JPH01220218A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH01220218A
JPH01220218A JP63046324A JP4632488A JPH01220218A JP H01220218 A JPH01220218 A JP H01220218A JP 63046324 A JP63046324 A JP 63046324A JP 4632488 A JP4632488 A JP 4632488A JP H01220218 A JPH01220218 A JP H01220218A
Authority
JP
Japan
Prior art keywords
magnetic
layer
range
magnetic layer
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63046324A
Other languages
Japanese (ja)
Inventor
Chiaki Mizuno
千昭 水野
Hiroshi Ogawa
博 小川
Satoshi Sakakibara
聡 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63046324A priority Critical patent/JPH01220218A/en
Publication of JPH01220218A publication Critical patent/JPH01220218A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain good output in the entire frequency range by incorporating cobalt-modified iron oxide having the specified values of average major axis lengths and ratios of Fe<3+> and Fe<2+> and forming magnetic layers in such a manner that a 1st magnetic layer and the 2nd magnetic layer having specific coercive forces, residual magnetic flux densities and layer thicknesses are superposed. CONSTITUTION:The 1st magnetic layer contains the cobalt-modified iron oxide having the average major axis length in a 0.27-0.35mum range and the ratio of the Fe<3+> and Fe<2+> in a 100:1-100:2.6 molar ratio range. The coercive force of said layer is in a 360-440Oe range, the residual magnetic flux density is >=1,800G and the layer thickness is in a 4.0-5.7mum range. The 2nd magnetic layer contains the cobalt-modified iron oxide having the average major axis length in a 0.17-0.27mum range and the ratio of the Fe<3+> and Fe<2+> in a 100:5.0-100:6.5 molar ratio range. The coercive force is in a 550-720Oe range, the residual magnetic flux density is >=1,700G and the layer thickness is in a 0.3-1.2mum range. The good output is thereby obtd. in the entire frequency band.

Description

【発明の詳細な説明】 [発明の分野] 本発明は、磁気記録媒体に関するものであり。[Detailed description of the invention] [Field of invention] The present invention relates to a magnetic recording medium.

さらに詳しくは、少なくとも二層の磁性層を有する磁気
記録媒体に関するものである。
More specifically, the present invention relates to a magnetic recording medium having at least two magnetic layers.

[発明の背景] 近年、オーディオ用カセットテープとして、ノイズレベ
ルが低く、しかも周波数特性のバランスが良く、全周波
数帯域において出力の良好な特性を有するテープが要求
されている。最近の音楽ソースは、コンパクトディスク
などデジタル化が進み、超ハイファイ化、極低ノイズ化
などが図られているので、オーディオ用カセットテープ
においても、上記のような要求がますます強くなってい
る。
[Background of the Invention] In recent years, there has been a demand for audio cassette tapes that have low noise levels, well-balanced frequency characteristics, and good output characteristics in all frequency bands. Recently, music sources have become increasingly digital, such as compact discs, and are becoming ultra-high-fidelity and extremely low-noise, so the above-mentioned demands are becoming stronger for audio cassette tapes as well.

また、ビデオテープについても、今まで以上にビデオ出
力が高く、ノイズレベルの低いテープが要求されている
Furthermore, with regard to video tapes, there is a demand for tapes with higher video output and lower noise levels than ever before.

これらの性能を実現するために、例えば、磁気記録媒体
に使用される磁性粉末として酸化鉄系の磁性粉末を採用
する場合は、平均長軸長の短い磁性粉末を使用すること
によってノイズレベルを低下させる方法が知られている
。しかしながら、この方法は、ノイズレベルを低下させ
ることができるが、周波数特性においてはまだまだ充分
なものとは言えなかった。
To achieve these performances, for example, when iron oxide-based magnetic powder is used as the magnetic powder used in magnetic recording media, the noise level is reduced by using magnetic powder with a short average major axis length. There are known ways to do this. However, although this method can reduce the noise level, the frequency characteristics are still not satisfactory.

これら周波数特性等を向上させる有力な方法として二層
の磁性層からなる重層系の磁気テープが提案されている
0例えば、特開昭58−56228号公報には、上層の
抗磁力を550〜9000Oeの範囲、残留磁束密度を
1600〜2000Gの範囲とし、下層の抗磁力を40
0〜700Oeの範囲、残留磁束密度を1600〜20
00Gの範囲とし、そして強磁性粉末としてCO化合物
被着形またはCoおよびFe化合物被着形酸化鉄を使用
し、さらに上層には上記酸化鉄のBET法比表面積が2
8〜45rn′/gのものを、下層には上記酸化鉄のB
ET法比表面積が18〜25rrf/gのものを、それ
ぞれ使い分けている。このような構成を採ることにより
全周波数帯域で優れた再生出力および低雑音を有する磁
気記録媒体を得ることができるとしている。
A multilayer magnetic tape consisting of two magnetic layers has been proposed as an effective method for improving these frequency characteristics. range, the residual magnetic flux density is in the range of 1600 to 2000G, and the coercive force of the lower layer is 40
Range of 0 to 700 Oe, residual magnetic flux density of 1600 to 20
00G range, and CO compound-coated iron oxide or Co and Fe compound-coated iron oxide is used as the ferromagnetic powder, and the upper layer has a BET specific surface area of 2.
8 to 45rn'/g, and the lower layer contains B of the above iron oxide.
Those with an ET method specific surface area of 18 to 25 rrf/g are used. It is claimed that by adopting such a configuration, it is possible to obtain a magnetic recording medium that has excellent reproduction output and low noise in all frequency bands.

しかしながら、上記磁気記録媒体においては。However, in the above magnetic recording medium.

上下層の抗磁力の差が大きすぎるため、上層の層厚が1
4m以上というような厚膜にした場合、特にオーディオ
カセットテープではバイアス値が高くなると共に周波数
特性の中だるみ(中域での出力低下)や歪率が増大し、
また低域MOLも低下する。
The difference in coercive force between the upper and lower layers is too large, so the thickness of the upper layer is 1
When using a thick film of 4 m or more, especially for audio cassette tapes, the bias value increases, and the frequency response becomes sagging (lower output in the midrange) and the distortion rate increases.
Furthermore, the low frequency MOL also decreases.

さらに、上記磁気記録媒体の下層には、比較的比表面積
の小さい、粗粒子の強磁性粉末を使用している。このた
め、下層の表面の平滑性が充分なものでなく、この層上
に高抗磁力の磁性層を設けても上層の平滑性も劣ったも
のとなるため優れた高域出力を得ることができない。
Furthermore, coarse-grained ferromagnetic powder with a relatively small specific surface area is used in the lower layer of the magnetic recording medium. For this reason, the surface smoothness of the lower layer is not sufficient, and even if a magnetic layer with high coercive force is provided on this layer, the smoothness of the upper layer will also be poor, making it difficult to obtain excellent high-frequency output. Can not.

この平滑性を得るために、下層の表面状態を修正できる
程度に上層を厚くした場合、前述したような低域出力の
低下や中だるみ現象、歪率の増大そして消去特性の低下
をもたらす、さらに、上層の抗磁力は高いものとはいえ
、微粒子の強磁性粉末を用いているので層厚が厚くなり
すぎると転写特性も劣化する。
In order to obtain this smoothness, if the upper layer is made thick enough to modify the surface condition of the lower layer, it will cause a decrease in low-frequency output, a sagging phenomenon in the middle, an increase in distortion rate, and a decrease in erasing characteristics as described above. Although the upper layer has a high coercive force, since fine particles of ferromagnetic powder are used, if the layer thickness becomes too thick, the transfer characteristics will deteriorate.

従って、上記磁気記録媒体は上下層の抗磁力に差があり
すぎること、下層の表面の平滑性が良くないこと、さら
に上層の層厚が厚いことから、周波数特性、歪率そして
転写特性等について充分に改善されているとは言うこと
ができない。
Therefore, in the above magnetic recording medium, there is a large difference in coercive force between the upper and lower layers, the surface smoothness of the lower layer is not good, and the thickness of the upper layer is thick, so the frequency characteristics, strain rate, transfer characteristics, etc. It cannot be said that it has been sufficiently improved.

[発明の目的] 本発明は、全周波数帯域において良好な出力を持ち、且
つバイアスノイズが低く、感度の高い磁気テープなどの
磁気記録媒体を提供することを目的とするものである。
[Object of the Invention] An object of the present invention is to provide a magnetic recording medium such as a magnetic tape that has good output in all frequency bands, low bias noise, and high sensitivity.

特に、周波数特性の中ダルミ(中域での出力低下)が無
く、超高音域での最大出力レベル(MOL)が高く、さ
らに低中域のMOLが高いオーディオカセットテープを
提供するものである。
In particular, it is an object to provide an audio cassette tape that has no middle sag (reduction in output in the middle range) in frequency characteristics, has a high maximum output level (MOL) in the ultra-treble range, and has a high MOL in the low and middle ranges.

また、バイアスノイズが低く、転写特性の優れたオーデ
ィオカセットテープを提供するものである。
Furthermore, the present invention provides an audio cassette tape with low bias noise and excellent transfer characteristics.

[発明の要旨] 本発明は、非磁性支持体の表面に第一磁性層および第二
磁性層をこの順に設けてなる磁気記録媒体において、 第一磁性層が、該磁性層中に含まれる強磁性粉末として
、平均長軸長が0.27〜0.35μmの範囲の値を有
し、Fe’+とFe2◆との比がモル比で100:I 
N100:2.6の範囲にあるコバルト変性酸化鉄を含
み、且つ該第一磁性層の抗磁力(HC1)が360〜4
40Oeの範囲であり、その残留磁束密度(Br1)が
1800G以上であり、且つその層厚が4.0〜5.7
gmの範囲にあって、 そして、第二磁性層が、平均長軸長0.17〜0.27
μmの範囲の値を有し、F e 3+とFe2◆との比
がモル比で100:5.0〜100:6.5の範囲にあ
るコバルト変性酸化鉄を含み、且つ該第二磁性層の抗磁
力(He2)が550〜720Oeの範囲であり、その
残留磁束密度(Br1)が1700G以上であり、且つ
その層厚が0.3〜1.2μmの範囲にあること、を特
徴とする磁気記録媒体にある。
[Summary of the Invention] The present invention provides a magnetic recording medium in which a first magnetic layer and a second magnetic layer are provided in this order on the surface of a non-magnetic support, in which the first magnetic layer has a The magnetic powder has an average major axis length in the range of 0.27 to 0.35 μm, and a molar ratio of Fe'+ to Fe2◆ of 100:I.
N100: contains cobalt-modified iron oxide in the range of 2.6, and the coercive force (HC1) of the first magnetic layer is 360 to 4.
40 Oe, its residual magnetic flux density (Br1) is 1800 G or more, and its layer thickness is 4.0 to 5.7
gm, and the second magnetic layer has an average major axis length of 0.17 to 0.27.
the second magnetic layer comprises cobalt-modified iron oxide having a value in the range of μm and a molar ratio of Fe 3+ to Fe2◆ in the range of 100:5.0 to 100:6.5; The coercive force (He2) is in the range of 550 to 720 Oe, the residual magnetic flux density (Br1) is 1700 G or more, and the layer thickness is in the range of 0.3 to 1.2 μm. Located on magnetic recording media.

上記本発明の磁気記録媒体の好ましい態様は以下の通り
である。
Preferred embodiments of the magnetic recording medium of the present invention are as follows.

■)第一磁性層の抗磁力(He1)が330〜430O
eの範囲であることを特徴とする上記磁気記録媒体。
■) Coercive force (He1) of the first magnetic layer is 330-430O
The magnetic recording medium described above is characterized in that the magnetic recording medium is in the range of e.

2)該第二磁性層の抗磁力(He2)が550〜720
Oeの範囲であることを特徴とする上記磁気記録媒体。
2) The coercive force (He2) of the second magnetic layer is 550 to 720
The magnetic recording medium described above is characterized in that the magnetic recording medium is in the range of Oe.

3)該第二磁性層の層厚が0.5〜1.0uLmの範囲
にあることを特徴とする上記磁気記録媒体。
3) The magnetic recording medium described above, wherein the second magnetic layer has a layer thickness in a range of 0.5 to 1.0 μLm.

[発明の詳細な記述1 本発明は、基本的には非磁性支持体の表面に第一磁性層
および第二磁性層をこの順に設けてなる磁気記録媒体で
ある。
[Detailed Description of the Invention 1 The present invention is a magnetic recording medium basically comprising a first magnetic layer and a second magnetic layer provided in this order on the surface of a non-magnetic support.

第一磁性層は、該磁性層中に含まれる強磁性粉末として
、平均長軸長が0.27〜0.35pLmの範囲の値を
有し、Fe3+とFe2°との比がモル比で100:1
〜100:2.6の範囲にあるコバルト変性酸化鉄を含
んでいる。そして、このコバルト変性酸化鉄を含む該第
一磁性層の抗磁力(HC1)が360〜440Oeの範
囲の値を有し、またその残留磁束密度(Br1)が18
00G以上であり、さらにその層厚が4.0〜5.フル
mの範囲にある。
The first magnetic layer has an average major axis length in the range of 0.27 to 0.35 pLm as a ferromagnetic powder contained in the magnetic layer, and the ratio of Fe3+ to Fe2° is 100 in molar ratio. :1
Contains cobalt-modified iron oxide in the range of ~100:2.6. The coercive force (HC1) of the first magnetic layer containing the cobalt-modified iron oxide is in the range of 360 to 440 Oe, and the residual magnetic flux density (Br1) is 18
00G or more, and the layer thickness is 4.0 to 5.0G. It is in the range of full m.

また、第二磁性層は、強磁性粉末として平均長軸長0.
17〜0.2フルmの範囲の値を有し、F e 3+と
F e 3+との比がモル比でloO:5.0〜100
:6.5の範囲にあるコバルト変性酸化鉄を含んでいる
。そしてこのコバルト変性酸化鉄を含む該第二磁性層の
抗磁力(Hez)が550〜720Oeの範囲の値を有
し、その残留磁束密度(Br+)が1700G以上であ
り、さらにその層厚が0.3〜1.2μmの範囲にある
ことを特徴としている。
The second magnetic layer is made of ferromagnetic powder with an average major axis length of 0.
It has a value in the range of 17 to 0.2 full m, and the ratio of Fe 3+ to Fe 3+ is loO in molar ratio: 5.0 to 100.
: Contains cobalt-modified iron oxide in the range of 6.5. The coercive force (Hez) of the second magnetic layer containing cobalt-modified iron oxide is in the range of 550 to 720 Oe, the residual magnetic flux density (Br+) is 1700 G or more, and the layer thickness is 0. It is characterized by being in the range of .3 to 1.2 μm.

すなわち、本発明の磁気記録媒体の構成は、次のような
構成を採っている。
That is, the configuration of the magnetic recording medium of the present invention is as follows.

まず、下層である第一磁性層は; [1]平滑な表面を得るためコバルト変性酸化鉄の平均
長軸長が比較的小さな値(すなわち、BET法比表面積
が大きい)のものを使用する。
First, for the first magnetic layer which is the lower layer: [1] In order to obtain a smooth surface, a cobalt-modified iron oxide having a relatively small average major axis length (ie, a large BET specific surface area) is used.

[2]上記平均長軸長が大きなコバルト変性酸化鉄は、
転写特性が劣る傾向にあるため、Fe’ゝとF e 3
+との比がモル比で100:1.0〜100:2.6の
範囲にあるように、F e ”の比率を小さくして転写
特性を向上させる。
[2] The above-mentioned cobalt-modified iron oxide having a large average major axis length is
Since the transcription characteristics tend to be inferior, Fe'ゝ and Fe3
The transfer characteristics are improved by reducing the ratio of Fe'' so that the molar ratio of

[3]上記平均長軸長が大きなコバルト変性酸化鉄を使
用することで、強磁性粉末としての磁化率をできるだけ
高くシ、得られる磁性層の強磁性粉末の充填度を上げ、
かつ磁束密度を向上させている。但し、[2]の転写特
性に悪影響を与えない程度に平均長軸長の値は抑える。
[3] By using the above cobalt-modified iron oxide having a large average major axis length, the magnetic susceptibility as a ferromagnetic powder is made as high as possible, and the degree of filling of the ferromagnetic powder in the resulting magnetic layer is increased.
It also improves magnetic flux density. However, the value of the average major axis length is suppressed to the extent that it does not adversely affect the transfer characteristics in [2].

上記のような目的および構成を有している。It has the purpose and structure described above.

そして、上層である第二磁性層は; [1]周波数特性が優れたものとなるように、コバルト
変性酸化鉄の平均長軸長が小さな値(すなわち、BET
法比表面が大きい)のものを使用する。
The second magnetic layer, which is the upper layer, has: [1] In order to have excellent frequency characteristics, the average major axis length of the cobalt-modified iron oxide is a small value (i.e., BET
Use one with a large normal surface.

[2]周波数特性が優れ、特に高域での出力を高くする
ため、層厚を1.2gm以下とする。
[2] The layer thickness should be 1.2 gm or less in order to have excellent frequency characteristics and particularly high output in high frequencies.

[3]上記平均長軸長が大きなコバルト変性酸化鉄を用
いた磁性層は転写特性が劣る傾向にあるが、上層の磁性
層層厚全体に占める割合が低いため、下層の転写特性の
低い効果が全体の磁性層を支配する。従って、F e 
3+とFe2′との比がモル比も、Fe2+の比率を小
さくすると転写特性を向上するが、特にそのような設定
は行なわず、高磁化率が得られるようZoo:5.0〜
100:6.5の範囲に設定し、全周波数帯域において
電磁変換特性、すなわち出力と感度の向上を図る。
[3] Magnetic layers using cobalt-modified iron oxide with a large average major axis length tend to have poor transfer characteristics, but because the upper layer accounts for a small proportion of the total magnetic layer thickness, the transfer characteristics of the lower layer are less effective. dominates the entire magnetic layer. Therefore, F e
The molar ratio of 3+ and Fe2' also improves the transfer characteristics by reducing the ratio of Fe2+, but such settings are not made, and Zoo: 5.0 ~ 5.0 is set to obtain a high magnetic susceptibility.
100:6.5 in order to improve electromagnetic conversion characteristics, that is, output and sensitivity in all frequency bands.

上記のような目的および構成を有している。It has the purpose and structure described above.

このような、上下二層の磁性層よりなる本発明の磁気記
録媒体は、下層が特に表面の平滑性と良好な転写特性を
有し、上層が全周波数帯域において良好な出力を持ち且
つ感度の高い等電磁変換特性を有している。このような
役割分担を行なうことにより全体の磁性層として極めて
侵れた上記諸性能を得ている。
In the magnetic recording medium of the present invention, which is composed of two magnetic layers (upper and lower), the lower layer has particularly good surface smoothness and good transfer characteristics, and the upper layer has good output in all frequency bands and has low sensitivity. It has high isoelectromagnetic conversion characteristics. By dividing the roles in this way, the above-mentioned various performances of the entire magnetic layer are obtained.

詳細には、第一磁性層(下層)は、磁性層中に含まれる
強磁性粉末として、平均長軸長が0.27〜0.35μ
m(BET法比法面表面積算すると25〜31rr1″
/g)(7)範囲の値を有し、F e 3+とF e 
3+との比がモル比で100:1−Zoo:2.6の範
囲にあるコバルト変性酸化鉄を含んでいる。平均長軸長
が0.27μm未満では、F e ”の比を減らしても
転写特性が充分な性能が得られず、0.35gmを超え
ると表面の平滑性が劣化する。ま、たFe’。とFe2
“との比がモル比でZoo:1〜100:2.6の範囲
において、F e ”のモル比が1未満になると強磁性
粉末のσSが低下し、磁性層となった時の最大磁束密度
等が劣化し、2.6を超えると転写特性が劣ったものと
なる。
Specifically, the first magnetic layer (lower layer) has an average major axis length of 0.27 to 0.35μ as ferromagnetic powder contained in the magnetic layer.
m (BET ratio slope surface area is 25~31rr1''
/g) (7) with values in the range F e 3+ and F e
It contains cobalt-modified iron oxide whose molar ratio to 3+ is in the range of 100:1-Zoo:2.6. If the average major axis length is less than 0.27 μm, sufficient transfer characteristics cannot be obtained even if the Fe' ratio is reduced, and if it exceeds 0.35 gm, the surface smoothness deteriorates. . and Fe2
When the molar ratio of Fe is in the range of Zoo:1 to 100:2.6 and the molar ratio of Fe is less than 1, the σS of the ferromagnetic powder decreases and the maximum magnetic flux when it becomes a magnetic layer decreases. Density etc. deteriorate, and if it exceeds 2.6, the transfer characteristics will be poor.

このコバルト変性酸化鉄を含む該第一磁性層の抗磁力(
HC1)は360〜440Oeの範囲の値を有し、また
その残留磁束密度(Br1)が1800G以上であり、
さらにその層厚が4.0〜5.7μmの範囲にある。抗
磁力(HC1)は、360Oe未満では高域出力が低く
、440Oeを超えるとバイアス値が大きくなると共に
低域出力が低くなる。好ましくは370〜430Oeの
範囲である。また、残留磁束密度(Br+)は。
Coercive force of the first magnetic layer containing this cobalt-modified iron oxide (
HC1) has a value in the range of 360 to 440 Oe, and its residual magnetic flux density (Br1) is 1800 G or more,
Furthermore, the layer thickness is in the range of 4.0 to 5.7 μm. When the coercive force (HC1) is less than 360 Oe, the high frequency output is low, and when it exceeds 440 Oe, the bias value increases and the low frequency output decreases. Preferably it is in the range of 370 to 430 Oe. Also, the residual magnetic flux density (Br+) is.

1800G未満となると低域出力が低下する。さらに、
層厚は、4.0gm未満では低域出力の確保が難しく、
5.7μmを超えると出力が飽和し過剰となる。
When it becomes less than 1800G, the low frequency output decreases. moreover,
If the layer thickness is less than 4.0 gm, it is difficult to secure low-frequency output.
If it exceeds 5.7 μm, the output will be saturated and become excessive.

また、上層である第二磁性層は、強磁性粉末として平均
長軸長0.17〜0.27μmの範囲の値を有し、F 
e 3+とF e 3+との比がモル比で100:5.
0〜100:6.5の範囲にあるコバルト変性酸化鉄を
含んでいる。平均長軸長が0.1フルm未満では、余り
にも微粒子すぎて、かえって磁性層への強磁性粉末の充
填度が低下し、また配向性も劣化するため、Br、出力
および感度等が低下する。0.35μmを超えた場合は
バイアスノイズが高くなる。またFe3ゝとF e 3
+との比がモル比でZoo:5〜100:6.5の範囲
において、Fe”のモル比が5未満になると強磁性粉末
のσSが低下し、磁性層となった時の最大磁束密度等が
劣化し、6.5を超えると転写特性が劣ったものとなる
Further, the second magnetic layer, which is the upper layer, has an average major axis length in the range of 0.17 to 0.27 μm as a ferromagnetic powder, and has F
The molar ratio of e 3+ and Fe 3+ is 100:5.
Contains cobalt-modified iron oxide in the range of 0 to 100:6.5. If the average long axis length is less than 0.1 full m, the particles are too fine, and the degree of filling of the ferromagnetic powder in the magnetic layer is reduced, and the orientation is also deteriorated, resulting in a reduction in Br, output, sensitivity, etc. do. If it exceeds 0.35 μm, bias noise will increase. Also, Fe3ゝ and Fe3
In the molar ratio of Zoo:5 to 100:6.5, when the molar ratio of Fe'' becomes less than 5, the σS of the ferromagnetic powder decreases, and the maximum magnetic flux density when it becomes a magnetic layer decreases. If it exceeds 6.5, the transfer characteristics will be poor.

このコバルト変性酸化鉄を含む該第二磁性層の抗磁力(
He2)が550〜720Oeの範囲の値を有し、その
残留磁束密度(Br1)が1700G以上であり、さら
にその層厚が0.3〜1.21Lmの範囲にある。抗磁
力(Hc+)は、550Oe未満では高域出力が低く、
720Oeを超えると低域出力が低くなり、歪率が増大
し、そして消去率も低下する。好ましくは600〜70
0Oeの範囲である。また、残留磁束密度(Br1)は
、1700G未満となると低域出力が低下する。さらに
1層厚は、0.31Lm、!−満では上層に微粒子の強
磁性粉末を使用した効果が出難くなり、バイアスノイズ
が高くなり、高域の出力が低くなる。1.2μmを超え
た場合は歪率が高くなると共に、低域出力が低下する。
Coercive force of the second magnetic layer containing this cobalt-modified iron oxide (
He2) has a value in the range of 550 to 720 Oe, the residual magnetic flux density (Br1) is 1700 G or more, and the layer thickness is in the range of 0.3 to 1.21 Lm. When the coercive force (Hc+) is less than 550 Oe, the high-frequency output is low;
When it exceeds 720 Oe, the low frequency output becomes low, the distortion rate increases, and the erasure rate also decreases. Preferably 600-70
It is in the range of 0 Oe. Moreover, when the residual magnetic flux density (Br1) becomes less than 1700G, the low frequency output decreases. Furthermore, the thickness of one layer is 0.31Lm! - At full capacity, the effect of using fine ferromagnetic powder in the upper layer becomes difficult to achieve, bias noise increases, and high-frequency output decreases. When it exceeds 1.2 μm, the distortion rate increases and the low-frequency output decreases.

好ましくは、その層厚が0.5〜1.Oμmの範囲であ
る。
Preferably, the layer thickness is 0.5 to 1. It is in the range of 0 μm.

本発明で用いられるF e 3+とF e 3+との比
が上記範囲にあるコバルト変性酸化鉄の製造方法はすで
に公知であるが、例えば以下のようして行なわれる。
The method for producing cobalt-modified iron oxide used in the present invention, in which the ratio of Fe 3+ to Fe 3+ is within the above range, is already known, and is carried out, for example, as follows.

まず、γ−Fe、O,を水に分散させ、C。First, γ-Fe, O, is dispersed in water, and C.

S04およびFe50.を加え、ざらにNaOHを加え
て、アルカリ性にして加熱する。そして、得られた表面
処理γ−Fe 20.を水洗し、チッ素ガス中にて加熱
、乾燥することによりCoおよびFe変性されたγ−F
e2O3を得る。上記工程中、Fe’+とFe2°との
比は上記Coco、およびFe50.との比および量を
変更することによって行なうことができる。
S04 and Fe50. Add NaOH to the colander to make it alkaline and heat. Then, the obtained surface treated γ-Fe 20. γ-F modified with Co and Fe by washing with water, heating and drying in nitrogen gas
Obtain e2O3. During the above steps, the ratio of Fe'+ to Fe2° is the same as Coco and Fe50. This can be done by changing the ratio and amount.

本発明の磁気記録媒体は、例えば、以下のようにして製
造される。
The magnetic recording medium of the present invention is manufactured, for example, as follows.

本発明に使用され、る非磁性支持体は、ポリエチレンテ
レフタレート(PET)、、t!リエチレンナフタレー
トのポリエステル類、ポリプロピレン等のポリオレフィ
ン類、セルローストリアセテート、セルロースジアセテ
ート等のセルロース誘導体、ポリ塩化ビニル、ポリ塩化
ビニリデン等のビニル系樹脂、ポリカーボネート、ポリ
アミド、ポリアミドイミド、ポリイミドなどの合成樹脂
からなるフィルムもしくはシート;アルミニウム、銅等
の非磁性金属箔;ステンレス箔などの金属箔;紙、セラ
ミックシート等から選ばれる。
The non-magnetic support used in the present invention is polyethylene terephthalate (PET), t! From polyesters such as polyethylene naphthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose triacetate and cellulose diacetate, vinyl resins such as polyvinyl chloride and polyvinylidene chloride, synthetic resins such as polycarbonate, polyamide, polyamideimide, and polyimide. non-magnetic metal foil such as aluminum or copper; metal foil such as stainless steel foil; paper, ceramic sheet, etc.

本発明の磁気記録媒体における磁性層は強磁性粉末が結
合剤中に分散されてなる層である0本発明に使用される
強磁性粉末はコバルト変性酸化鉄であるが、所望により
他の強磁性粉末を使用することには特に制限はない、そ
の例としては、γ−Fe203.Fe、04、CO金含
有7) F e コo4、Cry□、Co−N1−P合
金、Fe−Co−Ni合金、等公知の強磁性粉末を挙げ
ることができる。
The magnetic layer in the magnetic recording medium of the present invention is a layer in which ferromagnetic powder is dispersed in a binder.The ferromagnetic powder used in the present invention is cobalt-modified iron oxide, but if desired, other ferromagnetic There are no particular restrictions on the use of powders, examples include γ-Fe203. Fe, 04, CO gold-containing 7) Fe Co4, Cry□, Co-N1-P alloy, Fe-Co-Ni alloy, and other known ferromagnetic powders can be mentioned.

本発明で使用される磁性塗料を製造するためのバインダ
ー溶液は、樹脂成分と溶剤、そしてさらに必要に応じて
潤滑剤や研磨剤を含有するバインダー溶液である。
The binder solution for producing the magnetic paint used in the present invention is a binder solution containing a resin component, a solvent, and, if necessary, a lubricant and an abrasive.

樹脂成分は、従来公知の熱可塑性樹脂、熱硬化性樹脂、
または反応型樹脂やこれらの混合物が使用される。s1
1成分の例としては、塩化ビニル系共重合体(例、塩化
ビニル番酢酸ビニル共重合体、塩化ビニル・酢酸ビニル
・ビニルアルコール共重合体、塩化ビニル・酢酸ビニル
・アクリル酸共重合体、塩化ビニル・塩化ビニリデン共
重合体、塩化ビニル働アクリロニトリル共重合体、エチ
レン・酢酸ビニル共重合体、−3o、Naまたは一3O
2Naなどの極性基およびエポキシ基が導入された塩化
ビニル系共重合体)、ニトロセルロース樹脂などのセル
ロース誘導体、アクリル樹脂、ポリビニルアセタール樹
脂、ポリビニルブチラール樹脂、エポキシ樹脂、フェノ
キシ樹脂、ポリウレタン系樹脂(例、ポリエステルポリ
ウレタン樹脂、−So、Naまたは一5O2Naなどの
極性基が導入されたポリウレタン系樹脂、ポリカーボネ
ートポリウレタン樹脂)を挙げることができる。
The resin component is a conventionally known thermoplastic resin, thermosetting resin,
Alternatively, reactive resins or mixtures thereof are used. s1
Examples of one component include vinyl chloride copolymers (e.g., vinyl chloride/vinyl acetate copolymer, vinyl chloride/vinyl acetate/vinyl alcohol copolymer, vinyl chloride/vinyl acetate/acrylic acid copolymer, chloride Vinyl/vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, ethylene/vinyl acetate copolymer, -3O, Na or -3O
(vinyl chloride copolymers into which polar groups such as 2Na and epoxy groups have been introduced), cellulose derivatives such as nitrocellulose resins, acrylic resins, polyvinyl acetal resins, polyvinyl butyral resins, epoxy resins, phenoxy resins, polyurethane resins (e.g. , polyester polyurethane resin, polyurethane resin into which a polar group such as -So, Na or -5O2Na is introduced, and polycarbonate polyurethane resin).

また、硬化剤を使用する場合、通常は、ポリイソシアネ
ート化合物が用いられる。ポリイソシアネート化合物は
、通常ポリウレタン系樹脂等の硬化剤成分として使用さ
れているもののなかから選択される。
Furthermore, when a curing agent is used, a polyisocyanate compound is usually used. The polyisocyanate compound is selected from those commonly used as curing agent components for polyurethane resins and the like.

また、電子線照射による硬化処理を行なう場合には、反
応性二重結合を有する化合物(例、ウレタンアクリレー
ト)を使用することができる。
Further, when performing curing treatment by electron beam irradiation, a compound having a reactive double bond (eg, urethane acrylate) can be used.

磁性塗料の製造に用いられる溶媒の例としては、アセト
ン、メチルエチルケトン、メチルイソブチルケトン、エ
チルイソブチルケトン、シクロヘキサノン等のケトン類
;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸グリコー
ルモノエチルエーテル等のエステル類;エーテル、グリ
コールジメチルエーテル、ジオキサン等のグリコールエ
ーテル類;ベンゼン、トルエン、キシレン等の芳香族炭
化水素類;エチレンクコライド、エチレンクコライド、
四塩化炭素、クロロホルム、エチレンクロルヒドリン、
ジクロルベンゼン等の塩素化Jl&化水素等を挙げるこ
とができ、これらの溶媒は単独または混合して用いるこ
とができる。特に好ましくは、ケトン類などの極性溶媒
もしくは極性溶媒を含む溶媒である。
Examples of solvents used in the production of magnetic paints include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl isobutyl ketone, and cyclohexanone; esters such as methyl acetate, ethyl acetate, butyl acetate, and acetic acid glycol monoethyl ether; Glycol ethers such as ether, glycol dimethyl ether and dioxane; Aromatic hydrocarbons such as benzene, toluene and xylene; Ethylene cucolide, ethylene cucolide,
Carbon tetrachloride, chloroform, ethylene chlorohydrin,
Examples include chlorinated JI and hydrogen chloride such as dichlorobenzene, and these solvents can be used alone or in combination. Particularly preferred are polar solvents such as ketones or solvents containing polar solvents.

磁性粉末をバインダー溶液とともに均一に混練、分散す
る。この混練1分散は、二本ロールミル、三本ロールミ
ル、オープンニーグー、加圧ニーグー、連続ニーダ−1
二軸型連続混練混合機等を用いて前会散し、次いでサン
ドグラインダー、ボールミル等で後分散する方法が一般
に利用される。
The magnetic powder is uniformly kneaded and dispersed with the binder solution. This kneading 1 dispersion can be carried out using a two-roll mill, a three-roll mill, an open knee goo, a pressurized knee goo, or a continuous kneader 1.
Generally, a method is used in which pre-dispersion is performed using a twin-screw continuous kneading mixer or the like, followed by post-dispersion using a sand grinder, ball mill, or the like.

本発明に使用される磁性塗料は、高い残留磁束密度を得
る必要から、コバルト変性酸化鉄を混練するのに用いる
装置として上記の中で特に二軸型連続混線混合機である
ことが好ましい、これを用いることにより、高い剪断力
を与えつつ上記強磁性粉末を混線(前分散)することが
できる、さらに、この混線物を希釈する際は、微分散処
理を行なってから、上記分散処理を行なうことがことが
好ましい。
Since it is necessary to obtain a high residual magnetic flux density for the magnetic paint used in the present invention, a twin-screw continuous cross-talk mixer is particularly preferred among the above devices as the device used for kneading the cobalt-modified iron oxide. By using the above, the ferromagnetic powder can be mixed (pre-dispersed) while applying a high shearing force.Furthermore, when diluting this mixed material, perform a fine dispersion process and then perform the above dispersion process. It is preferable that

磁性塗料中には、公知技術に従って、研磨材、潤滑剤、
分散剤、帯電防止剤、などの各種の添加剤のうち任意の
ものを目的に応じて添加してもよいことは勿論である。
Magnetic paint contains abrasives, lubricants,
Of course, any of various additives such as dispersants and antistatic agents may be added depending on the purpose.

次に、本発明の磁気記録媒体の製造方法について述べる
。塗設は、以上の材料により、上記混線分散方法により
調製した磁性塗料を非磁性支持体上に下記の方法にて塗
布する。先ず第一磁性層用の樹脂成分および強磁性粉末
として上記特定のコバルト変性酸化鉄並びに所望により
配合される硬化剤などの磁性層形成成分を溶剤と共に上
記のように混線分散して第一磁性層用塗布液を調製する
。そして第二磁性層用についても同様に第二磁性層用塗
布液を調製する。
Next, a method for manufacturing the magnetic recording medium of the present invention will be described. For coating, a magnetic paint prepared by the above-mentioned crosstalk dispersion method using the above-mentioned materials is applied onto a non-magnetic support by the following method. First, magnetic layer forming components such as the above-mentioned specific cobalt-modified iron oxide as a resin component and ferromagnetic powder for the first magnetic layer and a hardening agent blended as desired are mixed and dispersed together with a solvent as described above to form the first magnetic layer. Prepare a coating solution for A coating liquid for the second magnetic layer is prepared in the same manner for the second magnetic layer.

本発明の磁気記録媒体の製造方法は、走行下にある非磁
性支持体の表面に第一磁性層用塗布液を塗布し、その塗
布層が湿潤状態の内に、その塗布層上に連続して第二磁
性層用塗布液を第二磁性層の乾燥後の層厚が0.3〜1
.2ルmの範囲内になるように塗布する方法が好ましい
、この二層を連続塗布する方法は、例えば塗布機として
リバースローラを用いた場合、走行下にある非磁性支持
体を挟むようにしてリバースローラを連続して二基設置
して塗布しても良いし、また第一磁性層が湿潤状態(す
なわち塗布層がまだ溶剤を含んで粘着性を示す状態)を
保持できる範囲内で間隔を設けて二基設置して塗布して
も良い。
The method for producing a magnetic recording medium of the present invention involves applying a coating liquid for a first magnetic layer onto the surface of a non-magnetic support while it is running, and then applying a coating liquid continuously on top of the coating layer while the coating layer is in a wet state. The coating liquid for the second magnetic layer is applied so that the layer thickness of the second magnetic layer after drying is 0.3 to 1.
.. It is preferable to apply the coating so that it is within the range of 2 mm.The method of continuously coating the two layers is, for example, when a reverse roller is used as the coating machine, the reverse roller is applied so that the non-magnetic support under running is sandwiched between the two layers. The first magnetic layer may be installed in succession and applied, or the first magnetic layer may be placed at intervals within a range that allows the first magnetic layer to remain wet (that is, the applied layer still contains solvent and exhibits tackiness). Two units may be installed and applied.

磁性塗料を塗布する方法としては、リバースローラ以外
に、エアードクターコート、ブレードコート、ロッドコ
ート、押出しコート、エアナイフコート、スクイズコー
ト、含浸コート、トランスファーロールコート、グラビ
ヤコート、キスコート、キャストコート、スプレィコー
ト、スピンコードその他の方法が利用できる。
In addition to reverse roller, methods for applying magnetic paint include air doctor coating, blade coating, rod coating, extrusion coating, air knife coating, squeeze coating, impregnation coating, transfer roll coating, gravure coating, kiss coating, cast coating, and spray coating. , spin codes and other methods are available.

上記磁性塗料の塗布層は、得られた磁気記録媒体の磁性
層の厚さ(第一磁性層と第二磁性層の合計の層厚)が通
常0.5〜10gmの範囲内となるように塗布される。
The coating layer of the magnetic paint is applied so that the thickness of the magnetic layer of the obtained magnetic recording medium (the total layer thickness of the first magnetic layer and the second magnetic layer) is usually within the range of 0.5 to 10 gm. applied.

本発明で用いる非磁性支持体の磁性塗料が塗布されてい
ない面にバック層(バッキング層)が設けられていても
よい0通常バック層は、非磁性支持体の磁性塗料が塗布
されていない面に、研磨材、帯電防止剤などの粒状成分
と結合剤とが有機溶剤に分散してなるバック層形成塗料
を塗布して設けられた層である。
A backing layer may be provided on the side of the non-magnetic support used in the present invention that is not coated with magnetic paint. Normally, the back layer is the side of the non-magnetic support that is not coated with magnetic paint. This is a layer formed by applying a back layer-forming paint in which particulate components such as abrasives and antistatic agents and a binder are dispersed in an organic solvent.

なお、非磁性支持体の磁性塗料およびバック層形成塗料
の塗設面に接着剤層が付設されていてもよい。
Note that an adhesive layer may be attached to the surface of the nonmagnetic support on which the magnetic paint and the back layer forming paint are applied.

通常、塗布された磁性塗料の塗布層は、磁性塗料の塗布
層中に含まれる強磁性粉末を配向させる処理、すなわち
磁場配向処理を施した後、乾燥される。
Usually, the coated layer of magnetic paint is dried after being subjected to a treatment for orienting the ferromagnetic powder contained in the coated layer of magnetic paint, that is, a magnetic field orientation treatment.

このようにして乾燥された後、塗布層に表面平滑化処理
を施す0表面平滑化処理には、たとえばスーパーカレン
ダロールなどが利用される0表面平滑化処理を行なうこ
とにより、乾燥時の溶剤の除去によって生じた空孔が消
滅し磁性層中の強磁性粉末の充填率が向上するので、電
磁変換特性の高い磁気記録媒体を得ることができる。
After being dried in this way, the coating layer is subjected to a surface smoothing treatment using, for example, a super calender roll, which removes the solvent during drying. Since the voids generated by the removal are eliminated and the filling rate of the ferromagnetic powder in the magnetic layer is improved, a magnetic recording medium with high electromagnetic conversion characteristics can be obtained.

このようにして硬化処理された積層体を次に所望の形状
に裁断する。
The thus cured laminate is then cut into a desired shape.

裁断はスリッターなとの通常の裁断機などを使用して通
常の条件で行なうことができる。
The cutting can be carried out under normal conditions using a normal cutting machine such as a slitter.

本発明の磁気記録媒体は、上下二層系について述べてき
たが、上記指定の性質を保持し二層の磁性層を含む限り
、全体として三層以上であっても良い。
Although the magnetic recording medium of the present invention has been described as having an upper and lower two-layer system, it may have three or more layers as a whole as long as it maintains the above specified properties and includes two magnetic layers.

[発明の効果] 本発明の磁気記録媒体は、前記のようにそれぞれ特定さ
れた平均長軸長の値、F e 3+とFe2°との比を
有するコバルト変性酸化鉄を含み、且つ該磁性層が特定
の抗磁力(Hc2)、残留磁束密度モして層厚を有する
第一磁性層(下層)と第二磁性層(上層)とが重層され
ている。
[Effects of the Invention] The magnetic recording medium of the present invention includes cobalt-modified iron oxide having the average major axis length values and the ratio of Fe 3+ and Fe2° specified as described above, and the magnetic layer A first magnetic layer (lower layer) and a second magnetic layer (upper layer) having a specific coercive force (Hc2) and a specific residual magnetic flux density and a specific layer thickness are layered.

すなわち、上記上下二層の磁性層よりなる本発明の磁気
記録媒体は、下層が特に表面の平滑性と良好な転写特性
を有し、上層が全周波数帯域において良好な出力を持ち
且つ感度の高い等電磁変換特性を有している。このよう
な役割分担を行なうことにより全体の磁性層として極め
て優れた上記諸性能、すなわち全周波数帯域において良
好な出力、低いバイアスノイズ、高い感度、そして優れ
た転写特性を得ることができる。
That is, in the magnetic recording medium of the present invention, which is composed of the above-mentioned two upper and lower magnetic layers, the lower layer has particularly good surface smoothness and good transfer characteristics, and the upper layer has good output and high sensitivity in all frequency bands. It has equal electromagnetic conversion characteristics. By dividing the roles in this manner, it is possible to obtain the above-mentioned extremely excellent performances of the entire magnetic layer, that is, good output in all frequency bands, low bias noise, high sensitivity, and excellent transfer characteristics.

次に1本発明の実施例および比較例を記載する。なお、
以下の例において1部1は、特に記載がない限りr重量
部jを意味する。
Next, an example of the present invention and a comparative example will be described. In addition,
In the following examples, 1 part 1 means r parts by weight, unless otherwise specified.

[実施例1] 強磁性粉末として使用したコバルト変性酸化鉄を第一磁
性層用を第1表および第二磁性層用を第2表にに示す。
[Example 1] The cobalt-modified iron oxide used as the ferromagnetic powder is shown in Table 1 for the first magnetic layer and in Table 2 for the second magnetic layer.

以下1′2臼 第1表 強磁性 Hc  平均長軸長 Fe2°/Fe”  る
磁性粉東名 (Oe)   (μm)   (X100
)   塗料名a   360  0.30  2.3
   Ab   380  0.30  2.3   
Bc     410    0.30    2.3
     Cd     440    0.30  
  2.3     De   465  0.30 
 2.3   Ef   410  0.25  2.
2   Fg   410  0.27  2.3  
 Gh   410  0.34  2.3   Hi
   410  0.37  2.4   I    
’j   410  0.30  0.5   Jk 
  410  0.30  1.1   K+   4
10  0.30  2.6   Lm   410 
 0 、30  2 、9   M第2表 強磁性 Hc  平均長軸長 F e ” / F e
 ”  る磁性粉東名 (Oe)   (μm)   
(X100)   塗料名n   560  0.23
  6.0   No   600  0.23  6
.0  0p   680  0.23   B、I 
  Pq   740  0.23  6.I   Q
r   770  0.23  6.2   Rs  
   680    0.15    5.9    
 SL   680  0.17  6.OTu   
680  0.27  6.1  ’Uv   680
  0.30  6.2   Vw   680  0
.23  4.7   Wx   680  0.23
  5.2   Xy     680    0.2
3    6.4     Yz     680  
  0.23    8.7    2第−磁  用磁
  料 次の四つの工程より製造した。
Table 1 Ferromagnetic Hc Average major axis length Fe2°/Fe'' Magnetic powder Tomei (Oe) (μm) (X100
) Paint name a 360 0.30 2.3
Ab 380 0.30 2.3
Bc 410 0.30 2.3
Cd 440 0.30
2.3 De 465 0.30
2.3 Ef 410 0.25 2.
2 Fg 410 0.27 2.3
Gh 410 0.34 2.3 Hi
410 0.37 2.4 I
'j 410 0.30 0.5 Jk
410 0.30 1.1 K+ 4
10 0.30 2.6 Lm 410
0, 30 2, 9 M Table 2 Ferromagnetic Hc Average major axis length F e ” / F e
” Magnetic powder Tomei (Oe) (μm)
(X100) Paint name n 560 0.23
6.0 No 600 0.23 6
.. 0 0p 680 0.23 B, I
Pq 740 0.23 6. IQ
r 770 0.23 6.2 Rs
680 0.15 5.9
SL 680 0.17 6. OTu
680 0.27 6.1 'Uv 680
0.30 6.2 Vw 680 0
.. 23 4.7 Wx 680 0.23
5.2 Xy 680 0.2
3 6.4 Yz 680
0.23 8.7 Magnetic material for second magnetic material was manufactured through the following four steps.

混線工程: 第一磁性層用コバルト変性酸化鉄C100部水酸基含有
塩化ビニル酢酸ビニル    15部共重合体(電化ビ
ニル100OG: 電気化学工業−製) メチルエチルケトン          13部酢酸ブ
チル              13部上記組成を、
二軸型連続混線混合機(KRCニーダT−4:■栗本鉄
工所製)に連続して添加しながら混練し、混線物を得た
Cross-wire step: 100 parts of cobalt-modified iron oxide C for the first magnetic layer, 15 parts of hydroxyl group-containing vinyl chloride, vinyl acetate, copolymer (electrified vinyl 100OG: manufactured by Denki Kagaku Kogyo), 13 parts of methyl ethyl ketone, 13 parts of butyl acetate.
The mixture was kneaded while being continuously added to a twin-screw continuous mixer (KRC kneader T-4: manufactured by Kurimoto Iron Works) to obtain a mixed material.

混練希釈工程; 上記混線物             141部ポリウ
レタン樹脂            3部(大日本イン
キ化学工業−製: クリスポン7209 濃度45%) メチルエチルケトン          28部酢酸ブ
チル              28部上記組成を、
二軸型連続混線混合機に連続して添加しなから混練希釈
し、希釈物を得た。
Kneading and diluting step: 141 parts of the above mixed material, 3 parts of polyurethane resin (manufactured by Dainippon Ink and Chemicals: Crispon 7209, concentration 45%), 28 parts of methyl ethyl ketone, 28 parts of butyl acetate.
The mixture was continuously added to a twin-screw continuous mixer and then kneaded and diluted to obtain a diluted product.

混合分散工程および微分散工程; 上記希釈物             200部オレイ
ン酸              0.5部ミリスチン
酸             2.0部ジメチルポリシ
ロキサン(重合度60)0.2部メチルエチルケトン 
         50部酢酸ブチル        
      57部とをデイシルバーにより混合分散処
理を行ない1次いで、サンドグラインダーで微分散処理
を行ない、得られた分散液をIgmの平均孔径を有する
フィルターで濾過し、第一磁性層用磁性塗料Cを製造し
た。
Mixing and dispersion step and fine dispersion step; Above diluted product 200 parts Oleic acid 0.5 part Myristic acid 2.0 parts Dimethylpolysiloxane (degree of polymerization 60) 0.2 parts Methyl ethyl ketone
50 parts butyl acetate
57 parts were mixed and dispersed using Daysilver, then finely dispersed using a sand grinder, and the resulting dispersion was filtered through a filter having an average pore size of Igm to obtain the magnetic paint C for the first magnetic layer. Manufactured.

第二磁性層用磁性・料 次の四つの工程より製造した。Magnetism/material for second magnetic layer It was manufactured using the following four steps.

混練工程; 第二磁性層用コバルト変性酸化鉄o   100部水酸
基含有塩化ビニル酢酸ビニル    15部共重合体(
電化ビニル100OG: 電気化学工業■製) カーボンブラック(平均粒径:30mg)  1部メチ
ルエチルケトン          13部シクロヘキ
サノン           13部上記組成を、二軸
型連続混線混合機に連続して添加しながら混練し、混線
物を得た。
Kneading step; Cobalt-modified iron oxide for second magnetic layer 100 parts Hydroxyl group-containing vinyl chloride Vinyl acetate 15 parts Copolymer (
Denka Vinyl 100OG: manufactured by Denki Kagaku Kogyo ■) Carbon black (average particle size: 30 mg) 1 part methyl ethyl ketone 13 parts cyclohexanone 13 parts The above composition was kneaded by continuously adding it to a twin-screw continuous mixer to form a mixer. I got it.

混練希釈工程; 上記混練物             142部ポリウ
レタン樹脂            3部(大日本イン
キ化学工業■製: クリスポン7209 濃度45%) メチルニチルケトン          28部酢酸ブ
チル              28部上記組成を、
二輪型連続混練混合機に連続して添加しなから混練希釈
し、希釈物を得た。
Kneading and diluting step: 142 parts of the above kneaded product, 3 parts of polyurethane resin (manufactured by Dainippon Ink & Chemicals: Crispon 7209, concentration 45%), 28 parts of methyl nityl ketone, 28 parts of butyl acetate.
The mixture was continuously added to a two-wheeled continuous kneading mixer and then kneaded and diluted to obtain a diluted product.

混合分散工程および微分散工程; 上記希釈物             201部オレイ
ン酸              0.5部ミリスチン
酸             2.0部ジメチルポリシ
ロキサン(重合度60)0.5部a−AfL20sC平
均粒径:0.5 μm)  l 、 0部メチルエチル
ケトン          50部酢酸ブチル    
          56部とをデイシルバーにより混
合分散処理を行ない1次いでサンドグラインダーにて微
分散処理を行ない、lμmの平均孔径を有するフィルタ
ーで濾過して第二磁性層用磁性塗料Nを製造した。
Mixing and dispersion step and fine dispersion step; Above diluted product 201 parts Oleic acid 0.5 parts Myristic acid 2.0 parts Dimethylpolysiloxane (degree of polymerization 60) 0.5 parts a-AfL20sC average particle size: 0.5 μm) l , 0 parts methyl ethyl ketone 50 parts butyl acetate
56 parts were mixed and dispersed using Daysilver, then finely dispersed using a sand grinder, and filtered through a filter having an average pore size of 1 μm to produce a magnetic paint N for a second magnetic layer.

これを6.3μmの厚さのポリエチレンテレフタレート
支持体上に乾燥後の層厚が5μmとなるように第一磁性
層用磁性塗料Cを塗布し、塗布層が粘着状態のうちに第
二磁性層用磁性塗料Nを乾燥後の層厚が0.8ルmとな
るように第二磁性層用磁性塗料Nを塗布し、粘着状態の
うちに磁場配向処理を行ない、乾燥して磁性層を形成し
た。その後スーパーカレンダー処理を施した。そして3
.8mm幅にスリットしオーディオカセットテープを製
造した。
The magnetic paint C for the first magnetic layer was coated on a polyethylene terephthalate support with a thickness of 6.3 μm so that the layer thickness after drying was 5 μm, and while the coated layer was in a sticky state, the second magnetic layer was coated. Apply magnetic paint N for the second magnetic layer so that the layer thickness after drying is 0.8 lm, perform magnetic field orientation treatment while it is in a sticky state, and dry to form a magnetic layer. did. After that, a super calender treatment was performed. and 3
.. An audio cassette tape was produced by slitting the tape to a width of 8 mm.

[実施例2〜7] 実施例1において、第3表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Examples 2 to 7] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 3 were used in Example 1. did.

[比較例1〜6] 実施例1において、第3表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Comparative Examples 1 to 6] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 3 were used in Example 1. did.

[参考例1] 実施例1において、第一磁性層用磁性塗料としてCを使
用し、支持体上に乾燥後の層厚が5.8μmとなるよう
に塗布し、第二磁性層用磁性塗料は塗布しなかった以外
は実施例1と同様にしてオーディオカセットテープを製
造した。
[Reference Example 1] In Example 1, C was used as the magnetic paint for the first magnetic layer and coated on the support so that the layer thickness after drying was 5.8 μm, and the magnetic paint for the second magnetic layer was An audio cassette tape was produced in the same manner as in Example 1, except that no coating was applied.

上記、実施例1〜7および比較例1〜6は、特に上層で
ある第二磁性層の組成の影響を見た。参考例1の一層型
の磁性層に比較して性能を示した。
In the above Examples 1 to 7 and Comparative Examples 1 to 6, the influence of the composition of the second magnetic layer, which is the upper layer, was particularly observed. Performance was shown compared to the single-layer magnetic layer of Reference Example 1.

上記各個の構成と下記の評価方法から得られた物性を第
3表に示す。
Table 3 shows the constitution of each of the above and the physical properties obtained from the evaluation method described below.

上記物性の測定条件は以下の通りである。The measurement conditions for the above physical properties are as follows.

」墓皿上 振動試料磁束計(東英工業■)を用いて測定磁場(Hm
)2kOeにおける、抗磁力(He)、残留磁束密度(
Br)の値を測定した。
The measured magnetic field (Hm
) At 2 kOe, coercive force (He), residual magnetic flux density (
The value of Br) was measured.

周波数特性 ノープルポジションにおいて、−20dB人力レヘ/l
/ ニおける各周波数(315Hz、1kHz、Ei、
3kHz、10kHz、16kHz)での出力レベルを
測定し、参考例1のテープの出力レベルをOdBとした
時の相対値として表記した。
Frequency characteristics: -20 dB human power level/l in no-pull position
/ Each frequency in (315Hz, 1kHz, Ei,
The output level was measured at 3kHz, 10kHz, 16kHz) and expressed as a relative value when the output level of the tape of Reference Example 1 was expressed as OdB.

1入ff1iヒエ上(MOL) 市販の測定用テープデツキ(ナカミチ■製、582型)
を用いて、ノーマルポジションにおけるMOL315、
MOLloにおよびMOL16にの各特性を測定した。
1 piece ff1i millet top (MOL) Commercially available measuring tape deck (manufactured by Nakamichi ■, model 582)
MOL315 in normal position using
Each characteristic of MOLlo and MOL16 was measured.

(1)MOL315 315Hzの信号の第三次高周波が3%になるときの最
大出力を調べた。なお、表記した値は参考例1のテープ
のMOL315の値をOdBとしたときの相対値である
(1) MOL315 The maximum output when the third-order high frequency of the 315 Hz signal becomes 3% was investigated. Note that the values shown are relative values when the MOL315 value of the tape of Reference Example 1 is set as OdB.

(2)MOLloに 10kHzの信号の飽和出力を調べた。なお、表記した
値は参考例1のテープのSQL 10 kの値をOdB
としたときの相対値である。
(2) We investigated the saturation output of a 10kHz signal on MOLlo. Note that the values shown are OdB of the SQL 10k value of the tape in Reference Example 1.
This is the relative value when .

(3)MOL16に 16kHzの信号の飽和出力を調べた。なお、表記した
値は参考例1のテープの5QL16にの値をOdBとし
たときの相対値である。
(3) We investigated the saturation output of a 16kHz signal on MOL16. Note that the values shown are relative values when the value of 5QL16 of the tape of Reference Example 1 is set as OdB.

バイアスノイズ(BN) バイアスノイズは、聴感補正回路を通した後の出力レベ
ルである。なお、表記した値は参考例1のテープのBN
の値をOdBとしたときの相対値である。
Bias Noise (BN) Bias noise is the output level after passing through the auditory correction circuit. The values listed are the BN of the tape in Reference Example 1.
It is a relative value when the value of is OdB.

転写特性 1kH2信号をリールの1回転内に録音した後10回転
無信号録音を行ない、これを三回繰返した。このテープ
を温度30±1℃にて24時間放置後再生し、原信号と
転写信号の再生出力レベルを測定し、その差を求めた。
Transfer characteristics After recording a 1 kHz signal within one rotation of the reel, no signal recording was performed for 10 rotations, and this was repeated three times. This tape was left at a temperature of 30±1° C. for 24 hours and then played back, and the playback output levels of the original signal and the transferred signal were measured, and the difference therebetween was determined.

兇」 315HzのOdB信号を入力した時の、再生出力レベ
ルに対する第三次高周波歪の比を示した。
兇” The ratio of third-order high-frequency distortion to the reproduction output level when a 315Hz OdB signal is input is shown.

次の、実施例8〜13および比較例7〜12では、特に
下層である第一磁性層の組成の影響を見た。参考例1の
一層型の磁性層に比較して性能を示した。
In the following Examples 8 to 13 and Comparative Examples 7 to 12, the influence of the composition of the first magnetic layer, which is the lower layer, was particularly examined. Performance was shown compared to the single-layer magnetic layer of Reference Example 1.

[実施例8〜13] 実施例1において、第4表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Examples 8 to 13] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 4 were used in Example 1. did.

[比較例7〜12] 実施例1において、第4表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Comparative Examples 7 to 12] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 4 were used in Example 1. did.

上記各側の構成と前記の評価方法から得られた物性を第
4表に示す。
Table 4 shows the configuration of each side and the physical properties obtained from the evaluation method described above.

次の、実施例14〜17および比較例13〜17では、
特に第一磁性層および第二磁性層の層厚を見た。参考例
1の一層型の磁性層に比較して性能を示した。
In the following Examples 14 to 17 and Comparative Examples 13 to 17,
In particular, we looked at the layer thicknesses of the first magnetic layer and the second magnetic layer. Performance was shown compared to the single-layer magnetic layer of Reference Example 1.

[実施例14〜17] 実施例1において、第5表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Examples 14 to 17] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 5 were used in Example 1. did.

[比較例13〜17] 実施例1において、第5表に示した第一磁性層用磁性塗
料および第二磁性層用磁性塗料を使用した以外は実施例
1と同様にしてオーディオカセットテープを製造した。
[Comparative Examples 13 to 17] Audio cassette tapes were produced in the same manner as in Example 1, except that the magnetic paint for the first magnetic layer and the magnetic paint for the second magnetic layer shown in Table 5 were used in Example 1. did.

上記各側の構成と前記の評価方法から得られた物性を第
5表に示す。
Table 5 shows the configuration of each side and the physical properties obtained from the evaluation method described above.

以下余白 上記のように、第3表には第二磁性層(特に含有するC
O変性酸化鉄の種類)、第4表は第一磁性層(同前)、
そして第5表には層厚、それぞれの物性への影響を示し
た。
As mentioned above, Table 3 shows the second magnetic layer (particularly the carbon content).
Types of O-modified iron oxide), Table 4 shows the first magnetic layer (same as above),
Table 5 shows the layer thickness and its effect on physical properties.

これらの表から明らかなように、特定のCO変性酸化鉄
を使用し、上下二層がそれぞれ特定の磁気特性を有し、
そして特定の層厚を有する本発明の磁気記録媒体は、周
波数特性、最大出力、歪率、バイアスノイズそして転写
特性の全ての性能がバランス良く確保できている。
As is clear from these tables, a specific CO-modified iron oxide is used, and the upper and lower two layers each have specific magnetic properties,
The magnetic recording medium of the present invention having a specific layer thickness can ensure all the performances of frequency characteristics, maximum output, distortion rate, bias noise, and transfer characteristics in a well-balanced manner.

特許出願人 富士写真フィルム株式会社代  理  人
  弁理士   柳  川  泰  男手続補正書 鬼 昭和63年12月23日
Patent applicant: Fuji Photo Film Co., Ltd. Agent: Yasushi Yanagawa, patent attorney: Procedural amendments filed on December 23, 1988

Claims (1)

【特許請求の範囲】 1、非磁性支持体の表面に第一磁性層および第二磁性層
をこの順に設けてなる磁気記録媒体において、 第一磁性層が、該磁性層中に含まれる強磁性粉末として
、平均長軸長が0.27〜0.35μmの範囲の値を有
し、Fe^3^+とFe^2^+との比がモル比で10
0:1〜100:2.6の範囲にあるコバルト変性酸化
鉄を含み、且つ該第一磁性層の抗磁力(HC_1)が3
60〜440Oeの範囲であり、その残留磁束密度(B
r_1)が1800G以上であり、且つその層厚が4.
0〜5.7μmの範囲にあって、 そして、第二磁性層が、平均長軸長0.17〜0.27
μmの範囲の値を有し、Fe^3^+とFe^2^+と
の比がモル比で100:5.0〜100:6.5の範囲
にあるコバルト変性酸化鉄を含み、且つ該第二磁性層の
抗磁力(Hc_2)が550〜720Oeの範囲であり
、その残留磁束密度(Br_1)が1700G以上であ
り、且つその層厚が0.3〜1.2μmの範囲にあるこ
と、を特徴とする磁気記録媒体。
[Claims] 1. A magnetic recording medium comprising a first magnetic layer and a second magnetic layer provided in this order on the surface of a non-magnetic support, wherein the first magnetic layer is composed of a ferromagnetic material contained in the magnetic layer. As a powder, the average long axis length is in the range of 0.27 to 0.35 μm, and the molar ratio of Fe^3^+ to Fe^2^+ is 10.
The first magnetic layer contains cobalt-modified iron oxide in the range of 0:1 to 100:2.6, and the coercive force (HC_1) of the first magnetic layer is 3.
The residual magnetic flux density (B
r_1) is 1800G or more, and the layer thickness is 4.
and the second magnetic layer has an average major axis length of 0.17 to 0.27 μm.
a cobalt-modified iron oxide having a value in the range of μm and a molar ratio of Fe^3^+ to Fe^2^+ in the range of 100:5.0 to 100:6.5, and The coercive force (Hc_2) of the second magnetic layer is in the range of 550 to 720 Oe, the residual magnetic flux density (Br_1) is 1700 G or more, and the layer thickness is in the range of 0.3 to 1.2 μm. A magnetic recording medium characterized by.
JP63046324A 1988-02-29 1988-02-29 Magnetic recording medium Pending JPH01220218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63046324A JPH01220218A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63046324A JPH01220218A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01220218A true JPH01220218A (en) 1989-09-01

Family

ID=12743978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63046324A Pending JPH01220218A (en) 1988-02-29 1988-02-29 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01220218A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102630A (en) * 1989-09-14 1991-04-30 Konica Corp Magnetic recording medium
JPH03102631A (en) * 1989-09-14 1991-04-30 Konica Corp Magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102630A (en) * 1989-09-14 1991-04-30 Konica Corp Magnetic recording medium
JPH03102631A (en) * 1989-09-14 1991-04-30 Konica Corp Magnetic recording medium

Similar Documents

Publication Publication Date Title
US4784895A (en) Magnetic recording medium and process for the preparation of the same
JPS6313258B2 (en)
JPH036575B2 (en)
JPS61214223A (en) Magnetic recording medium
JPS63300425A (en) Magnetic recording medium
US4781965A (en) Magnetic recording medium
JP2581583B2 (en) Magnetic recording media
US4946740A (en) Magnetic recording medium
JPH0727631B2 (en) Magnetic recording medium
JPH01220218A (en) Magnetic recording medium
JP2640275B2 (en) Magnetic recording media
JPH0241088B2 (en)
JPS6250885B2 (en)
JPS63259826A (en) Magnetic recording medium
JP2729532B2 (en) Magnetic recording media
JP3373043B2 (en) Magnetic tape cassette
JP2581587B2 (en) Magnetic recording media
JPH03120613A (en) Magnetic disk and its production
JPH04318321A (en) Magnetic recording medium
JPH0467428A (en) Magnetic recording medium
JPS6231018A (en) Magnetic recording medium and its manufacture
JP2581569B2 (en) Audio tape or video tape
JP2581582B2 (en) Magnetic recording media
JP3021173B2 (en) Video tape
JPH0628661A (en) Nonmagnetic base with masking layer for magnetic recording medium and magnetic recording medium and its production