JPH01219691A - Measuring apparatus of distance by electromagnetic wave - Google Patents

Measuring apparatus of distance by electromagnetic wave

Info

Publication number
JPH01219691A
JPH01219691A JP4663288A JP4663288A JPH01219691A JP H01219691 A JPH01219691 A JP H01219691A JP 4663288 A JP4663288 A JP 4663288A JP 4663288 A JP4663288 A JP 4663288A JP H01219691 A JPH01219691 A JP H01219691A
Authority
JP
Japan
Prior art keywords
distance
circuit
pulse
time
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4663288A
Other languages
Japanese (ja)
Inventor
Hirotaka Takada
博敞 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4663288A priority Critical patent/JPH01219691A/en
Publication of JPH01219691A publication Critical patent/JPH01219691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To make a distance measuring apparatus small in size and low in cost, by computing a distance to an object of distance measurement from the number of times of going and returning of a light beam from a transmission circuit to a reception circuit through said object within a certain time. CONSTITUTION:When a time required for a laser light 13a to advance by a distance L is denoted by tl, a time required for the laser light (13a) to complete its travel from a transmission circuit 12 to a reception circuit 21 through an object 2 of distance measurement is 2tl. The laser light (return beam 19) returning to the reception circuit 21 turns to be a reception pulse P, and it is given a delay time td by a delay circuit 24, subjected to waveform shaping and then inputted again to the transmission circuit 12, wherefrom the laser light 13a is outputted. In this case, a distance L to the object 2 is determined by the calculation of L=ctl=cT/(2n)-cta/2. In other words, the distance to the object is determined from the number of times of an electromagnetic wave going and returning within a certain time. Accordingly, only a counter which can respond to the maximum frequency is needed, and thus an apparatus can be made small in size and low in cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばレーザレーダに使用して好適な目標物
体までの距離を求めるための電磁波測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electromagnetic range measuring device suitable for use in, for example, a laser radar to determine the distance to a target object.

〔発明の概要〕[Summary of the invention]

本発明は、例えばレーザレーダに使用して好適な目標物
体までの距離を求めるための電磁波測距装置であって、
電磁波の送信回路と、測距対象物から反射された電磁波
の受信回路と、この受信回路で検知されたパルスを遅延
させて再送信するべくその受信回路に伝える遅延回路と
より構成され、送信回路から測定対象物を介して受信回
路まで電磁波が一定時間内に往復する回数からその測距
対象物までの距離を演算する様にして、比較的低速なカ
ウンタが使用でき、小型で低価格の装置が構成できる様
にしたものである。
The present invention is an electromagnetic range measuring device for use in, for example, a laser radar to determine the distance to a suitable target object, comprising:
The transmitting circuit consists of an electromagnetic wave transmitting circuit, a receiving circuit for electromagnetic waves reflected from the object to be measured, and a delay circuit that delays and transmits the pulse detected by the receiving circuit to the receiving circuit for retransmission. The distance to the object to be measured is calculated from the number of times that electromagnetic waves travel back and forth from the object to the receiving circuit within a certain period of time, allowing the use of a relatively slow counter, making it a small and low-cost device. It is designed so that it can be configured.

〔従来の技術〕[Conventional technology]

ある地域内の目標物体までの距離を遠隔的に求める装置
としてレーザレーダシステムが知られている。この従来
のレーザし−ダシステムは例えば特開昭60−1596
66号公報などに開示されている様に、基本的には第5
図に示す構成とされている。
A laser radar system is known as a device for remotely determining the distance to a target object within a certain area. This conventional laser radar system is known, for example, from Japanese Patent Application Laid-Open No. 60-1596.
As disclosed in Publication No. 66, etc., basically the fifth
The configuration is shown in the figure.

第5図において、(1〕はレーザレーダシステムを全体
として示し、測距対象物(2)までの距離を遠隔的に求
めるものである。ここで、(3)はルビーレーザ等のパ
ルスレーザでありジャイアントパルスレ−ザ光(3a)
を生成すると同時に送信パルスSを出力し、そのレーザ
光(3a)はビームエクスパンダ(4)に′よってビー
ム径が拡張されて照射ビーム(5)に変換される。この
照射ビーム(5)は測距対象物(2)で反射されてその
一部は反射ビーム(6)となりレーザレーダシステム(
1)側に戻される。その反射ビーム(6)は集光レンズ
〔7〕で光電増倍管(8)の受光面に集束され、光電増
倍管(8)によって光電変換され受信パルスEとなる。
In Fig. 5, (1) shows the laser radar system as a whole, which remotely determines the distance to the object to be measured (2).Here, (3) is a pulsed laser such as a ruby laser. Yes Giant pulse laser beam (3a)
At the same time as generating a transmission pulse S, the laser beam (3a) is expanded in beam diameter by a beam expander (4) and converted into an irradiation beam (5). This irradiation beam (5) is reflected by the distance measuring object (2) and a part of it becomes a reflected beam (6) in the laser radar system (
1) Returned to the side. The reflected beam (6) is focused by a condensing lens [7] onto the light receiving surface of a photomultiplier tube (8), and photoelectrically converted into a received pulse E by the photomultiplier tube (8).

また、(9)はカウンタであり、送信パルスSの立上り
から受信パルスEの立上りまでの間クロックパルス発振
器(10)から出力される基準クロックFを計数する。
Further, (9) is a counter, which counts the reference clock F output from the clock pulse oscillator (10) from the rising edge of the transmitting pulse S to the rising edge of the receiving pulse E.

第5図の従来のレーザレーダシステム(1)は次の様に
して測距対象物(2)までの距離りを測定することがで
きる。
The conventional laser radar system (1) shown in FIG. 5 can measure the distance to the distance measuring object (2) in the following manner.

先スパルスレーザ(3)はパルスレーザ光(3a)ヲ発
振すると同時に第6図Aに示す様に送信パルスSをカウ
ンタ(9)に送り、カウンタ(9〕は周波数fo の基
準クロックFの計数を始める。次で反射ビーム(6)が
戻って来ると光電増倍管(8)から受信パルスE(第6
図B)がカウンタ(9)に送出され、カウンタ(9)は
計数を停止する。従って、カウンタ(9)では第6図C
に示す様に、送信パルスSの立上りSlから受信パルス
Eの立上りEl までのΔTの間だけ基準クロックFを
計数し計数値Nが得られるが、計数値Nには量子化誤差
±1が含まれている場合があるため、ΔTは (N−1)/f、<ΔT<(N+ 1)/ fo   
”(1)の範囲内にある。このΔTは距離りを光が往復
する時間であり光速をCとすると、距離L(=cΔT/
2)は式(1)より次の範囲内にある。
The first pulse laser (3) oscillates the pulse laser beam (3a) and at the same time sends the transmission pulse S to the counter (9) as shown in FIG. 6A, and the counter (9) counts the reference clock F of the frequency fo. Next, when the reflected beam (6) returns, the received pulse E (sixth
B) is sent to the counter (9), and the counter (9) stops counting. Therefore, in the counter (9), C
As shown in , the reference clock F is counted only during ΔT from the rising edge Sl of the transmitted pulse S to the rising edge El of the received pulse E, and the counted value N is obtained, but the counted value N includes a quantization error of ±1. Therefore, ΔT is (N-1)/f, <ΔT<(N+ 1)/ fo
"It is within the range of (1). This ΔT is the time for light to travel back and forth over the distance. If the speed of light is C, then the distance L (=cΔT/
2) is within the following range from equation (1).

c(N  1)/(2ro)<c(N+1)/(2fo
)・・・・(2)従って、第5図の従来のレーザレーダ
システムではクロックパルス発振器(10)の基準クロ
ックFの周波数をfo とすると、 ΔL=±c/ (2f o)        ・・” 
(3)で表わされる測定誤差ΔLが存在する。
c(N 1)/(2ro)<c(N+1)/(2fo
)...(2) Therefore, in the conventional laser radar system shown in FIG. 5, if the frequency of the reference clock F of the clock pulse oscillator (10) is fo, then ΔL=±c/ (2f o)..."
There is a measurement error ΔL expressed by (3).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、斯る従来のレーザレーダシステムにおい
ては、例えば測距対象物(2)までの距離りを測定誤差
ΔLが30cm以内で測定しようとすると、式(3)よ
り c/(2f o) <30(cm) となり、基準クロックFの周波数f0 は500M)I
z以上に設定しなければならず、高価で大がかりな高速
カウンタが必要であるという不都合があった。
However, in such a conventional laser radar system, when trying to measure the distance to the object (2), for example, with a measurement error ΔL of 30 cm or less, c/(2f o) < 30 from equation (3). (cm), and the frequency f0 of the reference clock F is 500M)I
z or higher, which is disadvantageous in that an expensive and large-scale high-speed counter is required.

また、第6図Aに示す送信パルスSの立上りslに対す
るパルスレーザ(3)の出力であるパルスレーザ光(3
a)の立上りの遅れはそのまま測定誤差になるため、測
定誤差ΔLを30cm以内にするにはパルスレーザ光(
3a)の立上りはins程度にしなければならず、パル
スレーザ(3)としてはルビーレーザ等の高価で大型の
装置が必要であるという不都合があった。
In addition, the pulsed laser beam (3
Since the delay in the rise of a) directly causes a measurement error, pulsed laser light (
The rise of 3a) has to be on the order of ins, and the pulse laser (3) requires an expensive and large-sized device such as a ruby laser.

本発明はこのような点に鑑み成されたもので、その目的
とする所は、比較的低速なカウンタを使用して従来と同
程度の測定誤差が得られ、装置が小型でかつ安価な電磁
波測距装置を提供するにある。
The present invention has been made in view of the above points, and its purpose is to use a relatively low-speed counter to obtain measurement errors of the same degree as conventional methods, to use a small device, and to reduce the cost of electromagnetic waves. To provide distance measuring equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による電磁波測距装置は、例えば第1図に示す如
く、電磁波として光ビーム(17)を出力する送信回路
(12)と、測距対象物(2)から反射された光ビーム
(19)の受信回路(21)と、この受信回路(21)
で検知された受信パルスPを遅延へせて再送信するべく
その送信回路(12)に伝える遅延回路(24)とより
構成して、その送信回路(12)から測距対象物(2)
を介して受信回路(21)まで光ビームが一定時間T内
に往復する回数nから測距対象物(2)までの距離りを
演算する様にしたものである。
As shown in FIG. 1, for example, the electromagnetic wave distance measuring device according to the present invention includes a transmitting circuit (12) that outputs a light beam (17) as an electromagnetic wave, and a light beam (19) reflected from a distance measuring object (2). This receiving circuit (21) and this receiving circuit (21)
and a delay circuit (24) that transmits the received pulse P detected by the transmitter circuit (12) to the transmitter circuit (12) in order to retransmit the received pulse P after a delay.
The distance to the object to be measured (2) is calculated from the number of times n that the light beam makes a round trip within a certain period of time T to the receiving circuit (21).

〔作用゛〕 斯る本発明によれば、遅延回路(24)までの遅延時間
t、よりも大きな時間間隔で検知される受信パルスPを
一定時間Tの間だけ計数していればよいため、比較的低
速のカウンタが使用できる。また、測距対象物(2)ま
での距離りを光ビームが往復するのに要する時間を2t
zとすると、その距離りの間を一定時間Tの間に光ビー
ムが往復する回数n(即ち、比較的低速のカウンタの計
数値)はほぼ n = T/(td+2 t t )      −−
−−(4)の関係を充足している。そのため式(4)か
ら距離りを光ビームが進行するのに要する時間t、が逆
算でき、光速Cを乗することにより距離りが求められる
。ここで式(4)において一定の時間間隔Tを大きくす
ることにより、往復する回数nも比例して大きくなるた
め時間t、の測定精度は任意に改善できる。
[Operation] According to the present invention, the received pulses P detected at time intervals larger than the delay time t up to the delay circuit (24) need only be counted for a certain period of time T. Relatively slow counters can be used. Also, the time required for the light beam to travel back and forth to the distance measurement target (2) is 2t.
If z, the number of times the light beam travels back and forth over that distance during a certain period of time T (i.e., the count value of a relatively slow counter) is approximately n = T/(td+2 t t ) --
--The relationship (4) is satisfied. Therefore, the time t required for the light beam to travel the distance can be calculated backwards from equation (4), and the distance can be obtained by multiplying by the speed of light C. Here, by increasing the fixed time interval T in equation (4), the number of round trips n also increases proportionally, so the measurement accuracy of the time t can be improved arbitrarily.

〔実施例〕〔Example〕

以下、本発明の電磁波測距装置の一実施例につき図面を
参照して説明しよう。図面において第5図に対応する部
分には同一符号を付してその詳細説明は省略する。
Hereinafter, one embodiment of the electromagnetic distance measuring device of the present invention will be described with reference to the drawings. In the drawings, parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図は本実施例の電磁波−とじて光を用いた電磁波測
距装置(11)と測距対象物(2)とを示し、電磁波測
距システム(11)において、(12)は送信回路であ
り、レーザダイオード(13)とそれを発光させるだめ
の駆動回路(14)とより成り、レーザ光(13a)を
生成する。このレーザ光(13a)  はコリメータレ
ンズ(15)によってほぼ平行にされ、ビームスプリッ
タ(16)を通って往ビーム(17)となる。また、(
18)は測距対象物(2)上に固定された光回帰性反射
体を示し、この光回帰性反射イ本(18)は台紙(18
a)上に直径dがQ、 1mm程度のガラスピーズ(1
8b) を多数隙間がない様に被着して形成されている
。この多数のガラスピーズ(18b)  の一種のマイ
クロプリズム作用によって、この光回帰性反射体(18
)に入射した往ビーム(17)はその入射方向とほぼ同
じ方向に復ビーム(19)として反射される。
FIG. 1 shows an electromagnetic range measuring device (11) using electromagnetic waves and light according to the present embodiment, and an object to be measured (2). In the electromagnetic range measuring system (11), (12) is a transmitting circuit. It consists of a laser diode (13) and a drive circuit (14) for making it emit light, and generates laser light (13a). This laser light (13a) is made almost parallel by a collimator lens (15), passes through a beam splitter (16), and becomes an outgoing beam (17). Also,(
18) shows a light recursive reflector fixed on the distance measuring object (2), and this light recursive reflector (18) is attached to a mount (18).
a) Glass beads (1 mm in diameter d and 1 mm in diameter)
8b) are adhered to each other so that there are no gaps. This light recursive reflector (18
) is reflected as a backward beam (19) in substantially the same direction as the direction of incidence.

ここで第2図を参照して、第1図の光回帰性反射体(1
8)に光回帰性が具わっていることの原理説明を行なう
。第2図において、(32)、はガラス球で、(33)
はそのガラス球(32)の右半面に施されたアルミ蒸着
膜である。ここに入射光(34)が照射されるとガラス
球(32)による屈折とアルミ蒸着膜(33)による反
射によって、その反射光(35)は入射光(34)の入
射方向とほぼ平行に反射される。また、入射光が矢印(
34’)の方向から入射するとガラス球(32)の球対
称性によって、その反射光(35’)は矢印(34’)
の方向とほぼ平行に反射されるため、左半面からガラス
球(32)に入射する光線はその入射方向とほぼ平行に
反射される。このことはガラス球(32)に光回帰性が
あることを意味し、このガラス球(32)を微小化した
ガラスピーズ(18b)  を多数被着して形成されて
いる第1図の光回帰性反射体(18)にも光回帰性が具
わっているのである。
Referring now to FIG. 2, the light recursive reflector (1) of FIG.
We will explain the principle behind the fact that 8) has photoregression properties. In Figure 2, (32) is a glass bulb, and (33)
is an aluminum vapor deposited film applied to the right half of the glass bulb (32). When incident light (34) is irradiated here, the reflected light (35) is reflected almost parallel to the direction of incidence of the incident light (34) due to refraction by the glass bulb (32) and reflection by the aluminum evaporated film (33). be done. Also, if the incident light is an arrow (
34'), due to the spherical symmetry of the glass bulb (32), the reflected light (35') will reflect the direction of the arrow (34').
The light rays incident on the glass bulb (32) from the left half surface are reflected substantially parallel to the direction of incidence. This means that the glass bulb (32) has a photoreturning property, and the photoreturning glass shown in Fig. 1 is formed by covering a large number of miniaturized glass beads (18b) on the glass bulb (32). The optical reflector (18) also has optical return properties.

第1図において、光回帰性反射体(18)から反射され
た復ビーム(19)はビームスプリッタ(16)で−部
が分離され、その分離された部分は集光レンズ(20)
で受信回路(21)に集束される。この受信回路(21
)は、集光レンズ(20)の焦点位置に設けられ復ビー
ム(19)を光電変換するPINフォトダイオード(2
2)とその光電変換出力を増幅して受信パルスPを検知
するプリアンプ(23)とより成る。受信回路(21)
で検知された受信パルスPは遅延回路(24)で所定の
遅延時間t、を°与えられて遅延パルスQとなる。ここ
で遅延時間t、には例えばプリアンプ(23)での時間
遅れなど他の回路での遅延をも含むとする。また(25
)は波形整形回路であり、そのアナログの遅延パルスQ
の初期の立上りと共にハイレベルになり所定パルス幅Δ
tでローレベルになるデジタルパルスを生成しORゲー
ト(26)の−方の入力端子に供給する。
In Fig. 1, the negative part of the return beam (19) reflected from the light recursive reflector (18) is separated by the beam splitter (16), and the separated part is passed through the condenser lens (20).
and is focused on the receiving circuit (21). This receiving circuit (21
) is a PIN photodiode (2) that is installed at the focal point of the condenser lens (20) and photoelectrically converts the reflected beam (19).
2) and a preamplifier (23) that amplifies the photoelectric conversion output and detects the received pulse P. Receiving circuit (21)
The received pulse P detected at is given a predetermined delay time t by a delay circuit (24) and becomes a delayed pulse Q. Here, it is assumed that the delay time t includes delays in other circuits, such as a time delay in the preamplifier (23), for example. Also (25
) is a waveform shaping circuit whose analog delayed pulse Q
At the initial rise of Δ, it becomes high level and the predetermined pulse width Δ
A digital pulse that becomes low level at t is generated and supplied to the negative input terminal of the OR gate (26).

受信回路り21)で検知された受信パルスPは上述の様
に遅延回路(24)に入力される一方で、レベル変換器
(27)によってTTLレベルに変換されANDゲー)
 (28)の一方の入力端子に供給される。ANDゲー
) (28)の他方の入力端子には後述の処理回路(3
0)よりゲートパルスGが供給され、受信パルスPのレ
ベル変換出力はゲートパルスGがハイレベルの間のみA
NDゲー) (28)からカウンタ(29)に供給され
る。カウンタ(29)はANDゲートク28)から供給
されるパルスを積算計数しその計数値nを処理回路(3
0)に出力する。この処理回路(30)は信号ライン(
30a)  を用いてカウンタ(29)をクリアし、ま
たANDゲー) (28)の他方の入力端子に一定時間
Tだけハイレベルを保つゲートパルスGを供給すると共
に、送信回路(12)に最初の発振を起こさせるための
パルス幅Δtの初期パルスRを○Rアゲ−(26)を介
して供給する。この初期パルスRと波形整形回路(25
)の出力は○Rアゲート26)によって、そのどちらか
がハイレベルの間はハイレベルとなる発信パルスUにな
る。また発信パルスUがハイレベルの時は駆動回路(1
4)から電流がレーザダイオード(13)に供給される
ため、レーザ光(13a) が出力される。
The received pulse P detected by the receiving circuit 21) is input to the delay circuit (24) as described above, while being converted to a TTL level by the level converter (27) and processed by the AND game).
(28) is supplied to one input terminal. The other input terminal of AND game) (28) is connected to a processing circuit (3) which will be described later.
0), and the level conversion output of the received pulse P is A only while the gate pulse G is at high level.
(ND game) (28) is supplied to the counter (29). The counter (29) counts the pulses supplied from the AND gate 28) and calculates the counted value n from the processing circuit (3).
0). This processing circuit (30) is connected to the signal line (
30a) is used to clear the counter (29), and a gate pulse G that remains at a high level for a certain period of time T is supplied to the other input terminal of the AND game (28), and the first An initial pulse R having a pulse width Δt for causing oscillation is supplied via the ○R gate (26). This initial pulse R and the waveform shaping circuit (25
) becomes a transmission pulse U which is at a high level while either of them is at a high level due to the ○R agate 26). Also, when the transmission pulse U is high level, the drive circuit (1
Since current is supplied from 4) to the laser diode (13), laser light (13a) is output.

ここで処理回路(30)での演算内容を説明するに、先
ずレーザ光(13a)  が距離りだけ進行するに要す
る時間をt、とすると、レーザ光(13a)  が送信
回路(12)から送り出されて測距対象物(2)を介し
て受信回路(21)まで往復して来るまでに要する時間
は2ttとなる。次で送信回路(21)に戻って来たレ
ーザ光(復ビーム(19) ”)は受信パルスPとなり
、遅延回路(24)で遅延時間t、を与えられて波形整
形されてから再び送信回路(12)に人力されレーザ光
(13a)  が出力される。このため、ゲートパルス
Gがハイレベルの時間Tの間にカウンタ(29)で計数
される2定周期e (=2 tz + td)  の受
信パルスPをTTLレベル変換したパルスの数をnとす
ると、nはほぼ次式で表わされる。
To explain the calculation contents of the processing circuit (30), first, let t be the time required for the laser beam (13a) to travel the distance, then the laser beam (13a) is sent out from the transmitting circuit (12). The time required for the signal to travel back and forth to the receiving circuit (21) via the object (2) to be measured is 2tt. Next, the laser light (return beam (19) '') that returns to the transmitting circuit (21) becomes a received pulse P, which is given a delay time t in the delay circuit (24) and waveform-shaped, and then sent to the transmitting circuit again. The laser beam (13a) is outputted manually at (12).Therefore, the counter (29) counts 2 constant periods e (=2 tz + td) during the time T when the gate pulse G is at a high level. When the number of pulses obtained by converting the TTL level of the received pulses P is n, n is approximately expressed by the following equation.

n=T/e=T/(2tz  + td)   ・・−
・(5)式(5〕をt、について解くと、 t 、 = T/(2n) −td/2    −・・
(6)となる。ここでTStdは既知の定数であり、n
は距離りによって変化するカウンタ(29)での計数値
であるため、処理回路(30)では式(6)より1.を
演算して求めればよい。次で媒質中での光速をCとする
と、測距対象物(2)までの距離りはL=c t、 =
cT/(2n) −CL+/2 −・(7)の演算で求
められる。この求められたしの値は第1図の表示回路(
31)に表示される。
n=T/e=T/(2tz + td)...-
・(5) Solving equation (5) for t, t, = T/(2n) −td/2 −・・
(6) becomes. Here TStd is a known constant and n
is the count value at the counter (29) that changes depending on the distance, so the processing circuit (30) calculates 1. from equation (6). You can find it by calculating. Next, if the speed of light in the medium is C, the distance to the object (2) to be measured is L=c t, =
It is determined by the calculation cT/(2n) −CL+/2 −·(7). This obtained value is the display circuit shown in Figure 1 (
31).

次に第1図例の電磁波測距装置≠噛の作用について第3
図を参照して説明する。
Next, we will explain the electromagnetic range measuring device in Figure 1 ≠ the action of biting
This will be explained with reference to the figures.

先ず処理6回路(30)はゲートパルスGを時刻t=t
o で立上げる(第3図A)と同時に、パルス幅Δtの
初期パルスRを出力する(第3図B)。ゲートパルスG
は時刻t = t o + Tまでの時間Tだけハイレ
ベルを保つ様にされるパルスであり、具体的にはTは1
μs及びΔTは1Qnsに選ばれている。この時初期パ
ルスRの立上りR1はORアゲ−(26)を介して発信
パルスUの立上りUl(第3図D)となり、送信回路(
12)より往ビーム(17)が測距対象物(2)に発射
され、この往ビーム(12)は測距対象物(2)上の光
回帰性反射体(18)により反射され復ビーム(19)
となって受信回路(21)に戻されて受信パルスPの立
上りPL(第3図C)が観測される。
First, the 6 processing circuits (30) apply the gate pulse G at time t=t
o (FIG. 3A), and at the same time outputs an initial pulse R with a pulse width Δt (FIG. 3B). Gate pulse G
is a pulse that is kept at a high level for a time T until time t = t o + T, and specifically, T is 1
μs and ΔT are chosen to be 1Qns. At this time, the rising edge R1 of the initial pulse R becomes the rising edge Ul (FIG. 3D) of the outgoing pulse U via the OR gate (26), and the transmitting circuit (
An outgoing beam (17) is emitted from the distance measuring object (2) from the distance measuring object (2), and this outgoing beam (12) is reflected by the optical recursive reflector (18) on the ranging object (2) and becomes a backward beam ( 19)
The pulse is returned to the receiving circuit (21), and the rising edge PL of the received pulse P (FIG. 3C) is observed.

続いて受信パルスPは遅延回路(24)で遅延時間1d
 を与えられて波形整形後に再び送信回路(12)に発
振パルスUとして注入されるので、第3図りに示す様に
、発振パルスUの立上りU2が励起されて、送信回路(
12)より新たな往ビーム(17)が測距対象物(2)
に向けて発射される。以後は同様に周期2t□+t、で
往ビーム(17)が発射され、受信パルスPの周期Tも
第3図Cに示す様に2t、+1、 となる。ここで遅延
時間t、は70nsとされ、予め校正しておいた値であ
る。
Subsequently, the received pulse P is delayed by the delay circuit (24) for a delay time of 1 d.
is given and after waveform shaping, it is again injected into the transmitting circuit (12) as an oscillating pulse U, so as shown in Figure 3, the rising edge U2 of the oscillating pulse U is excited and the transmitting circuit (12)
12) Newer forward beam (17) is the object to be measured (2)
is fired towards. Thereafter, the forward beam (17) is similarly emitted with a period of 2t□+t, and the period T of the received pulse P also becomes 2t,+1, as shown in FIG. 3C. Here, the delay time t is 70 ns, which is a value calibrated in advance.

次にゲートパルスGが2定時間T経過後にローレベルに
なると、ANDゲー) (28)より計数パルスが出力
されなくなり処理回路(30)はカウンタ(29)より
計数値nを取り込み、式(7)に従って測距対象物(2
)までの距離りを求めて、表示回路(31)に表示する
。その後送信回路(12)からの往ビーム(17)の出
力を停止するには、例えば、送信回路(12)中の駆動
回路(14)に供給する電圧をオフ2二すればよい。
Next, when the gate pulse G becomes low level after 2 fixed time T elapses, the counting pulse is no longer outputted from the AND game (28), and the processing circuit (30) takes in the count value n from the counter (29), ) according to the distance measurement target (2
) is calculated and displayed on the display circuit (31). After that, in order to stop outputting the forward beam (17) from the transmitting circuit (12), for example, the voltage supplied to the drive circuit (14) in the transmitting circuit (12) may be turned off.

ここで本例電磁波測距装置の誤差解析を行なうに、受信
パルスPの計数値nは整数であるが、真の距離りを求め
るにはその端数Δnまでも求める必要がある。第3図C
から明らかな様に、T=n e+2t、−e’=(n+
Δn) e   −・・・(8)であり、Q<2t、<
e、O<e’<eが成立するので、Δnは+1の間にあ
る。式(7)において、nの代わりにn+Δnと置いて
、n)Δnの近似を行−なうと、距離りは L = (cT/(2n) ] (1−Δn/n)  
c t a/2 ・・” (9)となり、その誤差ΔL
の絶対値は IΔL l = [:cT/(2n)) (lΔnl/
n)≦cT/(2n)”・・・・(10) で表わされる。ここでn−T/ (2t 1 + t 
J  とすると、式(10)は %式%(11) になる。従って、ゲートパルスGの周期Tを大きくする
ことによって測定誤差ΔLは理論的には任意に小さくで
きることがわかる。
Here, in analyzing the error of the electromagnetic wave distance measuring device of this example, the count value n of the received pulse P is an integer, but in order to obtain the true distance, it is also necessary to obtain its fraction Δn. Figure 3C
As is clear from the above, T=n e+2t, -e'=(n+
Δn) e − (8), and Q<2t,<
Since e, O<e'<e holds true, Δn is between +1. In equation (7), if we approximate n)Δn by replacing n with n+Δn, the distance is L = (cT/(2n) ] (1−Δn/n)
c t a/2...” (9), and the error ΔL
The absolute value of is IΔL l = [:cT/(2n)) (lΔnl/
n)≦cT/(2n)"...(10) Here, n-T/(2t 1 + t
When J, equation (10) becomes % equation %(11). Therefore, it can be seen that the measurement error ΔL can theoretically be arbitrarily reduced by increasing the period T of the gate pulse G.

更に、第1図のカウンタ(29)の最大計数周波数をf
eとすると、第3図C及びDより f、=1/e≦1/ t d−−−−(12)が成立す
る。本例ではt、 =7Qnsに選択されるので、式(
12)より「、≦15 (MHz)  となり、従来に
比べて格段に低い周波数とされているため、カウンタ(
29)は安価で小型の計数回路で構成することができる
Furthermore, the maximum counting frequency of the counter (29) in FIG.
If e, then f,=1/e≦1/td---(12) holds true from FIG. 3C and D. In this example, t, =7Qns is selected, so the formula (
12), ≦15 (MHz), which is considered to be a much lower frequency than the conventional one, so the counter (
29) can be constructed with an inexpensive and small-sized counting circuit.

また、送受信回路(12)及び(21)でのパルス遅延
時間の温度特性を遅延回路(24)で逆補正してやる構
成とすることもできる。 − また本例においては、一定時間Tの間に送信パルスPを
計数していく方式であるため、平均化の効果により個々
のレーザ光(13a)  の立上りの特性は測定精度に
大きく影響しない。そのため、レーザ光源としてルビー
レーザの様な大型で高価な装置ではなく、小型で低価格
のレーザダイオードが使用でき、装置全体が小型で低価
格になる。また例えば測距対象物(2)での反射の乱れ
によって受信パルスPが鈍っても波形整形回路(25)
によって発信パルスUのパルス幅Δtは常に一定値に保
たれるので、ゲートパルスGの周期Tを長くしても高精
度な測定が維持される。
Further, it is also possible to adopt a configuration in which the temperature characteristics of the pulse delay times in the transmitting/receiving circuits (12) and (21) are reversely corrected by the delay circuit (24). - Also, in this example, since the method is to count the transmission pulses P during a certain period of time T, the rise characteristics of the individual laser beams (13a) do not greatly affect the measurement accuracy due to the effect of averaging. Therefore, instead of a large and expensive device such as a ruby laser, a small and inexpensive laser diode can be used as the laser light source, making the entire device small and inexpensive. For example, even if the received pulse P becomes dull due to disturbance of reflection from the distance measuring object (2), the waveform shaping circuit (25)
Since the pulse width Δt of the transmitted pulse U is always kept at a constant value, highly accurate measurement can be maintained even if the period T of the gate pulse G is lengthened.

また本例では測定対象物(2)に光回帰性反射体(18
)が設けられているので、測距対象物(2)が正対して
いなくとも強い復ビーム(19)が得られ、常に高いS
/N比が得られる。但し、この光回帰性反射体(18)
は本発明にとって必須ではない。
In addition, in this example, the measurement target (2) is a light regressive reflector (18
), a strong return beam (19) can be obtained even if the distance measurement target (2) is not directly facing the target, and a high S
/N ratio is obtained. However, this light regression reflector (18)
is not essential to the invention.

次に第4図を参照して本発明電磁波測距装置の他の例に
ついて説明しよう。
Next, another example of the electromagnetic wave distance measuring device of the present invention will be explained with reference to FIG.

第4図は電磁波として周波数が10GHz程度のSHF
波を使用した電磁波測距装置の一部を示し、(36)は
SHF波の往ビーム(37)を発するための送信アンテ
ナ、(38)は測距対象物(2)に設けられその往ビー
ム(37)を反射して復ビーム(39)を得るための小
型パラボラアンテナ、(40)はその復ビーム(39)
を受けて電気信号を得るための例えば衛星方法(BS)
の受信用に使用されるBSアンテナである。他の回路構
成は基本的には第1図例と同じであるため詳細な説明は
省略する。
Figure 4 shows SHF as an electromagnetic wave with a frequency of about 10 GHz.
This shows a part of an electromagnetic range measuring device that uses waves, where (36) is a transmitting antenna for emitting an outgoing beam (37) of SHF waves, and (38) is a transmitting antenna installed on the ranging object (2) to emit that outgoing beam. A small parabolic antenna for reflecting (37) to obtain a return beam (39), (40) is the return beam (39)
e.g. satellite method (BS) for receiving and obtaining electrical signals.
This is a BS antenna used for reception. The other circuit configurations are basically the same as those in the example shown in FIG. 1, so detailed explanations will be omitted.

本例に依れば、第1図例と比較して往ビーム(37)の
拡がりが大きくなるため、送信アンテナ(36)の設置
精度に余裕がある。
According to this example, the spread of the forward beam (37) is larger than that in the example shown in FIG. 1, so there is a margin in the installation accuracy of the transmitting antenna (36).

同様に、本発明電磁波測距装置では電磁波としてUHF
帯ないしVHF帯の電磁波を使用することも可能で、こ
の場合には第4図の送信アンテナ(36)及びBSアン
テナ(40)として通常のアンテナを使用し、また小型
パラボラアンテナ(38)として共振器等を使用すれば
よい。この場合は、多少見通しの悪い場所でもそこまで
の概略の距離が分かる。
Similarly, in the electromagnetic wave distance measuring device of the present invention, UHF is used as the electromagnetic wave.
It is also possible to use electromagnetic waves in the band or VHF band. In this case, normal antennas are used as the transmitting antenna (36) and BS antenna (40) in Figure 4, and a small parabolic antenna (38) is used as a resonance antenna. You can use a container etc. In this case, even if visibility is somewhat poor, the approximate distance to the location can be determined.

更に本発明電磁波測距装置は装置が小型軽量にできるの
で、装置全体を回転するか又は往ビームを光路偏向して
方位をも同時に検出する様な携帯型レーザシテムが容易
に構成できる。また自動車の衝突防止システム等への応
用が可能である。
Further, since the electromagnetic wave distance measuring device of the present invention can be made small and lightweight, it is possible to easily construct a portable laser system that detects the direction at the same time by rotating the entire device or by deflecting the optical path of the forward beam. It can also be applied to automobile collision prevention systems, etc.

尚、本発明電磁波測距装置は上述の実施例に限定されず
、本発明の要旨を逸脱しない範囲で変更が可能であるの
は勿論である。
It should be noted that the electromagnetic wave distance measuring device of the present invention is not limited to the above-described embodiments, and it goes without saying that changes can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の電磁波測距装置は、受信回路で検知されたパル
スを遅延させて再送信するべく送信回路に伝える遅延回
路を設け、送信回路から測距対象物を介して受信回路ま
で電磁波が一定時間内に往復する回数からその測距対象
物までの距離を求める様にしているので、少なくともそ
の遅延時間の逆数で定まる最大周波数に応答できるカウ
ンタがあればよいため、カウンタが比較的低速でもよく
装置が小型化できまた低価格化できる。
The electromagnetic wave ranging device of the present invention is provided with a delay circuit that delays the pulse detected by the receiving circuit and transmits it to the transmitting circuit for retransmission, so that the electromagnetic wave is transmitted for a certain period of time from the transmitting circuit to the receiving circuit via the object to be measured. Since the distance to the object to be measured is calculated from the number of times it makes a round trip within a certain period of time, it is only necessary to have a counter that can respond to at least the maximum frequency determined by the reciprocal of the delay time. can be made smaller and lower in price.

更にその一定時間を長くすることにより測距対象物まで
の距離が任意の精度で求められる。
Furthermore, by lengthening the certain period of time, the distance to the object to be measured can be determined with arbitrary precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電磁波測距装置の一例を示す構成図、第
2図は第1図の光回帰性反射体く18)に光回帰性があ
ることの原理説明に供する線図、第3図は第1図例の各
部信号波形図、第4図は本発明電磁波測距装置の他の例
の要部を示す構成図、第5図は従来のレーザレーダシス
テムを示す構成図、第6図は第5図の各部信号波形図で
ある。 (2)は測距対象物、(12)は送信回路、(13)は
レーザダイオード、(16)はビームスプリッタ、(1
8)は光回帰性反射体、(21)は受信回路、(22)
はPINフォトダイオード、(24)は遅延回路、(2
5)は波形整形回路、(29)はカウンタ、(30)は
処理回路である。 代  理  人     伊  藤     真向  
      松  隈  秀  盛’l++Σの号舒信
号;1也 第3図 呉発胡電穐波浄)1晟1のイ(のシー 第4図
Fig. 1 is a configuration diagram showing an example of the electromagnetic wave distance measuring device of the present invention, Fig. 2 is a diagram explaining the principle of the optical return property of the light return reflector 18) shown in Fig. 1, and Fig. 3 The figures are signal waveform diagrams of various parts of the example shown in Fig. 1, Fig. 4 is a block diagram showing the main parts of another example of the electromagnetic wave distance measuring device of the present invention, Fig. 5 is a block diagram showing the conventional laser radar system, and Fig. 6 The figure is a diagram of signal waveforms at various parts in FIG. (2) is the object to be measured, (12) is the transmitting circuit, (13) is the laser diode, (16) is the beam splitter, (1
8) is a light recursive reflector, (21) is a receiving circuit, (22)
is a PIN photodiode, (24) is a delay circuit, (2
5) is a waveform shaping circuit, (29) is a counter, and (30) is a processing circuit. Agent Mamukai Ito
MATSU KUMA Hide Sheng'l + + Σ signal; 1 and 3 (Kure 3)

Claims (1)

【特許請求の範囲】[Claims] 電磁波の送信回路と、測距対象物から反射された電磁波
の受信回路と、該受信回路で検知されたパルスを遅延さ
せて再送信するべく前記送信回路に伝える遅延回路とよ
り構成され、前記送信回路から前記測距対象物を介して
前記受信回路まで電磁波が一定時間内に往復する回数か
ら前記測距対象物までの距離を演算することを特徴とす
る電磁波測距装置。
It is composed of a transmitting circuit for electromagnetic waves, a receiving circuit for receiving electromagnetic waves reflected from an object to be measured, and a delay circuit for delaying and transmitting the pulse detected by the receiving circuit to the transmitting circuit for retransmission. An electromagnetic wave distance measuring device characterized in that the distance to the distance measuring object is calculated from the number of times that electromagnetic waves travel back and forth from a circuit to the receiving circuit via the distance measuring object within a certain period of time.
JP4663288A 1988-02-29 1988-02-29 Measuring apparatus of distance by electromagnetic wave Pending JPH01219691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4663288A JPH01219691A (en) 1988-02-29 1988-02-29 Measuring apparatus of distance by electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4663288A JPH01219691A (en) 1988-02-29 1988-02-29 Measuring apparatus of distance by electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH01219691A true JPH01219691A (en) 1989-09-01

Family

ID=12752668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4663288A Pending JPH01219691A (en) 1988-02-29 1988-02-29 Measuring apparatus of distance by electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH01219691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868838A (en) * 1994-08-31 1996-03-12 Nec Corp Microwave landing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516567A (en) * 1974-07-04 1976-01-20 Toshihiro Kondo REEZA AKYORIKEI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516567A (en) * 1974-07-04 1976-01-20 Toshihiro Kondo REEZA AKYORIKEI

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0868838A (en) * 1994-08-31 1996-03-12 Nec Corp Microwave landing system

Similar Documents

Publication Publication Date Title
US20210025992A1 (en) Multiline lidar
US5767953A (en) Light beam range finder
US3652161A (en) Method and arrangement for measuring distances optically with high precision
US4595925A (en) Altitude determining radar using multipath discrimination
US2418964A (en) Electromechanical apparatus
EP0432887A2 (en) Pulsed coherent Doppler laser radar
EP3591425A1 (en) Laser ranging system utilizing sensor in same optical path as emitting laser
WO2021243612A1 (en) Distance measurement method, distance measurement apparatus, and movable platform
US3898653A (en) Automotive radar sensor
US3498717A (en) Laser range detector system
CN116679310B (en) FMCW laser measuring device
CN203720351U (en) Laser radar measuring instrument for measuring object angles and angular velocities accurately
JPH01219691A (en) Measuring apparatus of distance by electromagnetic wave
JP2018165664A (en) Radar device
JP2006053055A (en) Laser measuring apparatus
JPH0330117B2 (en)
JP2765291B2 (en) Laser radar device
CN111587383A (en) Reflectivity correction method applied to distance measuring device and distance measuring device
US3509566A (en) Method and apparatus for obtaining azimuth and range from a scanning continuous wave radar
JP2023032062A (en) rangefinder
JPH06235765A (en) Laser radar
Dansac et al. CO [sub] 2 [/sub] Laser Doppler Rangefinding With Heterodyne Detection And Chirp Pulse Compression
Liang Discussion about two principles used in laser radar
RU2193216C2 (en) Device processing location signals
RU2629684C2 (en) Laser rangemetre with optical totalizer