズル、17はボルテツク
スチユーブ、18は本体、19はオリフイス、2
0は流量比調節弁、21は供給口、22は接続
管、23は噴出口、24はパイプである。
Figure 1 is an explanatory diagram showing a cooling method for straight pipe welding, Figures 2 to 5 relate to a welding device for curved pipes, Figure 2 is a front view, Figure 3 is a side view, and Figure 4 is a diagram showing a cooling method for straight pipe welding. 5 is a front view for explaining the action, FIG. 5 is a side view for explaining the action, and FIGS. 6 to 10 relate to a welding device for carrying out the method for cooling materials to be welded according to the present invention, 6 is a front view, FIG. 7 is a side view, FIG. 8 is a plan view, FIG. 9 is an explanatory view of the vortex tube, and FIG. 10 is an explanatory view of the nozzle. In the drawing, 6 is a head clamp handle, 7 is a welding head, 8 is a bent pipe, 9 is a welding torch, 10 is a wire reel, 11 is a wire feeding motor, 12 is a power cable, 13 is a wire guide tip, 14
14' is a welding wire, 14' is a wire cable, 15 is a gas cable, 16 is a nozzle, 17 is a vortex tube, 18 is a main body, 19 is an orifice, 2
0 is a flow ratio control valve, 21 is a supply port, 22 is a connecting pipe, 23 is a spout, and 24 is a pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 被溶接材を中心に溶接トーチを回転させて溶
接を行なう溶接方法において、圧縮気体を一旦冷
却した後被溶接材に対し常に前記溶接トーチの略
反対側から被溶接材に向けて噴射することによつ
て被溶接材を冷却することを特徴とする被溶接材
の冷却方法。
1. In a welding method in which welding is performed by rotating a welding torch around the welding material, compressed gas is once cooled and then always injected toward the welding material from approximately the opposite side of the welding torch. 1. A method for cooling a welded material, the method comprising: cooling the welded material by cooling the welded material.
JP2364582A 1982-02-18 1982-02-18 Cooling method of welded material Granted JPS58141852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2364582A JPS58141852A (en) 1982-02-18 1982-02-18 Cooling method of welded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2364582A JPS58141852A (en) 1982-02-18 1982-02-18 Cooling method of welded material

Publications (2)

Publication Number Publication Date
JPS58141852A JPS58141852A (en) 1983-08-23
JPH0122068B2 true JPH0122068B2 (en) 1989-04-25

Family

ID=12116288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2364582A Granted JPS58141852A (en) 1982-02-18 1982-02-18 Cooling method of welded material

Country Status (1)

Country Link
JP (1) JPS58141852A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165790U (en) * 1983-04-22 1984-11-07 三菱重工業株式会社 welding equipment
US8389902B2 (en) * 2010-02-06 2013-03-05 Fast Fusion, LLC. Portable weld cooling systems
CN104084726B (en) * 2014-07-03 2016-02-24 中国海洋石油总公司 The cooling device welded between valve with transition conduit under water
RU2586932C1 (en) * 2014-11-28 2016-06-10 Государственный научный центр Российской Федерации - федеральное государственное унитарное предприятие "Исследовательский Центр имени М.В. Келдыша" Method of coating by plasma spraying in dynamic vacuum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542148A (en) * 1978-09-21 1980-03-25 Mitsubishi Heavy Ind Ltd Inconel welding method of dissimilar material joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542148A (en) * 1978-09-21 1980-03-25 Mitsubishi Heavy Ind Ltd Inconel welding method of dissimilar material joint

Also Published As

Publication number Publication date
JPS58141852A (en) 1983-08-23

Similar Documents

Publication Publication Date Title
US5155330A (en) Method and apparatus for GMAW welding
US4254322A (en) Narrow weld-groove welding process and apparatus therefor
US7084373B2 (en) Torch for MIG welding
JPS6044022B2 (en) Thermal spray coating method and equipment for the surface of cylindrical metal workpieces
CN112828429B (en) Welding slag cleaning device and cleaning method thereof
JPH0122068B2 (en)
JPS6046882A (en) Method for removing spatter of arc welding torch
GB2074071A (en) Plasma arc welding
US3209119A (en) Method and apparatus for welding
JPS6339346B2 (en)
JPH09271939A (en) Device for welding piping
JP3943226B2 (en) Laser welding head of laser processing equipment
JPH0227993Y2 (en)
CN111037096A (en) Semiconductor laser processing device
JPS5910869B2 (en) Non-consumable electrode all-position automatic welding equipment
JPH0569193A (en) Method and device for joining metallic tube
JP3348989B2 (en) Gas shield welding equipment for ERW steel pipes
JPH10277766A (en) High speed piercing method and laser beam machining head used in the method
JPH0860332A (en) Thermal spraying method and thermal spraying gun
CN220312050U (en) Argon arc welding tool for aviation revolving body parts
SU592541A1 (en) Head for submerged electric arc buildup
JPS5953147B2 (en) All-position circumferential welding method for horizontal fixed pipes
JPH09285892A (en) Addition member for secondary fluid and cutting torch block
JPH0994675A (en) Spatter collecting device for flash welding
JPS5946707B2 (en) Plasma arc overlay welding method and torch