JPH01219717A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01219717A
JPH01219717A JP4489888A JP4489888A JPH01219717A JP H01219717 A JPH01219717 A JP H01219717A JP 4489888 A JP4489888 A JP 4489888A JP 4489888 A JP4489888 A JP 4489888A JP H01219717 A JPH01219717 A JP H01219717A
Authority
JP
Japan
Prior art keywords
optical modulator
active layer
wavelength
modulation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4489888A
Other languages
Japanese (ja)
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4489888A priority Critical patent/JPH01219717A/en
Publication of JPH01219717A publication Critical patent/JPH01219717A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high-gain optical modulator which has a small spread spectrum and a wide modulation band at the time of modulation by performing n-type doping for the active layer of an LD optical modulator which is made of a semiconductor material and setting the composition wavelength of the active layer on a longer wavelength side than the wavelength of light to be modulated. CONSTITUTION:A semiconductor laser light amplifier is used as the LD optical modulator by modulating an implanted current and the wavelength lambdaS of the light to be modulated is 1.55mum. This optical modulator is constituted by forming an n-InP buffer layer 2, an InGaAsP active layer 3, an InGaAsP attachment back layer 4, and a p-InP clad layer 5 on an n-InP substrate 1 successively by a liquid crystal wavelength method and thus forming a LDH wafer. The band gap wavelength lambdag of this active layer 3 is set to 1.59-1.61mum, preferably, 1.6mum and the n-type doping is carried out by using Te. Thus, the high-gain optical modulator is realized which has the small spread spectrum and wide modulation band at the time of the modulation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信、光交換等の分野で用いられる光変調
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical modulator used in fields such as optical communication and optical switching.

(従来の技術) 光変調器は超高速通信システムのみならず、光交換、光
加入者系等のシステムでも重要なデバイスである。これ
迄光変調器としてはflll、1Nb03基板上のTi
拡散導波路を用いた、方向性結合器型、マツハ・ツエン
ダ−(M、Z)干渉型光変調器(2)バルク半導体、多
量量子井戸(MQW)構造の電界による吸収端のシフト
を利用した電界吸収型光変調器が知られている。(雑誌
[アイ・イー・イー・イー・トランザクション・オン・
マイクロウニイブ・セオリー・アンド・テクニクス(I
EEETransaction on Microwa
ve Theory and Techniques)
 J 、第MTT−30巻、112)〜1137頁、1
982年:雑誌[エレクトロニクスーレターズ(Ele
ctronics Letters>J−第2)巻、6
93−694頁、1985年〉このうち(1)は高速変
調可、変調時のスペクトル拡がりが小さいという利点を
持つが、比較的素子長が長く、入射光の偏光依存性が大
きいという問題がある。また、比較的小さいとは言え、
挿入損失がある。(2)は小型で高速変調が可能である
が、素子中の光の吸収損失が大きく、光ファイバとの結
合損も大きいため、総合的な結合損失が大きいという欠
点がある。このように従来知られている光変調器では、
挿入損失が大きな問題となっていた。
(Prior Art) Optical modulators are important devices not only in ultrahigh-speed communication systems but also in systems such as optical switching and optical subscriber systems. Up until now, the optical modulators have been full, Ti on 1Nb03 substrate.
Directional coupler type Matsuhaka-Zehnder (M,Z) interferometric optical modulator using a diffusion waveguide (2) Utilizing the shift of the absorption edge due to the electric field of a bulk semiconductor, multiple quantum well (MQW) structure Electroabsorption optical modulators are known. (Magazine [I.E.E. Transactions on
Microuniven Theory and Techniques (I
EEETransaction on Microwa
ve Theory and Techniques)
J, Volume MTT-30, pp. 112)-1137, 1
982: Magazine [Electronics Letters (Ele
ctronics Letters>J-Volume 2), 6
Pages 93-694, 1985> Of these, (1) has the advantage of high-speed modulation and small spectral spread during modulation, but has the problem of relatively long element length and large polarization dependence of the incident light. . Also, although it is relatively small,
There is insertion loss. Although (2) is compact and capable of high-speed modulation, it has a drawback that the overall coupling loss is large because the absorption loss of light in the element is large and the coupling loss with the optical fiber is also large. In this way, conventionally known optical modulators
Insertion loss was a major problem.

この点を解決するために半導体レーザ光増幅器を注入、
電流を変調することにより、光変調器として用いること
が、出願人等により提案されている。(第48回応用物
理学会学術講演会 講演予稿集、第3分冊、722p論
文番号18p−ZG−6,1987年)この型の光変調
器(以下LD光変調器と略す)では、原理的に利得作用
を持つため、変調動作と共に利得も得ることができる。
Injecting a semiconductor laser optical amplifier to solve this point,
The applicant and others have proposed using the device as an optical modulator by modulating current. (48th Japan Society of Applied Physics Academic Conference Proceedings, Volume 3, 722p Paper No. 18p-ZG-6, 1987) In principle, this type of optical modulator (hereinafter abbreviated as LD optical modulator) Since it has a gain effect, it is possible to obtain gain along with the modulation operation.

更に素子長も数100μmと小さく、導波路構造の等力
比により入射偏光依存性も低減できるという利点がある
Furthermore, the element length is as small as several 100 μm, and there is an advantage that dependence on incident polarization can be reduced due to the equipotency ratio of the waveguide structure.

(発明が解決しようとする問題点) しかしながら、これ迄報告されているLD光変調器では
内部利得は得られているものの、入出力に単一モードフ
ァイバ(SMF)を接続した状態では、約2dBの損失
となっていた。また変調時のスペクトル拡がりを決定す
るα・パラメータも7程度と非常に大きく、変調帯域も
低いという問題があった。
(Problem to be solved by the invention) However, although the LD optical modulators reported so far have achieved internal gain, when a single mode fiber (SMF) is connected to the input and output, the gain is approximately 2 dB. It was a loss. Furthermore, the α parameter, which determines the spectrum spread during modulation, is very large, about 7, and the modulation band is also low.

本発明の目的は、上述の問題を除き、LD光変調器によ
り高利得で変調時のスペクトル拡がりが小さく、変調帯
域も広い光変調器を提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide an LD optical modulator with high gain, small spectrum spread during modulation, and wide modulation band.

(問題を解決するための手段) 本発明による光変調器は半導体材料による活性層と端面
からの反射を抑圧する手段と前記活性層に被変調光を注
入する手段と、前記活性層に変調信号に応じた電流を注
入する手段とからなる光変yJ器に於て、前記活性層の
組成波長が、前記被変調光の波長に比べ長波長側に設定
されていることを特徴とするものである。
(Means for Solving the Problem) An optical modulator according to the present invention includes means for suppressing reflection from an active layer and an end face made of a semiconductor material, means for injecting modulated light into the active layer, and a modulated signal to the active layer. and a means for injecting a current according to the wavelength of the modulated light, wherein the compositional wavelength of the active layer is set to a longer wavelength side than the wavelength of the modulated light. be.

更に好ましくは本発明による光変調器は前記活性層がn
型ドープされていることを特徴とする。
More preferably, in the optical modulator according to the present invention, the active layer is n
Characterized by being doped.

く作用) 半導体レーザ光増幅器の利得スペクトラムは注入電流の
増加に従い、バンドフィリング効果によりピークが短波
長側にシフトしながら利得値が増大する。第3図(a>
は被変調光波長λ5と活性層組成波長^8がほぼ等しい
場合の、λ5と利得スペクトラムの相対位置関係を示す
。図に示すように、高電流注入状態ではλ5と利得ピー
ク波長のずれが大きく、十分な利得がとれない。また、
変調時のスペクル拡がりを決めるαパラメータの大きさ
は波長依存性を持つことが知られており、利得ピークよ
り長波長側の波長に対しては大きな値となる。(雑誌[
アプライド・フィジクス・レターズ(Applied 
Physics LetLers)、第42巻、631
−633頁、1983年)そのため、^Sと^8をほぼ
同じにすると、αパラメータも大きな状態で使用するこ
とになり、問題となる。
As the injection current increases, the gain spectrum of the semiconductor laser optical amplifier increases as the peak shifts to the shorter wavelength side due to the band filling effect. Figure 3 (a>
shows the relative positional relationship between λ5 and the gain spectrum when the modulated light wavelength λ5 and the active layer composition wavelength ^8 are approximately equal. As shown in the figure, in the high current injection state, there is a large deviation between λ5 and the gain peak wavelength, and sufficient gain cannot be obtained. Also,
It is known that the size of the α parameter, which determines the spectral spread during modulation, is wavelength dependent, and takes a large value for wavelengths on the longer wavelength side than the gain peak. (magazine[
Applied Physics Letters
Physics LetLers), Volume 42, 631
(Page 633, 1983) Therefore, if ^S and ^8 are made almost the same, the α parameter will also be used in a large state, which poses a problem.

この点を解決するなめには、第3図(b)に示すように
、予め^8を^Sに対し長波長側に設定すればよい。
To solve this problem, as shown in FIG. 3(b), ^8 may be set in advance on the longer wavelength side with respect to ^S.

このように設定することにより利得の増大と変調時のス
ペクトル拡がりの抑圧を実現できる。
By setting in this way, it is possible to increase the gain and suppress spectrum broadening during modulation.

一方、LD光変調器の変調帯域の上限はキャリア寿命に
より制限される。キャリア寿命は、活性層へのドーピン
グ量の増大により低減されることが知られている。従っ
てLD光変調器の活性層にドーピングを施すことによっ
て、変調帯域を改善できる。実際にLEDでは活性層へ
のp型ドーピングにより2Gb/SのNRZ変調が実現
されている。([エレクトロニクス・レターズ(E l
 ec tronics Letters) J 、第
23巻、636−637頁、1987年)LD光増幅器
の場合、n型ドーピングにより飽和光出力強度が増大す
ることが知られている。(電子通信学会論文誌、第J6
9−C巻、42)−431頁、1986年)LD光変調
器の場合も、飽和光出力強度の増大は重要であるから、
ドーピングの型としてはn型が優れている。
On the other hand, the upper limit of the modulation band of the LD optical modulator is limited by the carrier lifetime. It is known that carrier lifetime is reduced by increasing the amount of doping into the active layer. Therefore, by doping the active layer of the LD optical modulator, the modulation band can be improved. In fact, in LEDs, 2 Gb/S NRZ modulation has been realized by p-type doping of the active layer. ([Electronics Letters (E l
Electronics Letters) J, Vol. 23, pp. 636-637, 1987) In the case of an LD optical amplifier, it is known that n-type doping increases the saturation optical output intensity. (Journal of the Institute of Electronics and Communication Engineers, No. J6
9-C, pp. 42)-431, 1986) In the case of LD optical modulators as well, increasing the saturation optical output intensity is important.
As for the doping type, n-type is excellent.

(実施例) 以下本発明につき、実施例により詳細に説明する。第1
図は、本発明による光変調器の斜視図を示すものである
。ここでは、波長λ51.55μmの光に対する光変調
器を実現した例について説明する。まず、本発明による
光変調器の製作について説明する。(100)n−1n
P基板1上にn−1nPバ’ytファ層2 、InGa
AsP活性層3、InGaAsPアンチメルトバック層
4 、p−1nPクラッド層5を液相波長法により連続
成長しDHウェハを製作する。InGaAsP活性層3
のバンドギャップ波長λ8は1.59μm〜1.61μ
m好ましくは1.6μmとし、Teを用いて4 X 1
018cta−3程度のn型ドーピングを施した。
(Examples) The present invention will be explained in detail below using examples. 1st
The figure shows a perspective view of a light modulator according to the invention. Here, an example will be described in which an optical modulator for light with a wavelength λ51.55 μm is realized. First, manufacturing of the optical modulator according to the present invention will be explained. (100)n-1n
n-1nP buffer layer 2 on P substrate 1, InGa
An AsP active layer 3, an InGaAsP anti-meltback layer 4, and a p-1nP cladding layer 5 are successively grown by the liquid phase wavelength method to fabricate a DH wafer. InGaAsP active layer 3
The band gap wavelength λ8 of is 1.59 μm to 1.61 μm
m is preferably 1.6 μm, and using Te, 4×1
N-type doping of about 0.018 cta-3 was performed.

活性層3の厚みは0.15μmとした。The thickness of the active layer 3 was 0.15 μm.

このDHウェハにフォトリングラフィ法により、活性層
を含むメサ6をはさんで2本の満7をn−1nP基板1
に達するように形成する。ついで、液相成長法を用いて
、p−]nP第1電流ブロック層11 、n−1nP第
2電流ブロック層12、p−1nP埋込み層13、p−
1nGaAsPキャップ層14を順次成長する。
This DH wafer was coated with two n-1nP substrates 1 with a mesa 6 containing the active layer in between by photolithography.
Form to reach. Next, using a liquid phase growth method, p-]nP first current blocking layer 11, n-1nP second current blocking layer 12, p-1nP buried layer 13, p-
A 1nGaAsP cap layer 14 is sequentially grown.

素子容量の低減のため満7に平行な方向に、2本の満8
を、これもn−1nP基板1に達するように形成した後
、ウェハのエピタキシャル層全体に、CVD法により5
i02膜9を形成する。この5i02膜9のうち、活性
層を含むメサ6の上部のみをエツチングにより除去し、
plFIオーム性電極10aを形成する。へき開を容易
にするため基板を研磨により 100μm程度に薄板化
し、基板側にもn型オーム性電極10bを形成する。
To reduce element capacitance, two full-8
is also formed so as to reach the n-1nP substrate 1, and then the entire epitaxial layer of the wafer is coated with 5 layers using the CVD method.
An i02 film 9 is formed. Of this 5i02 film 9, only the upper part of the mesa 6 including the active layer is removed by etching.
A plFI ohmic electrode 10a is formed. In order to facilitate cleavage, the substrate is polished to a thickness of about 100 μm, and an n-type ohmic electrode 10b is also formed on the substrate side.

このようにして出来上ったウェハを?746.7の方向
と垂直な面を出すように2面でへき開する。
What about the wafers made in this way? Cleave on two sides to expose the plane perpendicular to the direction of 746.7.

ここで素子長は約300μmとした。このへき開で形成
した端面にプラズマCVD法により5iNX無反射コー
ト膜15を形成し、第1図の構造が完成する。
Here, the element length was approximately 300 μm. A 5iNX anti-reflection coating film 15 is formed on the end face formed by this cleavage by plasma CVD, and the structure shown in FIG. 1 is completed.

次に本発明による光変調器の動作を説明する。Next, the operation of the optical modulator according to the present invention will be explained.

第2図は測定系の構成を示す。波長λ−1,553μm
のDFB−LD光25を先球5MF2)dにより光変調
器20に結合し、出射光を先球5MF2)aによりとり
出して特性を測定した。入出射の結合損失はそれぞれ約
5dBである。光変調器20の電極には直流電源22に
よるDCバイアスと共に信号源23による高周波信号バ
イアスT24を介して加えた。まず直流電源22のみで
光変調器を駆動し、光増幅器として動作させたところ、
SMF間最大利得〜15dBが得られた。
Figure 2 shows the configuration of the measurement system. Wavelength λ-1,553μm
The DFB-LD light 25 was coupled to the optical modulator 20 by the tip 5MF2)d, and the emitted light was taken out by the tip 5MF2)a to measure the characteristics. The input and output coupling losses are approximately 5 dB each. A DC bias from a DC power supply 22 and a high frequency signal bias T24 from a signal source 23 were applied to the electrodes of the optical modulator 20. First, when the optical modulator was driven with only the DC power supply 22 and operated as an optical amplifier,
A maximum gain of ~15 dB between SMFs was obtained.

ついで信号源23により信号を印加し、変調周波数帯域
を測定したところ、3dB低下周波数帯域として600
M Hzが得られた。同時に製作したノンドープ活性層
のサンプルでは変調帯域は500MHzであり、ドーピ
ングにより変調帯域が改善されることが確認できた。ラ
ンダム・パターンを用いた変調では600M b / 
S程度迄は無等化で、t、2Gb/sでは一段の等化に
よりそれぞれ良好なアイパターンが観測された。
Then, when a signal was applied from the signal source 23 and the modulation frequency band was measured, it was found to be 600 as a 3 dB lower frequency band.
MHz was obtained. In the sample of the non-doped active layer produced at the same time, the modulation band was 500 MHz, and it was confirmed that the modulation band was improved by doping. 600Mb/modulation with random pattern
Good eye patterns were observed with no equalization up to about S, and with one-stage equalization at t and 2 Gb/s.

αパラメータの測定値は2〜3程度であり、信号光波長
λSと活性層バンド・ギャップ波長λ8がほぼ一致して
いる場合(α〜7)に比べαパラメータは1/2以下に
低減された。
The measured value of the α parameter was about 2 to 3, and the α parameter was reduced to less than 1/2 compared to the case where the signal light wavelength λS and the active layer band gap wavelength λ8 were almost the same (α~7). .

以上の実施例ではInGaAsP系材料による1、55
μm帯光変調器を実現した例を説明したが、活性層の組
成を変化させることにより、同様な材料系で1.2〜1
.6μm帯の光変調器が実現できる。また本発明がこの
材料系にとどまらず広く、利得機構を有する材料系に適
用可能なことは言う迄もない。
In the above embodiment, 1,55 is made of InGaAsP-based material.
Although we have described an example of realizing a μm band optical modulator, by changing the composition of the active layer, it is possible to
.. A 6 μm band optical modulator can be realized. It goes without saying that the present invention is applicable not only to this material system but also to a wide range of material systems having a gain mechanism.

(発明の効果) 以上詳細に説明したように本発明によれば高利得で、変
調時のスペクトル拡がりが小さく、変調帯域が広い光変
調器が実現できる。
(Effects of the Invention) As described above in detail, according to the present invention, an optical modulator with high gain, small spectrum spread during modulation, and wide modulation band can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光変調器の実施例の構造を示す図
、 第2図は本発明による光変調器の動作を説明するための
図、 第3図は利得スペクトラムと信号光波長の間係を説明す
るための図である。 図に於て、活性層、10a、10bは電極、7.8は溝
、6はメサ、9はSiO□、15はSiN、、20は光
変調器、2)a、2)bはファイバ、22は直流電源、
23は信号源、24はバイアスT、25は光である。
FIG. 1 is a diagram showing the structure of an embodiment of the optical modulator according to the present invention, FIG. 2 is a diagram for explaining the operation of the optical modulator according to the present invention, and FIG. 3 is a diagram showing the difference between the gain spectrum and the signal light wavelength. FIG. In the figure, active layer, 10a, 10b are electrodes, 7.8 is a groove, 6 is a mesa, 9 is SiO□, 15 is SiN, 20 is an optical modulator, 2) a, 2) b are fibers, 22 is a DC power supply,
23 is a signal source, 24 is a bias T, and 25 is light.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体材料による活性層と端面からの反射を抑圧
する手段と前記活性層に被変調光を注入する手段と、前
記活性層に変調信号に応じた電流を注入する手段とから
なる光変調器において、前記活性層の組成波長が、前記
被変調光の波長に比べ長波長側に設定されていることを
特徴とする光変調器。
(1) Optical modulation consisting of means for suppressing reflection from an active layer and end face made of a semiconductor material, means for injecting modulated light into the active layer, and means for injecting a current in accordance with a modulation signal into the active layer. An optical modulator, characterized in that the composition wavelength of the active layer is set to a longer wavelength side than the wavelength of the modulated light.
(2)請求項1記載の光変調器において、前記活性層が
n型ドープされていることを特徴とする光変調器。
(2) The optical modulator according to claim 1, wherein the active layer is n-type doped.
JP4489888A 1988-02-26 1988-02-26 Optical modulator Pending JPH01219717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4489888A JPH01219717A (en) 1988-02-26 1988-02-26 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4489888A JPH01219717A (en) 1988-02-26 1988-02-26 Optical modulator

Publications (1)

Publication Number Publication Date
JPH01219717A true JPH01219717A (en) 1989-09-01

Family

ID=12704300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4489888A Pending JPH01219717A (en) 1988-02-26 1988-02-26 Optical modulator

Country Status (1)

Country Link
JP (1) JPH01219717A (en)

Similar Documents

Publication Publication Date Title
Heck et al. Hybrid silicon photonic integrated circuit technology
Duan et al. Hybrid III--V on Silicon Lasers for Photonic Integrated Circuits on Silicon
US6122414A (en) Semiconductor Mach-Zehnder modulator
JP5858997B2 (en) Loss-modulated silicon evanescent laser
US8213751B1 (en) Electronic-integration compatible photonic integrated circuit and method for fabricating electronic-integration compatible photonic integrated circuit
US6162655A (en) Method of fabricating an expanded beam optical waveguide device
Duan et al. Hybrid III-V silicon photonic integrated circuits for optical communication applications
Hiraki et al. Membrane InGaAsP Mach–Zehnder modulator integrated with optical amplifier on Si platform
JP2011112873A (en) Multivalued optical phase modulator
JPH0732279B2 (en) Semiconductor light emitting element
US7064891B2 (en) Optical wavelength converter with a semiconductor optical amplifier
Aihara et al. Mach-zehnder modulator using membrane InGaAsP phase shifters and SOAs inside interferometer arms on Si photonics platform
JP2011181789A (en) Semiconductor light source
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
CA2267018C (en) Optical wavelength converter with active waveguide
Dummer et al. Widely tunable separate absorption and modulation wavelength converter with integrated microwave termination
JPH01219717A (en) Optical modulator
Aihara et al. 56-Gbit/s operations of Mach-Zehnder modulators using 300-µm-long membrane InGaAsP phase shifters and SiN waveguides on Si
US6775455B1 (en) Silicon mesa structure integrated in a glass-on-silicon waveguide, and a method of manufacturing it
Xiong et al. High-speed (> 40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach
JPS63186210A (en) Semiconductor integrated light modulating element
Aihara et al. Heterogeneously integrated membrane DFB laser and Si Mach-Zehnder modulator on Si photonics platform
JP4653940B2 (en) Light controller for communication
Tsuzuki et al. Four-channel arrayed polarization independent EA modulator with an IPF carrier operating at 10 Gb/s
Makino et al. Wide Temperature (15ºC to 95ºC), 80-km SMF Transmission of a 1.55-µm, 10-Gbit/s InGaAlAs Electroabsorption Modulator Integrated DFB Laser