JPH01220197A - Method for fixing stripe magnetic domain - Google Patents

Method for fixing stripe magnetic domain

Info

Publication number
JPH01220197A
JPH01220197A JP63044903A JP4490388A JPH01220197A JP H01220197 A JPH01220197 A JP H01220197A JP 63044903 A JP63044903 A JP 63044903A JP 4490388 A JP4490388 A JP 4490388A JP H01220197 A JPH01220197 A JP H01220197A
Authority
JP
Japan
Prior art keywords
magnetic domain
magnetic
magnetic field
domain
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63044903A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawahara
川原 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63044903A priority Critical patent/JPH01220197A/en
Publication of JPH01220197A publication Critical patent/JPH01220197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and stably fix a stripe magnetic domain by setting a bias magnetic field to a prescribed range with a local magnetic field due to a local magnetic field generating means, which is necessarily arranged, in a Bloch line memory. CONSTITUTION:A bias magnetic field 10 is added and the magnetization of a stripe magnetic domain holding layer is saturated in a same direction as the magnetization in the magnetic domain which is stabilized around a groove 4. After that, when a pulselike current is given to a magnetic domain generator 8 in an arrow direction and the bias magnetic field is set to the prescribed range, the magnetic domain to enter a pattern notch 13 goes over the groove 4 and satisfactorily achieves the area of an auxiliary groove 7. Next, when the pulselike current is impressed to a magnetic domain generator 9 in the same direction as the arrow, the magnetic domain 11 are mutually connected in the both edge parts of the groove 4 and a magnetic domain 12 is formed to be enclosed by a close magnetic wall which surrounds the groove 4. Further, an external magnetic field is made '0' and the current is increased in the reverse direction the magnetic domain for Bloch line holding, which has the magnetic wall to surround the groove 4 can be easily and stably fixed without changing the bias magnetic field.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プロッホラインメモリに関わり、プロッホラ
イン転送路となるストライプ磁区の固定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Ploch line memory, and relates to a method for fixing striped magnetic domains serving as a Ploch line transfer path.

(従来の技術) 従来のストライプ磁区の固定方法に関しては、特許61
−290887において述べられている。これを第5図
〜第7図に示す。
(Prior art) Regarding the conventional fixing method of striped magnetic domains, Patent No. 61
-290887. This is shown in FIGS. 5 to 7.

まず、ストライプ磁区保持層1の磁化をバイアス磁界1
0を加えることによって、溝4の周囲に安定化する磁区
内の磁化と同じ向きに飽和させておく。
First, the magnetization of the striped magnetic domain holding layer 1 is changed using a bias magnetic field 1.
By adding 0, the magnetization is saturated in the same direction as the magnetization in the magnetic domain stabilized around the groove 4.

磁区発生器8に矢印の向きの電流を与えてその磁界によ
って8の上側のエツジ12に沿って磁区11を発生させ
(第5図)、さらに電流を強くしてノツチ13の中にも
磁区を発生させる(第6図)。バイアス磁界10の絶対
値を小さくすることにより、磁区11を溝掘り部4には
さまれた領域を通り越して磁区発生器8と反対側の領域
21まで伸長させる。その後磁区発生器9に電流を与え
てその磁界によって、領域21まで伸びてきた磁区11
を切断し、溝掘り部4を取り囲む閉磁壁に囲まれた磁区
を形成する。
Applying a current in the direction of the arrow to the magnetic domain generator 8 causes the magnetic field to generate a magnetic domain 11 along the upper edge 12 of the magnetic domain generator 8 (Fig. 5), and then increases the current to generate a magnetic domain inside the notch 13 as well. (Figure 6). By reducing the absolute value of the bias magnetic field 10, the magnetic domain 11 is extended past the area sandwiched between the trenches 4 to the area 21 on the opposite side from the magnetic domain generator 8. After that, a current is applied to the magnetic domain generator 9, and the magnetic field causes the magnetic domain 11 to extend to the region 21.
is cut to form a magnetic domain surrounded by a closed domain wall surrounding the grooved portion 4.

しかし、実験してみると、この方法では溝掘り部が平行
に並んでいる領域と溝掘り部がない領域とでバブル磁区
がストライプ磁区に変化するバイアス磁界の大きさにか
なりの違いがあり、溝掘り部領域では他の領域に比べて
バイアス磁界をもっと低くしないと、磁区が伸長しない
欠点があることがわかった。溝掘り部を含む領域で磁区
が溝と溝との間の領域を伸長するまでバイアス磁界を下
げると、溝掘り部領域の内のどれか一箇所を伸びて磁区
発生器8がある側と反対側、つまり磁区結合用の導体バ
タン9がある領域21に出た途端にその磁区が広がって
領域21に迷図状磁区ができてしまう(第7図)。この
ため、いま伸びた磁区に遅れて溝掘り領域を伸びてきた
磁区は迷図状磁区に邪魔されて磁区接合用の導体バタン
9の下を横切るところまで伸び出せない。したがって、
磁区発生器で一旦形成した磁区をバイアス磁界を下げる
ことによって、溝掘り領域の一方の先端部領域から他方
の先端部領域まで制御性よく伸ばすことは困難であった
。また、従未の方法ではバイアス磁界を変化させる必要
があり、プロッホラインメモリにおいてプロッホライン
転送路となるストライプ磁区を容易に形成できない欠点
があった。
However, experiments have shown that with this method, there is a considerable difference in the magnitude of the bias magnetic field that changes the bubble domain into a stripe domain between regions where the grooves are lined up in parallel and regions where there are no grooves. It was found that there is a drawback in that the magnetic domains do not elongate in the trench region unless the bias magnetic field is lower than in other regions. When the bias magnetic field is lowered until the magnetic domain extends in the region between the grooves in the region including the grooved portions, it will extend in any one place in the grooved portions, and the magnetic domain will extend on the side opposite to the side where the magnetic domain generator 8 is located. As soon as the conductor button 9 for magnetic domain coupling comes out to the area 21, the magnetic domain expands and a stray diagram-shaped magnetic domain is formed in the area 21 (FIG. 7). For this reason, the magnetic domain that has been extending through the grooved region behind the currently extended magnetic domain is obstructed by the stray diagram-shaped magnetic domain and cannot extend to the point where it crosses under the conductor batten 9 for joining the magnetic domains. therefore,
It has been difficult to extend the magnetic domain once formed by a magnetic domain generator from one tip region of the grooved region to the other tip region with good control by lowering the bias magnetic field. In addition, the conventional method requires changing the bias magnetic field, and has the drawback that striped magnetic domains, which serve as Ploch line transfer paths in Ploch line memory, cannot be easily formed.

(発明が解決しようとする課題) 上述の方法は多数本の磁区を安定性よく配列するために
は問題であった。本発明はこれらの欠点を取り除き、ス
トライプ磁区を安定性よく配列するための外部磁界の印
加条件を単純化できるようにしたストライプ磁区固定方
法を提供することにある。
(Problems to be Solved by the Invention) The above-mentioned method has been problematic in order to stably arrange a large number of magnetic domains. An object of the present invention is to provide a method for fixing striped magnetic domains that eliminates these drawbacks and simplifies the conditions for applying an external magnetic field for stably arranging striped magnetic domains.

(課題を解決するための手段) 上記目的は、情報読み出し手段、情報書き込み手段およ
び情報蓄積手段を有し、かつ膜面に垂直方向を磁化容易
方向とする強磁性体(フェリ磁性体を含む)膜に、少な
くとも一部に設けた帯状の溝を囲む磁壁をもつストライ
プ磁区を固定する方法において、政情の一方先端部領域
に設けた局所磁界発生手段を用いて局所磁界を発生させ
、バイアス磁界を予め所定の範囲に設定し、該先端部領
域からもう一方の先端部領域にわたる磁区を発生させる
ことによりストライプ磁区を固定することにより達成さ
れる。
(Means for Solving the Problems) The above object is a ferromagnetic material (including a ferrimagnetic material) having an information reading means, an information writing means, and an information storage means, and whose easy magnetization direction is perpendicular to the film surface. In a method of fixing a striped magnetic domain having a domain wall surrounding a strip-shaped groove provided in at least a part of the film, a local magnetic field is generated using a local magnetic field generating means provided in one tip region of the political situation, and a bias magnetic field is generated. This is achieved by fixing stripe magnetic domains by setting them in advance in a predetermined range and generating magnetic domains extending from one tip region to another tip region.

(実施例) 第1図から第3図までを使ってストライプ磁区安定化の
動作例を説明する。まず、ストライプ磁区保持層の磁化
をバイアス磁界10を加えることによって溝4の周囲に
安定化する磁区内の磁化と同じ向きに飽和させておく。
(Example) An example of the operation of stripe magnetic domain stabilization will be explained using FIGS. 1 to 3. First, the magnetization of the striped domain holding layer is saturated in the same direction as the magnetization in the magnetic domain stabilized around the groove 4 by applying a bias magnetic field 10.

その後、磁区発生器8に矢印の向きの電流を与えてその
磁界によって第1図に11で示す磁区を発生する。この
とき、バイアス磁界10を予め所定の範囲にしておくこ
とが大切であり、このことによってバタンノツチ13に
入り込んだ磁区は溝掘り部を通り越して補助溝7がある
領域にまで達する状態を、バイアス磁界一定のままで実
現できる。このバイアス磁界は、ストライプ磁区が自然
状態(局所磁界を加えない状態)で存在しうる範囲にあ
ればよい。また、磁区発生器8にはパルス状の電流を与
えることが望ましい。これは、ストライプ磁区保持層の
一旦飽和された磁化(バイアス磁界10と同じ向き)を
局所的に反転されて形成される磁区11(磁区11内の
磁化はバイアス磁界10と反対向き)を発生させるため
である。発生器8の形状としては、8の上側のエツジ1
2に沿いバタンノツチ13に入り込んだ磁区を発生する
形状とした(第4図)。磁区は第1図に示すように溝掘
り部を通り越して補助溝7がある領域まで伸長する。そ
の後、磁区発生器9に第2図に示す矢印の向きのパルス
電流を与え、第2図に示すような磁区を形成する。これ
らの磁界によって、磁区11は溝掘り部の両方の端部で
互いに接合し、逆に溝掘り部を取り囲む閉磁壁に囲まれ
た磁区12が形成される。外部印加磁界を零にし、さら
にその向きを逆にし、10で示す向きにして磁界の強さ
を増加していくと、第3図に示すように溝を取り囲む磁
壁をもつ磁区が形成される。14は中抜き磁区、15は
磁区外周磁壁である。
Thereafter, a current is applied to the magnetic domain generator 8 in the direction of the arrow, and the resulting magnetic field generates magnetic domains shown at 11 in FIG. At this time, it is important to set the bias magnetic field 10 to a predetermined range in advance, so that the bias magnetic field prevents the magnetic domain that has entered the button notch 13 from passing through the trench and reaching the area where the auxiliary groove 7 is located. This can be achieved by keeping it constant. This bias magnetic field may be within a range in which the striped magnetic domains can exist in a natural state (a state in which no local magnetic field is applied). Further, it is desirable to apply a pulsed current to the magnetic domain generator 8. This generates a magnetic domain 11 (the magnetization within the magnetic domain 11 is in the opposite direction to the bias magnetic field 10), which is formed by locally reversing the once saturated magnetization (the same direction as the bias magnetic field 10) of the striped domain holding layer. It's for a reason. The shape of the generator 8 is as follows:
The shape was designed to generate magnetic domains that entered the batten notches 13 along the lines 2 (FIG. 4). The magnetic domain extends past the grooved portion to the area where the auxiliary groove 7 is located, as shown in FIG. Thereafter, a pulse current is applied to the magnetic domain generator 9 in the direction of the arrow shown in FIG. 2 to form magnetic domains as shown in FIG. Due to these magnetic fields, the magnetic domains 11 are joined to each other at both ends of the grooved portion, and conversely, a magnetic domain 12 surrounded by a closed domain wall surrounding the grooved portion is formed. When the externally applied magnetic field is reduced to zero, and then its direction is reversed to the direction indicated by 10 and the strength of the magnetic field is increased, a magnetic domain having domain walls surrounding the groove is formed as shown in FIG. 3. 14 is a hollow magnetic domain, and 15 is an outer domain wall of the magnetic domain.

この磁区がプロッホラインメモリにおけるプロッホライ
ン対保持用に使われる。このようにして、溝4の周囲を
取り囲む磁壁によって囲まれた磁区を安定化できた。
This magnetic domain is used for holding Ploch line pairs in the Ploch line memory. In this way, the magnetic domain surrounded by the domain wall surrounding the groove 4 could be stabilized.

GdaGas012(111)基板上に4pmバブル材
料(YSmLuCa)3(FeGe)50.2ガーネツ
ト膜を2pmの厚さLPE成長した。第1図は、本発明
の方法を用いた時のストライプ磁区保持層の主要部の一
例である。
A 4 pm bubble material (YSmLuCa) 3 (FeGe) 50.2 garnet film was grown by LPE to a thickness of 2 pm on a GdaGas012 (111) substrate. FIG. 1 is an example of the main part of a striped magnetic domain retaining layer when the method of the present invention is used.

ここで、4.6.7は磁区保持層くり抜き部、10はバ
イアス磁界である。ストライプ磁区保持層1上の磁区を
保持したい領域に溝4を、またこの溝に沿って分離した
領域をはさんで補助用の溝7を形成する。
Here, 4.6.7 is a hollowed out portion of the magnetic domain holding layer, and 10 is a bias magnetic field. A groove 4 is formed in a region on the striped magnetic domain holding layer 1 where the magnetic domain is to be held, and auxiliary grooves 7 are formed along the groove to sandwich separated regions.

溝4.6.7は溝を掘りたい部分に選択的にイオン注入
をした後、リン酸を使い、エツチングして形成した。で
きた溝の深さは2.111mであった。溝4は、幅31
1m、配置周期装2μmである。その上に、SiO□ス
ペーサ0.5pmを介して、第4図に示す形状の磁区発
生器を配置した。溝4の両端部に配置した磁区発生器お
よび局所面内磁界発生用手段8.9にはパルス電流発生
器および直流電流源が各々接続され、所望の局所磁界が
印加できる。また、8.9には、11で示す櫛形状の櫛
のめが溝部の各溝の間の領域の入り口に位置するように
、磁区を制御性よく発生でき、溝部4から伸び出した互
いに隣り合う磁区11を縫い合わせることができるよう
に、第4図に示す形状の磁区発生器を用いた。第4図に
おいて、12はパタンエツジ、13はパタンのノツチで
ある。
Grooves 4, 6, and 7 were formed by selectively implanting ions into the portion where the trench was to be dug, and then etching using phosphoric acid. The depth of the groove created was 2.111 m. Groove 4 has a width of 31
1 m, and the arrangement periodicity is 2 μm. A magnetic domain generator having the shape shown in FIG. 4 was placed thereon with a 0.5 pm SiO□ spacer interposed therebetween. A pulse current generator and a direct current source are connected to the magnetic domain generator and local in-plane magnetic field generating means 8.9 arranged at both ends of the groove 4, respectively, so that a desired local magnetic field can be applied. In addition, in 8.9, magnetic domains can be generated with good controllability so that the comb-shaped comb eye shown at 11 is located at the entrance of the area between each groove of the groove, and the magnetic domains are generated adjacent to each other extending from the groove 4. A magnetic domain generator having the shape shown in FIG. 4 was used so that matching magnetic domains 11 could be sewn together. In FIG. 4, 12 is a pattern edge, and 13 is a pattern notch.

ここでは、9に示す縫い合わせ用導体パタンのノツチ部
に補助溝7を設け、第1図に示す磁区11の先端を制御
性よくまっすぐに伸長する構造を示しているが、補助溝
7のない場合でも本方法を用いて第1図の形状の磁区を
えられる。第1図の状態の磁区を起点にして、上述の磁
区発生から始まる一連の動作により、第3図に示す溝掘
り部4を取り囲む閉磁壁をもつ磁区14を制御性よく形
成できた。
Here, an auxiliary groove 7 is provided in the notch part of the conductor pattern for sewing shown in FIG. 9, and a structure is shown in which the tip of the magnetic domain 11 shown in FIG. 1 is extended straight with good controllability. However, using this method, a magnetic domain having the shape shown in FIG. 1 can be obtained. Using the magnetic domain in the state shown in FIG. 1 as a starting point, the magnetic domain 14 having a closed domain wall surrounding the grooved portion 4 shown in FIG. 3 was formed with good controllability by a series of operations starting from the generation of the magnetic domain described above.

(発明の効果) 本発明によれば、バイアス磁界を変えることなく磁区発
生器に与えた電流のつくる局所磁界により、溝掘り部の
一端からもう片方の端まで伸びる磁区を形成できるので
、溝掘り部を囲むストライプ磁区を制御性よく形成する
ことができ、プロッホラインメモリにおけるプロッホラ
イン対の転送路を容易に形成できるようになった。
(Effects of the Invention) According to the present invention, a magnetic domain extending from one end of the trenching portion to the other end can be formed by the local magnetic field created by the current applied to the magnetic domain generator without changing the bias magnetic field. It has become possible to form striped magnetic domains surrounding the area with good controllability, and it has become possible to easily form a transfer path for Ploch line pairs in a Ploch line memory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を用いた磁区保持のための主要構造の例
を示す図。第2.3図は本発明の磁区形成過程を示す図
。第4図は本発明に用いた磁区発生器の例を示す図。第
5〜7図は溝掘り部を取り囲む閉磁壁をもつ磁区安定化
法の従来法の一例を示す図。 図において、1・・・磁区保持層、4・・・磁区保持層
くり抜き部、6・・・ガード用磁区保持層くり抜き部、
7・・・補助用の磁区保持層くりぬき部、8.9・・・
磁区発生用導体パタン、10・・・バイアス磁界、11
・・・磁区発生器8により発生した磁区、12・・・磁
区発生器用導体パタンのエツジ、13・・・磁区発生用
導体パタンのノツチ、14・・・中抜き磁区、15・・
・磁区外周磁壁。
FIG. 1 is a diagram showing an example of the main structure for maintaining magnetic domains using the present invention. FIG. 2.3 is a diagram showing the magnetic domain formation process of the present invention. FIG. 4 is a diagram showing an example of a magnetic domain generator used in the present invention. 5 to 7 are diagrams showing an example of a conventional magnetic domain stabilization method using a closed domain wall surrounding a grooved portion. In the figure, 1... magnetic domain holding layer, 4... magnetic domain holding layer hollowed out part, 6... magnetic domain holding layer hollowed out part for guard,
7... Auxiliary magnetic domain holding layer hollowed out part, 8.9...
Conductor pattern for magnetic domain generation, 10... Bias magnetic field, 11
...Magnetic domain generated by the magnetic domain generator 8, 12...Edge of conductor pattern for magnetic domain generator, 13... Notch of conductor pattern for magnetic domain generation, 14... Hollowed out magnetic domain, 15...
・Magnetic domain outer domain wall.

Claims (2)

【特許請求の範囲】[Claims] (1)情報読み出し手段、情報書き込み手段および情報
蓄積手段を有し、かつ膜面に垂直方向を磁化容易方向と
する強磁性体(フェリ磁性体を含む)膜に、少なくとも
一部に設けた帯状の溝を囲む磁壁をもつストライプ磁区
を固定する方法において、該溝の一方の先端部領域に設
けた局所磁界発生手段により局所磁界を発生させ、バイ
アス磁界を所定の範囲に設定することにより発生する該
先端部領域からもう一方の先端部領域にわたるストライ
プ磁区を用いて、溝を囲む磁壁をもつストライプ磁区を
固定することを特徴とするストライプ磁区の固定方法。
(1) A strip-shaped film provided on at least a portion of a ferromagnetic material (including ferrimagnetic material) film having an information reading means, an information writing means, and an information storage means, and whose easy magnetization direction is perpendicular to the film surface. In a method for fixing a striped magnetic domain having a domain wall surrounding a groove, a local magnetic field is generated by a local magnetic field generating means provided at one tip region of the groove, and a bias magnetic field is generated within a predetermined range. A method for fixing a striped magnetic domain, comprising fixing a striped magnetic domain having a domain wall surrounding a groove using a striped magnetic domain extending from one tip region to another tip region.
(2)前記局所磁界はパルス状磁界であることを特徴と
する前記第1項記載のストライプ磁区の固定方法。
(2) The method for fixing striped magnetic domains according to item 1, wherein the local magnetic field is a pulsed magnetic field.
JP63044903A 1988-02-26 1988-02-26 Method for fixing stripe magnetic domain Pending JPH01220197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044903A JPH01220197A (en) 1988-02-26 1988-02-26 Method for fixing stripe magnetic domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044903A JPH01220197A (en) 1988-02-26 1988-02-26 Method for fixing stripe magnetic domain

Publications (1)

Publication Number Publication Date
JPH01220197A true JPH01220197A (en) 1989-09-01

Family

ID=12704430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044903A Pending JPH01220197A (en) 1988-02-26 1988-02-26 Method for fixing stripe magnetic domain

Country Status (1)

Country Link
JP (1) JPH01220197A (en)

Similar Documents

Publication Publication Date Title
JP2619365B2 (en) Bloch line memory writing method
US4075612A (en) Rounded serrated edge film strip geometry for cross-tie wall memory system
JPH01220197A (en) Method for fixing stripe magnetic domain
GB1471134A (en) Magnetic bubble devices
GB1487861A (en) Pump structure
US4128895A (en) Magnetic wall assisted bubble domain nucleator
JPS63144487A (en) Magnetic storage element
JPH0738272B2 (en) Magnetic memory element
US4042916A (en) Magnetic bubble track crossover element
JPH01220287A (en) Magnetic storage element
JPH01220288A (en) Magnetic storage element
JPH04113578A (en) Magnetic storage element
JPH0317887A (en) Magnetic storage element
JPH01220289A (en) Magnetic storage element
US4516222A (en) Laminated magnetic bubble device
US4124901A (en) Domain propagation register with single layer of conductors
JPH0738271B2 (en) Magnetic memory element
JPH02235283A (en) Method for driving magnetic storage element
US4463447A (en) Magnetic bubble generator
US5050122A (en) Bloch line memory device and method for operating same
JPS6136316B2 (en)
GB1449847A (en) Magnetic devices
JPS63108588A (en) Magnetic storing element
JPS63108587A (en) Magnetic storing element
JPH03137885A (en) Magnetic bubble element