JPH01219828A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPH01219828A
JPH01219828A JP4673888A JP4673888A JPH01219828A JP H01219828 A JPH01219828 A JP H01219828A JP 4673888 A JP4673888 A JP 4673888A JP 4673888 A JP4673888 A JP 4673888A JP H01219828 A JPH01219828 A JP H01219828A
Authority
JP
Japan
Prior art keywords
switch
optical
supergrid
optical waveguide
mixed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4673888A
Other languages
Japanese (ja)
Other versions
JPH0778584B2 (en
Inventor
Yasuhiro Suzuki
安弘 鈴木
Hidetoshi Iwamura
岩村 英俊
Osamu Mikami
修 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4673888A priority Critical patent/JPH0778584B2/en
Publication of JPH01219828A publication Critical patent/JPH01219828A/en
Publication of JPH0778584B2 publication Critical patent/JPH0778584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently switch optical paths by forming a switching part by using a supergrid formed by laminating different kinds of semiconductors alternately, and forming an optical waveguide part other than the switching part by using a semiconductor formed by making the supergrid into mixed crystal. CONSTITUTION:The switching part 4 of the optical waveguide 5 is formed of the supergrid and the remaining optical waveguide part is formed of the semiconductor obtained by making the supergrid where the switching part 4 is formed into the mixed crystal to manufacture the optical switch without any regrowing process. Further, the supergrid is made into the mixed crystal, and consequently an absorption end lambdag before the supergrid is made into the mixed crystal becomes an absorption end lambdag which is shifted to a short- wavelength side after the complete mixed crystallization and when light with nearby wavelength is incident on the absorption end lambdag, the incident light has wavelength lambdain>>lambdag, so that the absorption loss of the mixed crystal decreases. Therefore, the optical switch is switched in this wavelength range to maximize variation in refractive index at the time of the application of an electric field to the switch part and the absorption loss of the optical waveguide part decreases. Consequently, the optical paths are switched efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体により形成した先導波路をX状に配置
した全反射型光スイッチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a total internal reflection type optical switch in which a leading waveguide formed of a semiconductor is arranged in an X-shape.

(従来の技術) 半導体による全反射型光スイッチは、X状に交差させた
先導波路の交差中央部分に形成された光スイツチ部の屈
折率を電界印加によって変化させ、当該光スイツチ部で
全反射を起こさせることにより光出力方向を切替えるも
のである。
(Prior art) A total reflection type optical switch using a semiconductor changes the refractive index of an optical switch part formed at the center of the intersection of leading waveguides crossed in an X shape by applying an electric field, and causes total reflection at the optical switch part. The light output direction is switched by causing this to occur.

第2図は、この種の光スイッチの切替動作を説明するた
めの図であって、図中、■は光導波路部、■はスイッチ
部である。第2図によれば、例えば先入カポ−)Pin
から入射し光導波路部■を伝搬してきた光は、光スイツ
チ部■に印加される電界がオフの時にはそのまま直進し
て出力ポートPLから出射し、光スイツチ部■に印加さ
れる電界がオンの時には全反射されて出力ポートP2か
ら出射する。
FIG. 2 is a diagram for explaining the switching operation of this type of optical switch, and in the figure, ■ indicates an optical waveguide section, and ■ indicates a switch section. According to FIG. 2, for example, the pin
When the electric field applied to the optical switch section ■ is off, the light that enters the optical waveguide section ■ and propagates through the optical waveguide section ■ goes straight and exits from the output port PL, and when the electric field applied to the optical switch section ■ is on. Sometimes it is totally reflected and emitted from the output port P2.

このような半導体光導波路を形成するにあたって、光ス
イツチ部としては、異種の半導体を交互に1ooA程度
ずつ積み重ねた、いわゆる超格子が電界印加時の屈折率
が吸収端近傍で大きいため適しているが、スイッチ部以
外の光導波路部に、スイッチ部と同じ材質のものを用い
ると吸収損失が太き(なってしまう。例えばGaAs−
AN GaAs系を取り上げて説明すると、スイッチ部
の超格子をGaAs−AΩAs (それぞれ80A)1
00周期のものとした場合、励起子による吸収端λex
は8200Aの位置にあり、この波長λexにおいて電
界印加時の屈折率変化が最大となる。この波長域を使用
する場合光導波路部に同じ超格子を用いると、そこでの
吸収損失は103cm−1程度となり非常に大きくなっ
てしまう。
In forming such a semiconductor optical waveguide, a so-called superlattice, in which semiconductors of different types are alternately stacked at a rate of approximately 10A, is suitable as an optical switch part because the refractive index when an electric field is applied is large near the absorption edge. If the same material as the switch part is used for the optical waveguide part other than the switch part, the absorption loss will increase (for example, GaAs-
AN To explain the GaAs system, the superlattice of the switch part is GaAs-AΩAs (80A each)1
00 period, the absorption edge due to excitons λex
is located at a position of 8200A, and the refractive index change when an electric field is applied is maximum at this wavelength λex. When using this wavelength range, if the same superlattice is used in the optical waveguide section, the absorption loss there will be about 10@3 cm@-1, which will be very large.

このため、従来の超格子を用いた全反射型光スイッチで
は、スイッチ部を形成する超格子を凸状に切出した後、
光導波路部分に吸収端λ13Xに比べて短波長λgd側
にある材料、例えばA N x G a I−xA 5
(x−0,3,λgd−7500人)を再成長させ、こ
れにより、使用波長に対して吸収損失の少ない透明な先
導波路を形成していた。
For this reason, in a conventional total reflection optical switch using a superlattice, after cutting out the superlattice forming the switch part into a convex shape,
In the optical waveguide portion, a material located on the short wavelength λgd side compared to the absorption edge λ13X, for example, A N x G a I-xA 5
(x-0,3, λgd-7500 people) was regrown, thereby forming a transparent leading waveguide with little absorption loss for the wavelength used.

(発明が解決しようとする課題) しかしながら、上記光スイッチによれば、スイッチ部を
凸状に切出す時、その界面が垂直にならずにテーパ状と
なるため完全なP−N接合を形成することができず、こ
れによりスイッチ部への電界印加が不十分となってしま
い全反射が十分に行なわれないという問題点があった。
(Problem to be Solved by the Invention) However, according to the above-mentioned optical switch, when the switch portion is cut out in a convex shape, the interface is not vertical but tapered, so that a perfect P-N junction is formed. As a result, the application of an electric field to the switch portion becomes insufficient, resulting in a problem in that total reflection is not performed sufficiently.

また、スイッチ部を凸状に切出した後、光導波路部を再
成長させる際、再成長部分が凸部側面にもできるため、
光導波路部とスイッチ部間の接続界面で損失が生じると
いう問題点があり、さらにはスイッチ部を凸状に切出し
た後に再成長を行なうので、作製工程が複雑になるとい
う問題点があった。
In addition, when regrowing the optical waveguide after cutting out the switch part into a convex shape, the regrowth part is also formed on the side surface of the convex part.
There is a problem that loss occurs at the connection interface between the optical waveguide part and the switch part, and furthermore, the manufacturing process becomes complicated because the switch part is cut out into a convex shape and then regrown.

本発明の目的は、上記問題点に鑑み、光導波路部の吸収
損失を低減し、かつスイッチ部と光導波路部との接続界
面の質の向上を図れ、しかも効率よく光路の切替動作が
行なえる光スイッチを提供することにある。
In view of the above-mentioned problems, an object of the present invention is to reduce the absorption loss of the optical waveguide section, improve the quality of the connection interface between the switch section and the optical waveguide section, and perform optical path switching operations efficiently. Our purpose is to provide optical switches.

(課題を解決するための手段) 本発明は、上記目的を達成するため、X状に交差させた
半導体光導波路の交差中央部にスイッチ部を有する光ス
イッチにおいて、異種の半導体を交互に積層させた超格
子を用いて前記スイッチ部を形成し、該スイッチ部以外
の光導波路部を前記超格子を混晶化した半導体により形
成した。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides an optical switch having a switch section at the center of the intersection of semiconductor optical waveguides crossed in an X shape, in which different types of semiconductors are alternately laminated. The switch section was formed using a superlattice obtained by mixing the superlattice, and the optical waveguide section other than the switch section was formed using a semiconductor obtained by mixing the superlattice.

(作 用) 本発明によれば、先導波路のスイッチ部を超格子で形成
し、他の光導波路部は、スイッチ部を形成した超格子を
混晶化した半導体で形成することにより、再成長工程を
得ることなく作製が行なえる。
(Function) According to the present invention, the switch portion of the leading waveguide is formed of a superlattice, and the other optical waveguide portions are formed of a semiconductor in which the superlattice that formed the switch portion is mixed, so that regrowth is possible. Manufacture can be performed without obtaining any steps.

また、超格子を混晶化することにより、混晶化する前の
吸収端λgが完全混晶化後には短波長側にシフトした吸
収端λg°となり、吸収端λgに近い波長の光を入射さ
せた場合、入射光の波長λ1n〉λg°となり、混晶に
よる吸収損失は小さくなる。
In addition, by mixing the superlattice, the absorption edge λg before mixing becomes the absorption edge λg° shifted to the short wavelength side after complete mixing, and light with a wavelength close to the absorption edge λg is incident. In this case, the wavelength of the incident light becomes λ1n>λg°, and the absorption loss due to the mixed crystal becomes small.

従って、この波長域で光スイッチの切替動作を行なえば
、スイッチ部への電界印加時の屈折率変化は最大になり
、かつ光導波路部の吸収損失は小さくなる。
Therefore, if the switching operation of the optical switch is performed in this wavelength range, the change in the refractive index when an electric field is applied to the switch section is maximized, and the absorption loss in the optical waveguide section is reduced.

(実施例) 第1図は、本発明による先スイッチを示す斜視図であり
、第3図(a)は第1図のA−A線矢視方向の断面図で
、第3図(b)は第1図のB−B線矢視方向の断面図で
ある。第1図及び第3図において、1はGaAsからな
る基板、2は基板1上に積層されたn−GaAsからな
るバッファ層、3はバッファ層2上に積層されたn−k
l GaAsからなるクラッド層、4はスイッチ部で、
クラッド層3上に積層され、GaAs (80A) 、
  AN As (80人)を交互(100周期)に積
層させた超格子からなり、その吸収端λgは8200人
である。5はスイッチ部4と先導波路を形成する光導波
路部で、スイッチ部4を形成した同一物質(GaAs(
80A ) 。
(Example) FIG. 1 is a perspective view showing a tip switch according to the present invention, FIG. 3(a) is a sectional view taken along the line A-A in FIG. 1, and FIG. 3(b) 2 is a sectional view taken along the line B-B in FIG. 1. FIG. 1 and 3, 1 is a substrate made of GaAs, 2 is a buffer layer made of n-GaAs laminated on the substrate 1, and 3 is a n-k layer laminated on the buffer layer 2.
l A cladding layer made of GaAs, 4 is a switch part,
Laminated on the cladding layer 3, GaAs (80A),
It consists of a superlattice in which AN As (80 people) are stacked alternately (100 periods), and its absorption edge λg is 8200 people. Reference numeral 5 denotes an optical waveguide section that forms a leading waveguide with the switch section 4, and is made of the same material (GaAs (
80A).

A11)  As(80A) )を後述する方法で混晶
化した半導体からなり、その吸収端λg°は7070人
である。6はスイッチ部4.光導波路部5上に積層した
P−A、17 GaAsからなるクラッド層、7はクラ
ッド層6上に積層されたP−GaAsからなるキャップ
層、8はキャップ層7上に蒸着したCrAuからなる電
極である。
A11) It is made of a semiconductor obtained by mixing As(80A) ) by the method described below, and its absorption edge λg° is 7070. 6 is a switch section 4. A cladding layer made of PA and 17 GaAs laminated on the optical waveguide portion 5, a cap layer 7 made of P-GaAs laminated on the cladding layer 6, and an electrode made of CrAu deposited on the cap layer 7. It is.

また、この光スイッチの構造パラメータは、例えば、素
子長500μm、光導波路幅8μm1スイッチ部4の幅
2μm、交差角9度である。
Further, the structural parameters of this optical switch are, for example, an element length of 500 μm, an optical waveguide width of 8 μm, a width of the switch section 4 of 2 μm, and a crossing angle of 9 degrees.

第4図は上記光スイッチの元になる成長ウェハ構造を示
す図であり、次に本発明による光スイッチの製造方法を
説明する。
FIG. 4 is a diagram showing a grown wafer structure that is the basis of the above-mentioned optical switch. Next, a method of manufacturing the optical switch according to the present invention will be explained.

まず、GaAs基板1上に、n−GaAsクラッド層2
、n−AΩGaAsクラッド層3、超格子層(GaAs
(80A)、AΩAs(80A))4 a、’ P−A
ΩGaAsクラッド層6、l”GaAsキャップ層7の
順に、分子線エピタキシィ法により成長させる。次に、
プラズマCVD法によりP−GaAsキャップ層7の表
面上にSiO3膜を形成し、続いて、平滑性に優れた反
応性イオンエツチング法を用いてSiO2が付着した部
分を凸状に形成する。さらに、スイッチ部とする部分の
上部にある5102を除去して窓を開け、このウェハの
5I02でコートされたp−GaAsキャップ層7側と
GaAs基板1とを重ねた状態で、水素雰囲気中で熱処
理することにより、超格子層4aの混晶化を行なう。最
後に混晶化されなかった超格子層4a(スイッチ部)の
上部のP−GaAsキャップ層7側にCrAu電極、n
−GaAs基板1側にAuGeN i電極(図示せず)
を蒸着により形成することで作製が完了する。
First, an n-GaAs cladding layer 2 is placed on a GaAs substrate 1.
, n-AΩGaAs cladding layer 3, superlattice layer (GaAs
(80A), AΩAs(80A))4 a,' P-A
The ΩGaAs cladding layer 6 and the l''GaAs capping layer 7 are grown in this order by molecular beam epitaxy.Next,
A SiO3 film is formed on the surface of the P-GaAs cap layer 7 by plasma CVD, and then the portion to which SiO2 is attached is formed into a convex shape by using reactive ion etching, which has excellent smoothness. Furthermore, 5102 on the top of the part to be the switch part is removed to open a window, and the p-GaAs cap layer 7 side coated with 5I02 of this wafer and the GaAs substrate 1 are stacked together in a hydrogen atmosphere. By heat treatment, the superlattice layer 4a is mixed crystallized. Finally, a CrAu electrode is placed on the P-GaAs cap layer 7 side above the superlattice layer 4a (switch part) that has not been mixed crystallized, and n
-AuGeN i electrode (not shown) on the GaAs substrate 1 side
The fabrication is completed by forming by vapor deposition.

第5図は、上記方法により形成した本実施例による光ス
イッチの電界印加時の光出力特性を示す図で、横軸がC
rAu電極とAuGe旧電極への印加電圧、縦軸か相対
光出力を示している。第5図によれば、2つの先出力ポ
ートPL、P2からの光出力は、スイッチ部4に電界を
印加すると6v付近でポートPi、P2の光出力の大小
が切替わり、10■付近では逆転していることがわかる
FIG. 5 is a diagram showing the optical output characteristics when an electric field is applied to the optical switch according to this example formed by the above method, and the horizontal axis is C.
The voltage applied to the rAu electrode and the old AuGe electrode, and the vertical axis shows the relative optical output. According to FIG. 5, when an electric field is applied to the switch section 4, the optical outputs from the two first output ports PL and P2 switch in magnitude at around 6V, and are reversed at around 10V. I know what you're doing.

また、本実施例による光スイッチは第5図に示した特性
の他に下記に示すような特性を有する。
In addition to the characteristics shown in FIG. 5, the optical switch according to this embodiment has the following characteristics.

(1)スイッチ部4の超格子部分の電界印加時の屈折率
変化は、吸収端近傍の波長域で最大となり、1%程度で
ある。
(1) The change in refractive index of the superlattice portion of the switch section 4 when an electric field is applied is maximum in the wavelength region near the absorption edge, and is approximately 1%.

(2)スイッチ部4及び光導波路部5の界面での反射率
は0,04%程度であり、超格子及び混晶の界面部分に
よる損失が小さい。
(2) The reflectance at the interface between the switch section 4 and the optical waveguide section 5 is about 0.04%, and the loss due to the interface between the superlattice and the mixed crystal is small.

(3)先スイッチ部4の吸収端λg  (8200人)
と光導波路部5の吸収端λg’(7070人)との差が
100OA程度離れている。また、SiO2を表面にコ
ーティングし、熱処理することにより混晶化させたので
、自由キャリアが少ない等の理由により、屈折率変化が
最大である超格子の吸収端近傍の波長域での吸収損失は
小さく、1dB/cm程度である。
(3) Absorption edge λg of forward switch section 4 (8200 people)
The difference between the absorption edge λg' (7070 people) of the optical waveguide section 5 is about 100 OA. In addition, since SiO2 was coated on the surface and heat treated to form a mixed crystal, the absorption loss in the wavelength region near the absorption edge of the superlattice where the refractive index change is maximum due to the lack of free carriers, etc. It is small, about 1 dB/cm.

尚、本実施例では、GaAs−A、Q GaAs系超格
子を用いた光スイッチを例にとり説明したが、これに限
定されるものでないことは勿論である。また、超格子の
混晶化の方法として、5102コーテイングによるもの
を用いたが、St、 Znの拡散、Siのイオンの打込
み等による方法でも勿論良い。
In this embodiment, an optical switch using a GaAs-A, Q GaAs superlattice is used as an example, but it is needless to say that the present invention is not limited to this. Although 5102 coating was used as a method for creating a superlattice mixed crystal, other methods such as diffusion of St or Zn or implantation of Si ions may also be used.

(発明の効果) 以上説明したように、本発明によれば、X状に交差させ
た半導体先導波路の交差中央部にスイッチ部を有する光
スイッチにおいて、異種の半導体を交互に積層させた超
格子を用いて前記スイッチ部を形成し、該スイッチ部以
外の光導波路部を前記超格子を混晶化した半導体により
形成したので、光スイツチ部を凸状に切出し、再成長工
程を経ることなく作製ができ、作製工程の簡単化を図れ
るとともに、光導波路部の自由キャリアによる吸収損失
が少なく、光導波路部とスイッチ部との界面での損失も
少なく、効率良く切替動作が行なえる光スイッチを提供
できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, in an optical switch having a switch section at the center of the intersection of semiconductor guided waveguides crossed in an X shape, a superlattice in which different types of semiconductors are alternately laminated The switch part was formed using the above switch part, and the optical waveguide part other than the switch part was formed from a semiconductor mixed with the superlattice, so the optical switch part was cut out into a convex shape and manufactured without going through a regrowth process. Provides an optical switch that can simplify the manufacturing process, has less absorption loss due to free carriers in the optical waveguide, has less loss at the interface between the optical waveguide and the switch, and can perform efficient switching operations. There are advantages that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光スイッチを示す斜視図、第2図
は光スイッチの切替動作の説明図、第3図は第1図の断
面図で、第3図(a)はA−A線矢視方向の断面図、第
3図(b)はB−B線矢視方向の断面図、第4図はウェ
ハ構造を示す図、第5図は本発明による光スイッチの光
出力特性図である。 図中、1−n−GaAs基板、2− n−GaAsバッ
ファ層、3・・・ n−AN GaAsクラッド層、4
・・・スイッチ部、5・・・光導波路部、6・・・P−
AJ7 GaAs、クラッド層、7・・・P−GaAs
キャップ層、8・・・電極。 特許出願人 日本電信電話株式会社
Fig. 1 is a perspective view showing an optical switch according to the present invention, Fig. 2 is an explanatory diagram of the switching operation of the optical switch, Fig. 3 is a sectional view of Fig. 1, and Fig. 3(a) is a line taken along line A-A. 3(b) is a sectional view taken along line B-B in the arrow direction, FIG. 4 is a diagram showing the wafer structure, and FIG. 5 is a diagram showing the optical output characteristics of the optical switch according to the present invention. be. In the figure, 1-n-GaAs substrate, 2- n-GaAs buffer layer, 3... n-AN GaAs cladding layer, 4
... Switch section, 5... Optical waveguide section, 6... P-
AJ7 GaAs, cladding layer, 7...P-GaAs
Cap layer, 8...electrode. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 X状に交差させた半導体光導波路の交差中央部にスイッ
チ部を有する光スイッチにおいて、異種の半導体を交互
に積層させた超格子を用いて前記スイッチ部を形成し、 該スイッチ部以外の光導波路部を前記超格子を混晶化し
た半導体により形成した ことを特徴とする光スイッチ。
[Claims] In an optical switch having a switch section at the center of the intersection of semiconductor optical waveguides crossed in an X shape, the switch section is formed using a superlattice in which different types of semiconductors are alternately laminated; An optical switch characterized in that an optical waveguide section other than the switch section is formed of a semiconductor in which the superlattice is mixed crystal.
JP4673888A 1988-02-29 1988-02-29 Optical switch Expired - Fee Related JPH0778584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4673888A JPH0778584B2 (en) 1988-02-29 1988-02-29 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4673888A JPH0778584B2 (en) 1988-02-29 1988-02-29 Optical switch

Publications (2)

Publication Number Publication Date
JPH01219828A true JPH01219828A (en) 1989-09-01
JPH0778584B2 JPH0778584B2 (en) 1995-08-23

Family

ID=12755673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4673888A Expired - Fee Related JPH0778584B2 (en) 1988-02-29 1988-02-29 Optical switch

Country Status (1)

Country Link
JP (1) JPH0778584B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191290A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor mach-zehnder modulator and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191290A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor mach-zehnder modulator and its production

Also Published As

Publication number Publication date
JPH0778584B2 (en) 1995-08-23

Similar Documents

Publication Publication Date Title
EP0348941A2 (en) Semiconductor laser device
JPH08211342A (en) Semiconductor optical function element
US5862168A (en) Monolithic integrated optical semiconductor component
JPH10242589A (en) Manufacture of semiconductor device
KR100582114B1 (en) A method of fabricating a semiconductor device and a semiconductor optical device
US20050249473A1 (en) Method for enhancing optical characteristics of multilayer optoelectronic components
JPH01219828A (en) Optical switch
JP2634687B2 (en) Tapered semiconductor waveguide and method of forming the same
JPH05257018A (en) Optical waveguide and production thereof
JPH07174931A (en) Semiconductor optical waveguide and its production
JP2897371B2 (en) Semiconductor waveguide polarization controller
JPH07306324A (en) Optical waveguide device
JP2626208B2 (en) Semiconductor waveguide polarization controller
JP2633921B2 (en) Manufacturing method of optical device with waveguide
JPH02119285A (en) Manufacture of semiconductor laser
JPH05257017A (en) Semiconductor optical waveguide and production thereof
JPH04151886A (en) Optical semiconductor device
JP2005520328A (en) Method for manufacturing optical communication device and optical communication device
JPH01186693A (en) Semiconductor device and manufacture thereof
JPH02251935A (en) Reflection type optical switch
JPS6167977A (en) Semiconductor laser
JPH03278030A (en) Total reflection type optical waveguide switch
JPH03165086A (en) Manufacture of ridge laser
JPH02281230A (en) Optical gate matrix switch and production thereof
JPH04159513A (en) Mode selecting optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees