JPH01220530A - Echo eraser - Google Patents

Echo eraser

Info

Publication number
JPH01220530A
JPH01220530A JP4516388A JP4516388A JPH01220530A JP H01220530 A JPH01220530 A JP H01220530A JP 4516388 A JP4516388 A JP 4516388A JP 4516388 A JP4516388 A JP 4516388A JP H01220530 A JPH01220530 A JP H01220530A
Authority
JP
Japan
Prior art keywords
echo
step gain
impulse response
gain matrix
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4516388A
Other languages
Japanese (ja)
Other versions
JP2533353B2 (en
Inventor
Shoji Makino
昭二 牧野
Nobuo Koizumi
小泉 宣夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63045163A priority Critical patent/JP2533353B2/en
Publication of JPH01220530A publication Critical patent/JPH01220530A/en
Application granted granted Critical
Publication of JP2533353B2 publication Critical patent/JP2533353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a convergence characteristic by setting a step gain with prescribed algorithm by providing a memory circuit to store a step gain matrix with prescribed weight. CONSTITUTION:A reception signal is supplied to a correction information generation circuit 15 which performs a processing according to the estimation algorithm of an impulse response by a learning identification method or an LMS method, etc., via reception signal memory circuit 14 and a norm arithmetic circuit 13, respectively. At the time of performing processing, the step gain is set by referring to the step gain matrix weighted by the exponent damping characteristic of the impulse response of a sound field in a step gain matrix memory circuit 12, and a pseudo echo signal for erasing echo is formed. Therefore, estimation for the gradient of a mean square error curved surfaces can be performed with high accuracy, then, an echo erasable device with superior convergence characteristic can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、主として拡声通話系において)蔦クリング
の原因および聴覚上の障害となる反響を消去する反響消
去装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to an echo canceling device for eliminating echoes that cause ringing and are a hearing impairment (mainly in public address communication systems).

「従来の技術」 音声会議の普及1:伴ない同時通話性能に優れ、反響感
の少ない拡声通話装置の供給が望まれている。この要求
を満たすものとして反響消去装置がある。第5図は従来
の反響消去装置の一例を示すブロック図で、受話信号x
 (t)を受ける受話人力端1からスピーカ2に至る受
話系と、マイクロホン3から送話出力端4に至る送話系
とからなる拡声通話系において、A/D変換器8により
受話信号X(りがサンプル値化され、その受話信号x 
(k)が擬似反響路7へ供給され、擬似反響路7からの
擬似反響信号仝(k)を、A/D変換器5によりサンプ
ル値化された反響信号y (klから減算器9で差し引
くことにより反響信号)’ (k)は消去される。
``Prior Art'' Popularization of audio conferencing 1: It is desired to provide a loudspeaker communication device that has excellent simultaneous call performance and has less reverberation. There is an echo canceling device that satisfies this requirement. FIG. 5 is a block diagram showing an example of a conventional echo canceller, in which the received signal x
In the loudspeaker communication system, which consists of a receiving system from the receiving terminal 1 to the speaker 2 that receives the receiving signal X(t), and a transmitting system from the microphone 3 to the transmitting output terminal 4, is converted into a sample value, and the received signal x
(k) is supplied to the pseudo echo path 7, and the pseudo echo signal y(k) from the pseudo echo path 7 is subtracted from the echo signal y (kl) sampled by the A/D converter 5 in the subtracter 9. As a result, the echo signal )' (k) is eliminated.

ここで擬似反響路7は反響路の経時変動に追従する必要
があり、残差e (k) = y (k)−9tk)が
0に近づくように推定回路6によって逐次推定され、擬
似反響路7の修正が行われることによって、常に最適な
反響消去が維持される。
Here, the pseudo echo path 7 needs to follow the temporal fluctuations of the echo path, and is successively estimated by the estimation circuit 6 so that the residual e (k) = y (k) - 9tk) approaches 0. 7 modifications are made to maintain optimal echo cancellation at all times.

この擬似反響路7のインパルス応答仝(klの逐次修正
には一般に学習同定法 ただし 会(k)=(泊(k)、t(’2Φ)・・・・・・11
’A(k))”X(kl= (、x(k)、 X (k
−1>−・−・・・X (k−N+1 ) )Tαニス
テップゲイン(スカラ量、定数)、N:タップ数、T:
ベクトルの転置、11×1じ×のノルム、k:離散化時
刻 を用い、擬似反響路7のインパルス応答Q tk>を真
の反響路のインパルス応答1h (klに近づけてゆく
The impulse response of this pseudo-echo path 7 is generally modified using the learning identification method (k) = (k), t ('2Φ)...11
'A(k))''X(kl= (, x(k), X(k
-1>-...X (k-N+1)) Tα Nistep gain (scalar amount, constant), N: number of taps, T:
Using the transposition of the vector, the norm of 11×1ji×, and k: discretized time, the impulse response Q tk of the pseudo echo path 7 is brought closer to the impulse response 1 h (kl) of the true echo path.

この学習同定法は、残差e (k) = y (kl−
仝(k)Y用いて平均自乗誤差曲面のグラジェントを推
定し、推定されたグラジェント情報を利用して平均自乗
誤差曲面を降下してゆき最終的にグラジェント=0とな
る点に到達してゆくものである。
This learning identification method uses the residual e (k) = y (kl−
Estimate the gradient of the mean square error surface using (k)Y, and use the estimated gradient information to descend the mean square error surface and finally reach the point where the gradient = 0. It is something that will continue.

ところで第6図は実際の会議室にスピーカとマイクロホ
ンを設置して測定した2つのインパルス応答の時間波形
とこれらの差およびこれらのシュレーダ法CM、R,5
chr6eder t J、A、S、A、 37 、 
p。
By the way, Figure 6 shows the time waveforms of two impulse responses measured with speakers and microphones installed in an actual conference room, their differences, and their Schrader method CM, R, 5.
chr6eder t J, A, S, A, 37,
p.

409、.1965)によるエネルギー減衰波形である
。第6図から音場のインパルス応答は指数減衰(対数軸
上で直線的に減衰)しその差も同様に指数減衰すること
がわかる。また差(状態変動量)はインパルス応答(状
態量)に依存しないことがわかる。以上から音場のイン
パルス応答1h(klの変動は次のように表わせる。
409,. 1965). From FIG. 6, it can be seen that the impulse response of the sound field is exponentially attenuated (attenuated linearly on the logarithmic axis), and the difference therebetween is also attenuated exponentially. Furthermore, it can be seen that the difference (state variation amount) does not depend on the impulse response (state amount). From the above, the fluctuation of the impulse response 1h (kl) of the sound field can be expressed as follows.

lh (k + 1 ) = lh(k)−+−a −
f(k)         (2)ただし lh(k)= (h、 (k) 、 h2(kl・・・
・・・hN(k))Ta4 = exp (−6,9(
+  1 ) Ts/Tu )(i=1,2・・・・・
・N) Ta:サンプリング時間 TR:残響時間 f(kl= (!1(k) 、ξ2(k)−=・ξN(
k))Te3(k)、ξ2(k)・・・・・・ξN(k
) :平均0、分散σ2の雑音さてタップ係数の逐次修
正に用いる残差e(kl1)は e(klr)=(+hTtk+B−Q”tk))・X(
kl1)であり、擬似反響路のインパルス応答仝(k)
が真の反響路のインパルス応答1h (klに収束して
おり企(k)+ lh (k)           
  (4)であるとすれば(3)式は+2+ 、 (4
1式を用いてe (kl1 )−4=(lh (kl1
 )−1h(k))T−X(kl1 )=l−ζ山))
T・X(kl1) =a1ξ1(k)x(kl1)+azξ2(k) x 
(k) +・・−+aNξN(kIX (k −N )
       (5)となる。各項はそれぞれインパル
ス応答の各係数hl(k)、h2(kl・・・・・・h
N(k)が変動することによって生じており、ξ、 (
kl 、ξ2(k)・・・・・・ξN(klは平均01
分散σ2の雑音でありx(kl1)、x(k)・・・・
−x(k−N)の大きさが同程度とすれば、残差e(k
ll)に占める各項の割合はal 、 a2・・・・・
・aNの割合(指数減衰)に等しくなる。
lh (k + 1) = lh(k)−+−a −
f(k) (2) However, lh(k)= (h, (k), h2(kl...
...hN(k)) Ta4 = exp (-6,9(
+ 1) Ts/Tu) (i=1, 2...
・N) Ta: Sampling time TR: Reverberation time f(kl= (!1(k), ξ2(k)−=・ξN(
k)) Te3(k), ξ2(k)...ξN(k
) : Noise with mean 0 and variance σ2 Now, the residual e(kl1) used for successive correction of tap coefficients is e(klr) = (+hTtk+B-Q”tk))・X(
kl1), and the impulse response of the pseudo-echo path is (k)
The impulse response of the true echo path 1h (kl) converges to kl (k) + lh (k)
(4), then equation (3) is +2+, (4
Using equation 1, e (kl1 )-4=(lh (kl1
)−1h(k))T−X(kl1)=l−ζmount))
T・X(kl1) =a1ξ1(k)x(kl1)+azξ2(k) x
(k) +...-+aNξN(kIX (k -N)
(5) becomes. Each term is each impulse response coefficient hl(k), h2(kl...h
This is caused by fluctuations in N(k), and ξ, (
kl, ξ2(k)...ξN (kl is 01 on average
It is noise with variance σ2, x(kl1), x(k)...
-x(k-N) are of the same magnitude, then the residual e(k
The proportion of each term in ll) is al, a2...
・It is equal to the rate of aN (exponential decay).

このように残差e(kl1)に占めるインパルス応答の
各係数の貢献度が指数減衰しているにもかかわらず、従
来の学習同定法ではこれを無視し、受話信号X(kl1
)で重み付けをしているだけであった。このためグラジ
ェントの推定が不完全となり係数修正に誤りを多く含み
、その結果、収束特性が悪いという問題点があった。
Although the contribution of each impulse response coefficient to the residual e(kl1) is exponentially attenuated, the conventional learning identification method ignores this, and the received signal X(kl1
) was simply weighted. As a result, the estimation of the gradient is incomplete and the coefficient correction contains many errors, resulting in a problem of poor convergence characteristics.

この発明は上記の問題点に鑑みてなされたもので、平均
自乗誤差曲面のグラジェントの推定を高精度に行うこと
により良好な収束特性の得られる反響消去装置を提供す
ることを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an echo canceling device that can obtain good convergence characteristics by estimating the gradient of the mean square error surface with high precision.

「課題を解決するための手段」 この発明は音場のインパルス応答の変動量が前記インパ
ルス応答の指数減衰特性と同じ傾きで指数減衰すること
に着目し、学習同定法などによる適応アルゴリズムにお
いてステップゲイン!各タップ、つまり擬似反響路のイ
ンパルス応答の各係数ごとに設定するためのステップゲ
イン行列記憶回路を有し、前記ステップゲインは音場の
インパルス応答の指数減衰特性で重み付けられているこ
とを特徴とする。
"Means for Solving the Problem" This invention focuses on the fact that the amount of variation in the impulse response of a sound field decays exponentially with the same slope as the exponential decay characteristic of the impulse response, and uses a step gain in an adaptive algorithm using a learning identification method etc. ! It has a step gain matrix storage circuit for setting each tap, that is, each coefficient of the impulse response of the pseudo echo path, and the step gain is weighted by an exponential attenuation characteristic of the impulse response of the sound field. do.

この発明は上記のように音場の変動特性を学習同定法の
中にとり入れるようにしたから、音場の変動量が一様で
あるという仮定にもとづ〈従来の学習同定法に比べて平
均自乗誤差曲面のグラジェントの推定が高精度に行える
。従って収束特性の良い反響消去装置が得られる。
Since this invention incorporates the sound field fluctuation characteristics into the learning identification method as described above, it is based on the assumption that the amount of sound field fluctuation is uniform. The gradient of the mean square error surface can be estimated with high accuracy. Therefore, an echo canceler with good convergence characteristics can be obtained.

「実施例」 第1図はこの発明の一実施例を示したもので、第5図1
−おける推定回路6の内部を示しており、受話信号x 
(k)は受話信号記憶回路13で×(k)とされると共
にノルム演算回路13で11×■11!が演算される。
"Embodiment" Figure 1 shows an embodiment of this invention, and Figure 5.
- shows the inside of the estimation circuit 6 at
(k) is converted to ×(k) by the reception signal storage circuit 13 and is converted to 11×■11! by the norm calculation circuit 13! is calculated.

ステップゲイン行列記憶回路12にはステップゲイン行
列部が記憶される。ステップゲイン行列学は音場のイン
パルス応答の指数減衰特性で重み付けられティる。X(
kl 、 II X(k) II2. e (kl 、
 牛が修正情報生成回路15に供給されて が演算され、その出力は加算器16へ供給されてタップ
係数記憶回路11からのlh (k)と加算されてIh
(kl1)が得られる。
The step gain matrix storage circuit 12 stores a step gain matrix section. The step gain matrix is weighted by the exponential decay characteristic of the impulse response of the sound field. X(
kl, II X(k) II2. e (kl,
Ih is supplied to the correction information generation circuit 15 and calculated, and its output is supplied to the adder 16 and added to lh (k) from the tap coefficient storage circuit 11 to obtain Ih.
(kl1) is obtained.

次にその動作について説明する。残差e(kll)に占
めるインパルス応答の各係数の貢献度(指数減衰)を反
映させるために、従来スカラ量として与えられていたス
テップゲインαを対角行列に拡張したステップゲイン行
列タラ用い αi ” (amax−αmln ) eXp(−6,
9(i  1 ) T8/TR)+”m1n (i=1.2・・・・・・N) N:タップ数 に:離散化時刻 とすればう)の各係数は変動の大きさに応じて修正iれ
ることになる。ステップゲイン行列−の対角成分α!(
i=1.2・・・・・・N)を第2図に示す。
Next, its operation will be explained. In order to reflect the contribution (exponential decay) of each coefficient of the impulse response to the residual e(kll), the step gain matrix Tara, which is a diagonal matrix expanded from the step gain α, which was conventionally given as a scalar quantity, is used αi ” (amax-αmln) eXp(-6,
9 (i 1 ) T8/TR) + "m1n (i = 1.2...N) N: Number of taps: Discretization time) Each coefficient of The diagonal component α!(
i=1.2...N) is shown in FIG.

αiはiの増加に従ってamaxから音場のインパルス
応答の指数減衰特性と同じ傾きで指数減衰しαml。
As i increases, αi exponentially decays from amax to αml with the same slope as the exponential decay characteristic of the impulse response of the sound field.

に漸近する。Asymptotes to .

またDSP(デジタルシグナルプロセッサ)などを複数
個用いてハードウェアを構成する場合には第3図に示す
ように音場のインパルス応答の指数減衰特性を簡略化し
てチップ単位に階段状に与えることにより、演算量およ
び記憶容量を全く増加させることなくこの発明を適用す
ることができる。
In addition, when configuring hardware using multiple DSPs (digital signal processors), etc., the exponential attenuation characteristic of the impulse response of the sound field is simplified and applied stepwise to each chip, as shown in Figure 3. , the present invention can be applied without increasing the amount of calculation or storage capacity at all.

(6)式は従来の学習同定法において各タップごとにス
テップゲインを持ち、前記ステップゲインを音場のイン
パルス応答の指数減衰特性で重み付けしたと見なすこと
ができる。
Equation (6) can be regarded as having a step gain for each tap in the conventional learning identification method, and weighting the step gain with the exponential attenuation characteristic of the impulse response of the sound field.

ステップゲイン行列車は前述したように対角行列であり
、その要素α1(i=l 、2・・・・・・N)は音場
のインパルス応答の指数減衰特性と同じ傾きで指数減衰
するものであるから、残響時間が与えられれば決定する
ことができる。また残響時間がわからない場合には、初
期トレーニングによって求めたタップ係数から残響時間
を推定した後、この発明を用いる。
As mentioned above, the step gain matrix is a diagonal matrix, and its element α1 (i=l, 2...N) decays exponentially with the same slope as the exponential decay characteristic of the impulse response of the sound field. Therefore, it can be determined if the reverberation time is given. If the reverberation time is not known, the present invention is used after estimating the reverberation time from the tap coefficients obtained through initial training.

この発明のシミュレーション結果を第4図に示す。従来
法においてはα=1.0で収束速度が最大となり、αが
1より小さくなるに従い収束速度が遅く収束値が大きく
なることが知られている。この発明において第2図にお
けるαmax=1.0.αm10=0.5としたステッ
プゲイン行列シラ用いた場合には従来法においてα=1
.0とした場合の収束速度とα=0.5とした場合の収
束値を兼ね備えていることがわかる。またこの発明にお
いて第2図におけるamax = 1.5 tαml、
 = 0.5としたステップゲイン行列部を用いた場合
には従来法における収束速度の最大値(α=1の場合)
を上回る収束速度が得られることがわかる。
The simulation results of this invention are shown in FIG. It is known that in the conventional method, the convergence speed is maximum when α=1.0, and as α becomes smaller than 1, the convergence speed becomes slower and the convergence value becomes larger. In this invention, αmax in FIG. 2 is 1.0. When using the step gain matrix Shira with αm10 = 0.5, α = 1 in the conventional method.
.. It can be seen that the convergence speed when α=0 and the convergence value when α=0.5 are both achieved. In addition, in this invention, amax = 1.5 tαml in FIG.
When using the step gain matrix section with = 0.5, the maximum convergence speed in the conventional method (when α = 1)
It can be seen that a convergence speed exceeding .

また第3図におけるamax = 1.9 、αml、
 = 0.5としたステップゲイン行列車を用いた場合
には、第2図における”max = 1− Osαml
、 = 0.5としたステップゲイン行列中ヲ用いた場
合とほとんど変わらない収束特性が得られることがわか
る。
Also, amax = 1.9, αml, in Fig. 3,
When using a step gain train with = 0.5, "max = 1-Osαml" in Fig. 2
It can be seen that convergence characteristics that are almost the same as when using a step gain matrix with , = 0.5 can be obtained.

以上の結果から明らかなように、従来の技術に比べ同一
収束値の場合は収束特性の良い反響消去装置が得られる
。1サンプリング時間(120μ就)に1回タップ係数
を逐次修正する収束速度は3秒が2.4秒(90%値)
に向上する。
As is clear from the above results, an echo canceler with better convergence characteristics can be obtained when the convergence value is the same compared to the conventional technique. The convergence speed of sequentially correcting the tap coefficient once per sampling time (120μ) is 3 seconds to 2.4 seconds (90% value)
improve.

ここでは学習同定法にこの発明を適用した場合について
説明したが、LMS(リーストミーンスクエア)法など
その他のアルゴリズムに適用してもよい。また反響路は
回線系であってもよい。
Although the case where the present invention is applied to the learning identification method has been described here, it may be applied to other algorithms such as the LMS (Least Mean Square) method. Further, the echo path may be a line system.

「発明の効果」 以上説明したように音場のインパルス応答の変動特性が
前記インパルス応答の指数減衰特性と同じ傾きで指数減
衰することに着目し、学習同定法による適応アルゴリズ
ムにおいてステップゲインを各タップごとに設定するた
めのステップゲイン行列記憶回路を有し、前記ステップ
ゲインを音場のインパルス応答の指数減衰特性で重み付
けするようにしたから、平均自乗誤差曲面のグラジェン
トを高精度に推定でき、収束値を等しくした場合に収束
速度を約20チ向上させた(2048タツプの場合3秒
が24秒(90%値))反響消去装置が得られる。従っ
て拡声通話における通話品質が改善される効果がある。
"Effects of the Invention" As explained above, focusing on the fact that the fluctuation characteristic of the impulse response of the sound field decays exponentially with the same slope as the exponential decay characteristic of the impulse response, the step gain is set at each tap in an adaptive algorithm using the learning identification method. Since the step gain is weighted by the exponential attenuation characteristic of the impulse response of the sound field, the gradient of the mean square error surface can be estimated with high accuracy. When the convergence values are made equal, an echo canceler is obtained that improves the convergence speed by about 20 steps (3 seconds for 2048 taps is 24 seconds (90% value)). Therefore, there is an effect that the quality of speech in loudspeaker calls is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
はステップゲイン行列争の対角成分αiを示す説明図、
第3図はステップゲイン行列学の対角成分αiをDSP
などのチップ単位に階段状に与える場合の与え方の一例
を示す説明図、第4図はこの発明と従来法のシミュレー
ション結果を示す図、第5図は従来の反響消去装置を示
すブロック図、第6図は実音場の2つのインパルス応答
の時間波形とこれらの差およびこれらのエネルギー減衰
波形(シュレーダ法)を示す説明図である。 特許出願人  日本電信電話株式会社 代 理  人   草  野     卓矛 1 図 e(幻 χ(4) オ 2図 1                        
     N才 3 図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the diagonal component αi of the step gain matrix competition,
Figure 3 shows the diagonal component αi of the step gain matrix
4 is a diagram showing simulation results of the present invention and the conventional method, and FIG. 5 is a block diagram showing a conventional echo canceling device. FIG. 6 is an explanatory diagram showing the time waveforms of two impulse responses in an actual sound field, their difference, and their energy attenuation waveforms (Schrader method). Patent applicant: Nippon Telegraph and Telephone Corporation Representative: Takuya Kusano 1 Figure e (phantom χ (4) o 2 Figure 1
N-sai 3 figure

Claims (1)

【特許請求の範囲】[Claims] (1)反響路への送出信号と前記送出信号の反響路を経
由した後の反響信号とから、反響路のインパルス応答を
逐次的に推定して擬似反響路を生成し、前記送出信号を
前記擬似反響路の入力とすることにより得られる擬似反
響信号を前記反響信号から差し引くことにより前記反響
信号を消去し、前記反響路のインパルス応答の推定アル
ゴリズムとして学習同定法又はLMS法を用いる反響消
去装置において、前記アルゴリズムにおけるステップゲ
インを前記擬似反響路のインパルス応答の各係数ごとに
設定するためのステップゲイン行列記憶回路を有し、前
記ステップゲイン行列は音場のインパルス応答の指数減
衰特性で重み付けられていることを特徴とする反響消去
装置。
(1) From the transmitted signal to the echo path and the echo signal after the transmitted signal has passed through the echo path, the impulse response of the echo path is sequentially estimated to generate a pseudo echo path, and the transmitted signal is An echo cancellation device that eliminates the echo signal by subtracting from the echo signal a pseudo echo signal obtained by inputting the pseudo echo path, and uses a learning identification method or LMS method as an algorithm for estimating the impulse response of the echo path. has a step gain matrix storage circuit for setting a step gain in the algorithm for each coefficient of the impulse response of the pseudo echo path, and the step gain matrix is weighted by an exponential attenuation characteristic of the impulse response of the sound field. An echo canceling device characterized by:
JP63045163A 1988-02-26 1988-02-26 Echo canceller Expired - Lifetime JP2533353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045163A JP2533353B2 (en) 1988-02-26 1988-02-26 Echo canceller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045163A JP2533353B2 (en) 1988-02-26 1988-02-26 Echo canceller

Publications (2)

Publication Number Publication Date
JPH01220530A true JPH01220530A (en) 1989-09-04
JP2533353B2 JP2533353B2 (en) 1996-09-11

Family

ID=12711595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045163A Expired - Lifetime JP2533353B2 (en) 1988-02-26 1988-02-26 Echo canceller

Country Status (1)

Country Link
JP (1) JP2533353B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273730A (en) * 1988-09-09 1990-03-13 Hitachi Ltd Echo canceller
JPH04123621A (en) * 1990-09-14 1992-04-23 Nippon Telegr & Teleph Corp <Ntt> Echo eraser
JPH04281625A (en) * 1991-03-11 1992-10-07 Nippon Telegr & Teleph Corp <Ntt> Echo canceller
EP0613318A1 (en) * 1993-02-26 1994-08-31 Matsushita Electric Industrial Co., Ltd. Microphone apparatus
JPH0879136A (en) * 1994-08-31 1996-03-22 Nec Corp Echo canceler

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0273730A (en) * 1988-09-09 1990-03-13 Hitachi Ltd Echo canceller
JPH04123621A (en) * 1990-09-14 1992-04-23 Nippon Telegr & Teleph Corp <Ntt> Echo eraser
JPH04281625A (en) * 1991-03-11 1992-10-07 Nippon Telegr & Teleph Corp <Ntt> Echo canceller
EP0613318A1 (en) * 1993-02-26 1994-08-31 Matsushita Electric Industrial Co., Ltd. Microphone apparatus
US5563954A (en) * 1993-02-26 1996-10-08 Matsushita Electric Industrial Co., Ltd. Microphone apparatus
JPH0879136A (en) * 1994-08-31 1996-03-22 Nec Corp Echo canceler

Also Published As

Publication number Publication date
JP2533353B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
US5577116A (en) Apparatus and method for echo characterization of a communication channel
US6249581B1 (en) Spectrum-based adaptive canceller of acoustic echoes arising in hands-free audio
US5721772A (en) Subband acoustic echo canceller
US5734715A (en) Process and device for adaptive identification and adaptive echo canceller relating thereto
JPH04123621A (en) Echo eraser
JPH07147548A (en) Adaptable noise eliminating device
Habets et al. Joint dereverberation and residual echo suppression of speech signals in noisy environments
CN109559756B (en) Filter coefficient determining method, echo eliminating method, corresponding device and equipment
JP2654894B2 (en) Echo canceller and method therefor
CN110191245B (en) Self-adaptive echo cancellation method based on time-varying parameters
JP3787088B2 (en) Acoustic echo cancellation method, apparatus, and acoustic echo cancellation program
JPH10164687A (en) Method and arrangement for adaptive echo compensation
Stenger et al. An acoustic echo canceller with compensation of nonlinearities
JPH01220530A (en) Echo eraser
JP2002223182A (en) Echo canceling method, its device, its program and its recording medium
KR20220157475A (en) Echo Residual Suppression
JP3616341B2 (en) Multi-channel echo cancellation method, apparatus thereof, program thereof, and recording medium
Garre et al. An Acoustic Echo Cancellation System based on Adaptive Algorithm
JP2602750B2 (en) Echo canceller
JP3707572B2 (en) Subband echo cancellation method
JP2551869B2 (en) Echo canceller
JP3457275B2 (en) Echo canceling apparatus, echo canceling method, and recording medium recording echo canceling program
Shukla et al. Noise Reduction and Echo Cancellation Using Threshold Filters in Hands Free Communication Systems
JPS62120734A (en) Echo erasing equipment
JP2553092B2 (en) Echo canceller

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 12