JPH01219675A - Testing apparatus of dynamic current interruption characteristic of lightning insulator with serial gap - Google Patents

Testing apparatus of dynamic current interruption characteristic of lightning insulator with serial gap

Info

Publication number
JPH01219675A
JPH01219675A JP4614288A JP4614288A JPH01219675A JP H01219675 A JPH01219675 A JP H01219675A JP 4614288 A JP4614288 A JP 4614288A JP 4614288 A JP4614288 A JP 4614288A JP H01219675 A JPH01219675 A JP H01219675A
Authority
JP
Japan
Prior art keywords
current
gap
voltage
fuse
lightning arrester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4614288A
Other languages
Japanese (ja)
Other versions
JPH0797124B2 (en
Inventor
Takashi Ohashi
隆 大橋
Eiji Ito
栄司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4614288A priority Critical patent/JPH0797124B2/en
Publication of JPH01219675A publication Critical patent/JPH01219675A/en
Publication of JPH0797124B2 publication Critical patent/JPH0797124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To make a testing apparatus small and simple by enabling the implementation of a dynamic current interruption test of a lightning insulator applied to high-voltage classes, only by means of a high-voltage generator, a switching mechanism and a fuse. CONSTITUTION:A fuse 11 connected to a serial gap G is melted within a prescribed time by making a sharp current I flow therethrough by an instantaneously chargeable switching mechanism 2. Thereafter a dynamic current arc generated in the serial gap G of a lightning insulator 23 is interrupted by a current- limiting element 24 and the serial gap G. By this constitution, the dynamic current interrupting current capacity of the current-limiting element 24 is made large, and even when the serial gap G is made long, an interruption characteristic test of the lightning insulator can be implemented by replacing the fuse 11 in accordance with the length of the gap and by adjusting an impression voltage E by an AC transformer 1. Accordingly, a testing apparatus can be made small and simple.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は雷サージによる高電圧が送電線に印加されたと
き、それを速やかに大地へ放電するとともに、その後生
じる続流を電圧−電流特性が非直線性の酸化亜鉛等を主
材とする限流素子により遮断し、地絡事故の発生を防止
する直列ギャップ付き避雷碍子装置の続流遮断特性試験
装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention quickly discharges high voltage caused by a lightning surge to the ground when it is applied to a power transmission line, and the following current that occurs thereafter is characterized by voltage-current characteristics. This invention relates to a follow-current interrupting characteristic test device for a lightning arrester device with a series gap, which interrupts the current by a current limiting element mainly made of non-linear zinc oxide, etc., and prevents the occurrence of ground faults.

(従来の技術) 一般に、鉄塔の支持アームには懸垂碍子を介して送電線
が支持され、同じく前記支持アームには取付アダプタを
介して、内部に電圧−電流特性が非直線性を有する酸化
亜鉛を主材とする限流素子を内蔵した避雷碍子が前記懸
垂碍子と並列に装設され、前記懸垂碍子側に設けた課電
側の放電電極と、前記避雷碍子に設けた接地側の放電電
極との間に所定の気中放電間隙、つまり直列ギャップを
付与している。この送電線用避雷碍子装置の等価回路を
第4図に示すが、この回路により実使用状態における雷
撃処理までの動作原理を第5図に基づいて説明する。
(Prior Art) Generally, a power transmission line is supported on a support arm of a steel tower via a suspension insulator, and a power transmission line is also attached to the support arm via a mounting adapter to connect zinc oxide, which has non-linear voltage-current characteristics, to the support arm. A lightning arrester with a built-in current limiting element mainly made of is installed in parallel with the suspension insulator, a discharge electrode on the energized side provided on the side of the suspension insulator, and a discharge electrode on the ground side provided on the lightning arrester. A predetermined air discharge gap, that is, a series gap is provided between the two. An equivalent circuit of this lightning arrester device for power transmission lines is shown in FIG. 4, and the principle of operation up to lightning strike processing in actual use will be explained with reference to FIG. 5.

正常時におては第4図に示すように送電線20と大地(
鉄塔、架空地線21))との間には懸垂碍子22を介し
て第5図(a)に示すように商用周波の交流運転電圧■
が印加されており、避雷碍子23に内蔵した限流素子2
4に印加される電圧■2.(第5図(d)参照)は殆ど
零であるため、両放電電&!5.26間の直列ギャップ
Gにも前記運転電圧■とほぼ同じ大きさの交流電圧■1
(第5図(c)参照)が印加され、該直列ギャップGに
より送電線20の運転電圧■が印加され、かつ絶縁状態
が維持されている。
During normal operation, the power transmission line 20 and the ground (
As shown in Figure 5(a), a commercial frequency AC operating voltage is connected between the tower and the overhead ground wire 21) via a suspension insulator 22.
is applied, and the current limiting element 2 built into the lightning arrester 23
Voltage applied to 4■2. (See Figure 5(d)) is almost zero, so both discharge voltage &! 5. Also in the series gap G between 26 and 1
(see FIG. 5(c)) is applied, and the operating voltage (2) of the power transmission line 20 is applied through the series gap G, and the insulated state is maintained.

今、送電線20に雷が侵入すると、雷サージ電圧が第5
図(a)及び(C)に示すように前記運転電圧■及びギ
ヤ710間の電圧■1に重畳される。この急峻な雷サー
ジエネルギーの一部は限流素子24により吸収され、送
電vA20と鉄塔との間の雷サージ電圧の高騰を抑制す
る。この雷サージ電圧が所定値を越えると、限流素子2
4を経て直列ギャップGにフランジオーバが生じ、限流
素子24と直列ギャップGに第5図(b)に示すように
雷インパルス電流Iが流れる。この雷インパルス電流I
の通過後は、運転電圧■が加わっているため、その続流
電流1vが直列ギャップG及び限流素子24を経由して
鉄塔へと流れる。この続流電流Ivが前記直列ギャップ
Gと限流素子24により遮断されたとき、該直列ギャッ
プGの絶縁が回復する。
Now, when lightning enters the power transmission line 20, the lightning surge voltage increases
As shown in FIGS. (a) and (C), it is superimposed on the operating voltage (2) and the voltage (1) between the gears 710. A part of this steep lightning surge energy is absorbed by the current limiting element 24, suppressing a rise in the lightning surge voltage between the power transmission vA 20 and the steel tower. When this lightning surge voltage exceeds a predetermined value, the current limiting element 2
4, a flange over occurs in the series gap G, and a lightning impulse current I flows through the current limiting element 24 and the series gap G as shown in FIG. 5(b). This lightning impulse current I
After passing through, since the operating voltage ■ is applied, the follow-on current 1V flows to the tower via the series gap G and the current limiting element 24. When this follow-on current Iv is cut off by the series gap G and the current limiting element 24, the insulation of the series gap G is restored.

なお、架空地線21に雷サージが入った場合にも同一原
理で作用する。
Note that the same principle applies when a lightning surge occurs in the overhead ground wire 21.

ギャップ併用型の避雷碍子装置において、望ましい続流
遮断特性を得るためには、限流素子24の電圧−電流特
性、直列ギャップGの長さと形状及び運転電圧■との相
対的関係を適切な設計条件に選択する必要がある。
In the gap-combined lightning arrester device, in order to obtain desirable follow-on current breaking characteristics, the voltage-current characteristics of the current limiting element 24, the length and shape of the series gap G, and the relative relationship with the operating voltage (2) must be appropriately designed. Must be selected according to the conditions.

上記の適切な設計条件を得るため、交流の高電圧発生装
置(変圧器)に雷インパルス電圧発生装置を電気的に重
畳させる方法、すなわち、実使用状態を模擬した試験を
行い、設計条件の検討を行っていた。このような続流遮
断特性試験装置として従来第6図に示すものが提案され
た。この試験装置はバックアンプ遮断器27に直列に接
続した適位相投入器28と、該投入器28に直列に接続
した高電圧及び高電流を発生するための交流トランス2
9と、該交流トランス29の二次側端子に接続され、か
つ避雷碍子23を接続するための接続端子30.31と
、直列ギャップGを形成するための放!@子32.33
と、さらに、交流トランス29の二次側端子に接続され
た雷インパルス電圧発生装置34及び雷インパルス電流
発生装置35とから構成されている。
In order to obtain the above-mentioned appropriate design conditions, we conducted a test that simulated actual usage conditions and examined the design conditions by electrically superimposing a lightning impulse voltage generator on an AC high voltage generator (transformer). was going on. A device shown in FIG. 6 has been proposed as such a follow-on current interruption characteristic testing device. This test device includes a suitable phase closing device 28 connected in series to a back amplifier circuit breaker 27, and an AC transformer 2 connected in series to the closing device 28 for generating high voltage and high current.
9, a connection terminal 30.31 connected to the secondary side terminal of the AC transformer 29 and for connecting the lightning arrester 23, and a connection terminal 30.31 for forming the series gap G! @ko32.33
It further comprises a lightning impulse voltage generator 34 and a lightning impulse current generator 35 connected to the secondary side terminal of the AC transformer 29.

そして、前記適位相投入器28を投入すると、交流トラ
ンス29の二次側端子間に雷インパルス電圧発生装置3
4により第5図(a)に示すように直列ギャップGトリ
ガ用の雷インパルス電圧■を発生させ、該インパルス電
圧Vを前記直列ギャップGに印加させて、直列ギャップ
Gにフラッジオーバを発生させ、該ギャップGにおける
続流の遮断時間、あるいは限流素子24の残留電圧等の
特性試験を行っていた。そして、所定容量の限流素子2
4を使用した避雷碍子23における前記続流の遮断時間
を測定することにより、限流素子24の動作開始電圧あ
るいは直列ギャップGの望ましい寸法を設定するように
していた。
When the appropriate phase injector 28 is turned on, the lightning impulse voltage generator 3 is connected between the secondary terminals of the AC transformer 29.
4, as shown in FIG. 5(a), a lightning impulse voltage (2) for triggering the series gap G is generated, and the impulse voltage V is applied to the series gap G to cause a floodover in the series gap G. Characteristic tests were conducted on the following current cutoff time in the gap G, the residual voltage of the current limiting element 24, etc. Then, a current limiting element 2 with a predetermined capacity
By measuring the cut-off time of the following current in the lightning arrester 23 using the lightning arrester 4, the operation start voltage of the current limiting element 24 or the desired dimension of the series gap G can be set.

(発明が解決しようとする課題) 上記従来の避雷碍子の続流遮断特性試験装置には、避雷
碍子の適用線路電圧が高くなるほど、限流素子24の長
さや直径が大きくなり、かつ直列ギャップGも大きくな
るので、雷インパルス!圧発生装置34及び雷インパル
ス電流発生装置35等の試験設備も大型化するという問
題があった。
(Problems to be Solved by the Invention) In the conventional lightning arrester insulator follow current breaking characteristic test device, the higher the applied line voltage of the lightning arrester, the larger the length and diameter of the current limiting element 24, and the series gap G. It also gets bigger, so the lightning impulse! There was also a problem in that test equipment such as the pressure generator 34 and the lightning impulse current generator 35 became larger.

又、雷インパルスを交流電圧位相に同期して重量するた
めの適位相投入器28、そのシーケンサ−36、続流遮
断失敗時のバックアップ遮断器27の他、図示しないが
交流電源への雷インパルス進入を防ぐフィルタ及び雷イ
ンパルス電源への交流続流を抑制する保護装置37を必
要とし、試験装置の大型化及び制御技術が高度化し、線
路電圧が275KV〜500KVの電圧階級になると、
実現が困難になるという問題があった。
In addition to the appropriate phase injector 28 for weighting the lightning impulse in synchronization with the AC voltage phase, its sequencer 36, and the backup circuit breaker 27 in case of failure to cut off the follow-on current, there are also devices (not shown) for controlling lightning impulses entering the AC power source. As the test equipment becomes larger and the control technology becomes more sophisticated, and the line voltage becomes a voltage class of 275KV to 500KV,
The problem was that it would be difficult to implement.

本発明の目的は雷インパルス電圧発生装置と、インパル
ス電圧発生装置を連接することによって必要となる保護
装置を省略することができるとともに、雷インパルス電
圧を運転電圧へ重畳するための制御技術を簡易化するこ
とができる直列ギャップ付き避雷碍子の続i遮断特性試
験装置を提供することにある。
The purpose of the present invention is to omit a necessary protection device by connecting a lightning impulse voltage generator and an impulse voltage generator, and to simplify the control technology for superimposing the lightning impulse voltage on the operating voltage. An object of the present invention is to provide a series-interruption characteristic testing device for a lightning arrester with a series gap.

(課題を解決するための手段) 本発明は上記目的を達成するために、交流トランスと、 該交流トランスの一次側又は二次側端子に接続され、供
試体であるギャップ付き避雷碍子の有する続流遮断時間
より短い時間で電気的接続が可能となる開閉機構と、 該開閉機構と直接又は前記トランスを介して供試体であ
る前記避雷碍子の直列ギャップを形成するための放電端
子と、 前記放電端子に対しその直列ギャップの一部又は全長に
接続され、供試体である直列ギャップ付き避雷碍子固有
の続流遮断時間よりも短い時間で溶断する特性を備えた
ヒユーズと、 前記トランスの二次側リード線に対し前記ヒユーズと直
列に接続され、かつ避雷碍子の電極に導通する接続端子
とにより構成している。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a connection between an AC transformer and a lightning arrester with a gap, which is a specimen, and which is connected to the primary or secondary terminal of the AC transformer. an opening/closing mechanism that enables electrical connection in a time shorter than the current interruption time; a discharge terminal for forming a series gap between the opening/closing mechanism and the lightning arrester as a test object directly or via the transformer; a fuse connected to a part or the entire length of the series gap to the terminal and having a characteristic of blowing out in a time shorter than a follow-on cutoff time specific to the lightning arrester with a series gap that is the test object; and a fuse on the secondary side of the transformer. A connection terminal is connected to the lead wire in series with the fuse and electrically connected to the electrode of the lightning arrester.

(作用) 瞬時投入可能な開閉機構が投入されると、交流トランス
の二次側端子から直列ギャップに接続したヒユーズ及び
避雷碍子の限流素子に高電圧が印加され、前記ヒユーズ
は瞬時に溶断される。その後、直列ギャップの間に続流
電流が流れるが、この電流は限流素子及び直列ギャップ
により抑制遮断される。
(Function) When the switching mechanism that can be turned on instantly is turned on, a high voltage is applied from the secondary terminal of the AC transformer to the fuse connected to the series gap and the current-limiting element of the lightning arrester, and the fuse is instantly blown. Ru. Thereafter, a follow-on current flows between the series gaps, but this current is suppressed and interrupted by the current limiting element and the series gap.

このように本発明では高電圧発生用のトランスと瞬時投
入可能な開閉機構及び放電端子にヒユーズを使用するこ
とにより、放電端子の直列ギャップに雷インパルスでの
フラッジオーバ短絡によらず、交流電圧の突印によって
続流電流を容易に発生させることができ、試験装置の簡
素化及び小型化が計られる。
In this way, in the present invention, by using a high voltage generation transformer, an instantaneous switching mechanism, and a fuse for the discharge terminal, a sudden alternating current voltage can be applied to the series gap of the discharge terminal without causing a floodover short circuit caused by a lightning impulse. A follow-on current can be easily generated by the mark, and the test equipment can be simplified and miniaturized.

(実施例) 以下に本発明を具体化した一実施例を第1図〜第3図を
用いて説明する。
(Example) An example embodying the present invention will be described below with reference to FIGS. 1 to 3.

第1図中符号1は高圧線に接続した交流トランスであっ
て、その二次側端子にはリードH1l。
Reference numeral 1 in FIG. 1 is an AC transformer connected to a high-voltage line, and its secondary terminal has a lead H1l.

12により瞬時に投入可能な開閉機構2が接続されてい
る。この開閉機構2は例えばSP支持碍子3に支持され
た球状の固定接触子4と、同じ(SP支持碍子3に支持
された支持軸5を中心に回動する操作アーム6と、該操
作アーム6の先端に止着され、かつ前記固定接触子4に
接離可能に対応し、かつ背面に板状の接触子片Tを止着
された球状の可動接触子8と、前記操作アーム6を瞬時
に回動するコイルバネを主体とする駆動機構9とから構
成されている。
An opening/closing mechanism 2 that can be turned on instantly is connected by 12. This opening/closing mechanism 2 includes, for example, a spherical fixed contact 4 supported by an SP support insulator 3, and an operation arm 6 that rotates around a support shaft 5 supported by the SP support insulator 3; A spherical movable contact 8 is fixed to the tip of the spherical movable contact 8, which corresponds to the fixed contact 4 so as to be able to come into contact with and separate from the fixed contact 4, and has a plate-shaped contact piece T fixed to the back surface, and the operating arm 6 is instantly moved. The drive mechanism 9 is mainly composed of a coil spring that rotates.

前記固定接触子4にはリード線β3が接続され、該リー
ド線13と前記リード線12にはヒユーズ11を接続し
、かつ直列ギャップGを形成するための放電端子12.
13が設けられ、さらに、限流素子24を内蔵した避雷
碍子230両端電極に導通ずる接続端子14.15が前
記放電端子12゜13と直列に設けられている。
A lead wire β3 is connected to the fixed contact 4, a fuse 11 is connected to the lead wire 13 and the lead wire 12, and a discharge terminal 12 for forming a series gap G is connected.
Further, connection terminals 14 and 15 are provided in series with the discharge terminals 12 and 13, which are electrically connected to the electrodes at both ends of a lightning arrester 230 having a built-in current limiting element 24.

次に、前記のように構成したギャップ併用型避雷碍子装
置の続流遮断試験装置について、その作用を説明する。
Next, the operation of the follow current interruption test device for the gap type lightning arrester device constructed as described above will be explained.

今、前記放電金具12.13の間にヒユーズ11を接続
し、かつ接続端子14.15の間に避雷碍子23の限流
素子24を接触させた状態で、電源供給装置(図示路)
から巻線比を1:33とする交流トランス1に所定の電
圧(例えば3.3KV)を印加すると、該トランス1の
二次側端子には第2図(a)に示すように交流の印加電
圧E(例えば300KV)が発生する。この状態で開閉
機構2の駆動機構9を操作して操作アーム6及び可動接
触子8を固定接触子4に向かって瞬時に回動する。可動
接触子8が固定接触子4に完全に接触する以前に、再接
触子4.8の間でフランジオーバし開閉機構2が実質的
に投入状態となる。
Now, with the fuse 11 connected between the discharge fittings 12 and 13 and the current limiting element 24 of the lightning arrester 23 in contact between the connection terminals 14 and 15, the power supply device (the path shown in the figure)
When a predetermined voltage (for example, 3.3 KV) is applied to an AC transformer 1 with a winding ratio of 1:33, AC is applied to the secondary terminal of the transformer 1 as shown in FIG. 2(a). A voltage E (for example 300 KV) is generated. In this state, the drive mechanism 9 of the opening/closing mechanism 2 is operated to instantly rotate the operating arm 6 and the movable contact 8 toward the fixed contact 4. Before the movable contact 8 completely contacts the fixed contact 4, flange over occurs between the re-contactors 4 and 8, and the opening/closing mechanism 2 becomes substantially in the closing state.

このフラッジオーバ電圧は再接触子4.8が球状となっ
ており、平等電界を維持しているため、第2図(b)に
示すように印加電圧Eの波高値近辺となる。この実施例
では波高値の電圧■を瞬時に印加するが、これはヒユー
ズ11の溶断時間を短くするためである。なお、前記可
動接触子8が固定接触子4に完全に接触すると、完全な
電気的導通状態となる。
Since the recontactor 4.8 has a spherical shape and maintains a uniform electric field, this floodover voltage is near the peak value of the applied voltage E, as shown in FIG. 2(b). In this embodiment, voltage (2) having a peak value is instantaneously applied, but this is to shorten the fuse 11 blowing time. Note that when the movable contact 8 completely contacts the fixed contact 4, complete electrical continuity is achieved.

前記可動接触子8の移行速度は、速ければ速い程良く、
避雷碍子23の続流遮断特性に大きな影響を与えない範
囲、すなわち、印加電圧Eの周波数をfとして、避雷碍
子23の続流遮断時間がf分の1  (1/f)である
場合には、その10分の1  (1/10f)以下が望
ましい、1/2fでもよいが、(1/f−1/2 f)
だけ誤差が含まれることになる。
The faster the moving speed of the movable contactor 8, the better;
In a range that does not significantly affect the follow-on breaking characteristics of the lightning arrester 23, that is, when the follow-on breaking time of the lightning arrester 23 is 1/f (1/f), where f is the frequency of the applied voltage E, , 1/10 f or less is preferable, 1/2 f is also acceptable, but (1/f - 1/2 f)
This will include errors.

前記支持碍子3の両端間、つまりリード線13゜14間
に第2図(b)に示すように電圧Eの波高値の電圧■が
印加されると、直列ギャップGを模擬した放を端子12
.13に接続したヒユーズ11及び限流素子24に第2
図(e)に示すように急峻な電流Iが流れる。そし、て
、この急峻電流Iによりヒユーズ11が溶断するまでは
、ヒユーズ11の電気抵抗は殆ど零であるため、限流素
子24には第2図(d)に示すように前記フラッジオー
バ電圧■と同じ電圧■2が発生する。そして、前記ヒユ
ーズ11が溶断すると、放電端子12゜13の直列ギヤ
710間にアーク放電が生じ、そのアーク抵抗により、
該直列ギャップGには第2図(c)に示すように小さい
電圧■1が発生する。
When a voltage of the peak value of the voltage E is applied between both ends of the support insulator 3, that is, between the lead wires 13 and 14, as shown in FIG.
.. The fuse 11 and the current limiting element 24 connected to the
As shown in Figure (e), a steep current I flows. Then, until the fuse 11 is blown by this steep current I, the electrical resistance of the fuse 11 is almost zero, so the current limiting element 24 has the above-mentioned floodover voltage ■ as shown in FIG. 2(d). The same voltage ■2 is generated. When the fuse 11 blows, arc discharge occurs between the series gears 710 of the discharge terminals 12 and 13, and due to the arc resistance,
A small voltage 1 is generated in the series gap G as shown in FIG. 2(c).

さらに、前記ヒユーズ11が溶断した後、限流素子24
の電圧−電流特性(続流遮断特性)に基づいて、直列ギ
ヤ710間でのアーク電流が限流され遮断され、前記電
圧■2、電流Iが第2図(d)。
Further, after the fuse 11 is blown, the current limiting element 24
Based on the voltage-current characteristics (follow-on current interruption characteristics), the arc current between the series gears 710 is limited and interrupted, and the voltage (2) and current I are as shown in FIG. 2(d).

(e)に示すように急激に低下して零となり、ギャップ
0間の電圧■1の絶縁が第2図(c)に示すように回復
する。
As shown in FIG. 2(e), the voltage rapidly decreases to zero, and the insulation of the voltage 1 across the gap 0 is restored as shown in FIG. 2(c).

前述したように前記ヒユーズ11は急峻電流Iにより瞬
時に溶断される。このヒユーズ11の溶断特性、つまり
電流iと時間tは、急峻電流Iと限流素子24の続流遮
断時間1/fに比べそれぞれ小さく設定することが必要
である。すなわち、1<ISt<<1/fに設定するの
が望ましい。
As described above, the fuse 11 is instantly blown by the steep current I. The fusing characteristics of the fuse 11, that is, the current i and the time t, need to be set smaller than the steep current I and the follow-on cutoff time 1/f of the current limiting element 24, respectively. That is, it is desirable to set 1<ISt<<1/f.

具体的には前述した開閉機構2の投入速度と同様に、1
/10 f以下が望ましく、1/2fでも良いが誤差が
生じる。
Specifically, similar to the input speed of the opening/closing mechanism 2 described above, 1
/10 f or less is desirable, and 1/2 f is also acceptable, but an error will occur.

その後、前記開閉機構2を開放すると、第2図(b)及
び(c)に示すように運転電圧■及びギャップGの電圧
■1が消滅する。
Thereafter, when the opening/closing mechanism 2 is opened, the operating voltage (2) and the voltage (1) of the gap G disappear as shown in FIGS. 2(b) and (c).

さて、本発明実施例においては、瞬時に投入可能な開閉
機構2により直列ギャップGに接続したヒユーズ11に
急峻な電流Iを流して所定時間内に溶断させ、その後避
雷碍子23の直列ギヤ710間に発生する続流アークを
限流素子24及び直列ギャップGにより遮断するように
構成したので、限流素子24の続流遮断電流容量が大き
くなり、かつ直列ギャップGが長くなっても、ヒユーズ
11をそれに応じて取り替えるとともに、交流トランス
1による印加電圧Eを調整することにより、避雷碍子の
続流遮断特性試験を行うことができ、従って高電圧発生
装置(交流トランス)、開閉機構2及びヒユーズ11の
みで、高電圧階級に通用される直列ギャップ付き避雷碍
子装置の続流遮断特性試験を行うことができる。
Now, in the embodiment of the present invention, a steep current I is applied to the fuse 11 connected to the series gap G by the instantaneous opening/closing mechanism 2 to cause it to melt within a predetermined time, and then between the series gear 710 of the lightning arrester 23. Since the current limiting element 24 and the series gap G are configured to interrupt the following current arc generated in the current limiting element 24, even if the following current breaking current capacity of the current limiting element 24 becomes large and the series gap G becomes long, the fuse 11 By replacing them accordingly and adjusting the voltage E applied by the AC transformer 1, it is possible to perform a follow current breaking characteristic test of the lightning arrester. It is possible to perform a follow-current breaking characteristic test of a series gap lightning arrester insulator device used in high voltage class.

なお、本発明は次のように具体化することも可能である
Note that the present invention can also be embodied as follows.

(1)前記実施例では開閉機構2として球状の固定接触
子4及び可動接触子8を使用したが、これに代えて、球
状の接触子4.8と同様に平等電界を発生させることが
できるロゴスキー電極(図示路)を使用すること。
(1) In the above embodiment, the spherical fixed contact 4 and the movable contact 8 were used as the opening/closing mechanism 2, but instead of this, an equal electric field can be generated in the same way as the spherical contact 4.8. Use Rogowski electrodes (path shown).

(2)第1図に示したπ/2又は3π/2しか投入位相
を選択することができない前記開閉機構2に代えて、投
入位相を0〜π、π〜2πまで自由に選択することがで
きる適位相投入器(図示路)を開閉機構として使用する
こと。
(2) Instead of the opening/closing mechanism 2 shown in FIG. 1, which can only select the closing phase of π/2 or 3π/2, it is possible to freely select the closing phase from 0 to π or from π to 2π. Use the appropriate phase input device (shown in the diagram) as the opening/closing mechanism.

(3)前記実施例では開閉機構2の投入動作をコイルバ
ネを主材とする駆動機構9により行うようにしたが、こ
れに代えて、流体圧力、モータあるいは′gL磁力等の
手段を利用して投入動作すること。
(3) In the above embodiment, the closing operation of the opening/closing mechanism 2 is performed by the drive mechanism 9 mainly made of a coil spring, but instead of this, means such as fluid pressure, a motor, or a magnetic force may be used. The input must operate.

(4)前記ヒユーズ11は金属ヒユーズ、非金属の酸化
し易い例えばカーボン繊維等の材料でも良い。但し、後
者の方が望ましい。金属ではアーク溶断時に完全に酸化
されず、電荷を帯びた金属粒子となって浮遊するため、
適正な遮断特性試験の妨げとなるからである。
(4) The fuse 11 may be a metal fuse or a non-metallic material that is easily oxidized, such as carbon fiber. However, the latter is preferable. Metals are not completely oxidized during arc fusing and float as electrically charged metal particles.
This is because it interferes with proper breaking characteristic testing.

ところで、前記実施例では第1図に示すようにヒユーズ
11を前記直列ギャップGの全長に取着したが、これに
代えて図示しないが部分ギャップのギャップ長を交流印
加電圧によりフラッジオーバが生じるのに充分短い長さ
に設定することを条件に部分的に取着することもできる
。両者の相違点を述べると、次のようになる。
Incidentally, in the embodiment described above, the fuse 11 is attached to the entire length of the series gap G as shown in FIG. It can also be attached partially, provided it is set to a sufficiently short length. The differences between the two are as follows.

第3図(a)は実使用状態における直列ギャップGのみ
の従来の試験装置の動作を示す。この状態では直列ギャ
ップGの間に続流アークが発生すると、放電端子32.
33がアークにより溶損し、これによる金属蒸気が供給
される。又、第3゛図(b)は直列ギヤツブG全体にヒ
ユーズ11を接続した本発明の前述した実施例の場合で
ある。この場合には、放電端子12.13のアークによ
る溶損とともに、ヒユーズ11が溶損して金属蒸気とな
るため、ヒユーズ11の溶損蒸気分が余分となる。従っ
て、第3図(c)に示すように部分ヒユーズ11として
溶損蒸気の量を抑制するのが望ましい。
FIG. 3(a) shows the operation of a conventional test device with only a series gap G in actual use. In this state, if a follow-on arc occurs between the series gap G, the discharge terminals 32.
33 is melted away by the arc, and the resulting metal vapor is supplied. Further, FIG. 3(b) shows the case of the above-described embodiment of the present invention in which the fuse 11 is connected to the entire series gear G. In this case, not only the discharge terminals 12 and 13 are eroded by the arc, but also the fuse 11 is eroded and becomes metal vapor, so that the eroded vapor of the fuse 11 becomes redundant. Therefore, as shown in FIG. 3(c), it is desirable to suppress the amount of melting steam by using a partial fuse 11.

なお、本発明に近似した技術として、図示しないが、ヒ
ユーズ11を使用しないで、放電端子12.13の直列
ギャップGを可変として、このギャップ長を放電端子1
2.13を瞬時に可変することにより、つまり最初は印
加される交fLit圧でフランジオーバするギャップ長
に短く設定しておき、開閉機構2の投入と同時に短い状
態のギャップ長でフランジオーバさせ、その後前記投入
動作とほぼ同期して直列ギャップGの間隔を瞬時に評価
したい目的ギャップ長に拡大することも考えられる。こ
の場合にはヒユーズからの溶損した金属蒸気が出ないの
で、続流遮断試験がより正確に行える。
Although not shown, as a technique similar to the present invention, the series gap G between the discharge terminals 12 and 13 is made variable without using the fuse 11, and this gap length is adjusted to the length of the discharge terminal 1.
2.13 is instantaneously varied, that is, the gap length is initially set short to cause flange over by the applied alternating fLit pressure, and the flange is caused to flange over at the short gap length at the same time as the opening/closing mechanism 2 is turned on. Thereafter, it is conceivable to expand the interval of the series gap G to a target gap length that is desired to be instantaneously evaluated, almost in synchronization with the closing operation. In this case, since no melted metal vapor is emitted from the fuse, the follow-on current interruption test can be performed more accurately.

(発明の効果) 以上詳述したように、本発明のギャップ併用型避雷碍子
装置の続流遮断試験装置は、高電圧発生装置、開閉機構
及びヒユーズのみによって、高電圧階級に通用される避
雷碍子の続流遮断試験も容易に行うことができ、雷イン
パルス電圧発生装置及び雷インパルス電流発生装置、あ
るいは特別の保護装置や制御装置等を省略して試験装置
の小型化及び簡素化を計りコストダウンを計ることがで
きる効果がある。
(Effects of the Invention) As described in detail above, the follow-current interruption testing device for the gap combination type lightning arrester device of the present invention can be used to test lightning arresters applicable to high voltage class using only the high voltage generator, switching mechanism, and fuse. Follow-current interruption tests can be easily performed, and by omitting lightning impulse voltage generators, lightning impulse current generators, or special protection devices and control devices, the test equipment can be made smaller and simpler, reducing costs. It has the effect of being able to measure

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す直列ギャップ付き避雷
碍子装置の続流遮断試験装置全体を示す路体回路図、第
2図(a)〜(e)はそれぞれ続流遮断試験動作を説明
するためのグラフ、第3図(a)〜(c)はそれぞれ直
列ギャップの続流アークによる溶損状態を説明するため
の部分路体正面図、第4図は従来のギャップ併用型避雷
碍子装置の等価回路図、第5図(a)〜(d)はそれぞ
れ第4図の避雷碍子装置の動作を説明するためのグラフ
、第6図は従来のギャップ併用型避雷碍子装置の続流遮
断試験装置全体を示す路体回路図である。 1・・・交流トランス、2・・・開閉機構、3・・・支
持碍子、4・・・固定接触子、5・・・支持軸、6・・
・操作アーム、7・・・接触子片、8・・・可動接触子
、9・・・駆動機構、11・・・ヒユーズ、12.13
・・・放電端子、14.15・・・接続端子、23・・
・避雷碍子、24・・・限流素子、G・・・直列ギャッ
プ、E・・・印加電圧、■・・・運転電圧、■1・・・
直列ギヤ710間の電圧、■2・・・限流素子間の電圧
、■・・・ギャップ及び限流素子に流れる電流。
Fig. 1 is a road body circuit diagram showing an entire follow-on current interruption test device for a lightning arrester device with a series gap, which is an embodiment of the present invention, and Fig. 2 (a) to (e) respectively show follow-on current interruption test operations. Graphs for explanation, Figures 3(a) to (c) are front views of partial road bodies for explaining the melting state due to follow-on arc of series gaps, respectively, and Figure 4 is a conventional gap combination type lightning arrester. The equivalent circuit diagram of the device, FIGS. 5(a) to (d) are graphs for explaining the operation of the lightning arrester device shown in FIG. It is a road body circuit diagram showing the entire test device. DESCRIPTION OF SYMBOLS 1... AC transformer, 2... Opening/closing mechanism, 3... Support insulator, 4... Fixed contact, 5... Support shaft, 6...
- Operation arm, 7... Contact piece, 8... Movable contact, 9... Drive mechanism, 11... Fuse, 12.13
...Discharge terminal, 14.15...Connection terminal, 23...
・Lightning insulator, 24...Current limiting element, G...Series gap, E...Applied voltage, ■...Operating voltage, ■1...
Voltage between series gears 710, (2) Voltage between current limiting elements, (2) Current flowing through the gap and current limiting element.

Claims (1)

【特許請求の範囲】 1、交流トランス(1)と、 該交流トランス(1)の一次側又は二次側端子に接続さ
れ、供試体であるギャップ付き避雷碍子の有する続流遮
断時間より短い時間で電気的接続が可能となる開閉機構
(2)と、 該開閉機構(2)と直接又は前記トランスを介して供試
体である前記避雷碍子の直列ギャップ(G)を形成する
ための放電端子(12、13)と、 前記放電端子(12、13)に対しその直列ギャップ(
G)の一部又は全長に接続され、供試体であるギャップ
付き避雷碍子(23)固有の続流遮断時間よりも短い時
間で溶断する特性を備えたヒューズ(11)と、 前記トランス(1)の二次側リード線(l1、l2)に
対し前記ヒューズ(11)と直列に接続され、かつ前記
避雷碍子(23)の電極に導通する接続端子(14、1
5)と により構成したことを特徴すとする直列ギャップ付き避
雷碍子装置の続流遮断特性試験装置。
[Claims] 1. An AC transformer (1), and a time shorter than the follow-up interruption time of the lightning arrester with a gap, which is the test piece and is connected to the primary side or secondary side terminal of the AC transformer (1). an opening/closing mechanism (2) that can be electrically connected to the opening/closing mechanism (2), and a discharge terminal (G) for forming a series gap (G) between the opening/closing mechanism (2) and the lightning arrester that is the specimen, either directly or via the transformer. 12, 13) and its series gap (
a fuse (11) connected to a part or the entire length of the lightning arrester (11) that is connected to a part or the entire length of the lightning arrester (11) and has a characteristic of blowing out in a time shorter than the follow-on cutoff time specific to the lightning arrester (23) with a gap, which is the test object; and the transformer (1). Connection terminals (14, 1) connected in series with the fuse (11) and electrically connected to the electrodes of the lightning arrester (23) with respect to the secondary lead wires (l1, l2) of the
5) A follow-up current breaking characteristic testing device for a lightning arrester device with a series gap, characterized by comprising:
JP4614288A 1988-02-29 1988-02-29 Continuity current interruption characteristic test device of lightning arrester device with series gap Expired - Lifetime JPH0797124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4614288A JPH0797124B2 (en) 1988-02-29 1988-02-29 Continuity current interruption characteristic test device of lightning arrester device with series gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4614288A JPH0797124B2 (en) 1988-02-29 1988-02-29 Continuity current interruption characteristic test device of lightning arrester device with series gap

Publications (2)

Publication Number Publication Date
JPH01219675A true JPH01219675A (en) 1989-09-01
JPH0797124B2 JPH0797124B2 (en) 1995-10-18

Family

ID=12738721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4614288A Expired - Lifetime JPH0797124B2 (en) 1988-02-29 1988-02-29 Continuity current interruption characteristic test device of lightning arrester device with series gap

Country Status (1)

Country Link
JP (1) JPH0797124B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128130A (en) * 2010-03-12 2011-06-30 Nissin Electric Co Ltd Impulse current generating device
JP6082882B1 (en) * 2016-01-26 2017-02-22 音羽電機工業株式会社 Deterioration diagnosis device
JP2022021059A (en) * 2020-07-21 2022-02-02 株式会社東芝 Withstand voltage testing device
CN114336562A (en) * 2021-12-03 2022-04-12 广东电网有限责任公司 Transformer lightning overvoltage protection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128130A (en) * 2010-03-12 2011-06-30 Nissin Electric Co Ltd Impulse current generating device
JP6082882B1 (en) * 2016-01-26 2017-02-22 音羽電機工業株式会社 Deterioration diagnosis device
JP2022021059A (en) * 2020-07-21 2022-02-02 株式会社東芝 Withstand voltage testing device
CN114336562A (en) * 2021-12-03 2022-04-12 广东电网有限责任公司 Transformer lightning overvoltage protection device

Also Published As

Publication number Publication date
JPH0797124B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
CN107966633B (en) Method and system for rapidly judging single-phase earth fault line of power distribution network of power supply system
US10403449B2 (en) Direct-current circuit breaker
US11879927B2 (en) Triggered vacuum gap fault detection methods and devices
US10937613B2 (en) Triggered gap switching device
US4692733A (en) Fuse for an alternating current power circuit
Kamikawaji et al. An investigation into major factors in shunt capacitor switching performances by vacuum circuit breakers with copper-chromium contacts
JPH01219675A (en) Testing apparatus of dynamic current interruption characteristic of lightning insulator with serial gap
JP2591525B2 (en) Circuit breaker test equipment
Murano et al. Current zero measurement for circuit breaking phenomena
JP2991266B2 (en) Gas circuit breaker
JP2012225830A (en) Thunder resistant performance test device
US3842225A (en) High voltage circuit breaker utilizing insertion of a fixed resistance during opening and closing
Druml et al. New Knowledge of the Extinguishing of the Freely Burning Arc in Compensated and Isolated Networks
JP3185541B2 (en) High voltage circuit breaker synthesis test equipment
JP2019211260A (en) Vacuum circuit breaker turn-on test device and test method therefor
US3038116A (en) Circuit-breaker testing arrangement
JP7443181B2 (en) Withstanding voltage test equipment
US20230051143A1 (en) High-voltage triggered pulsecloser with adaptive circuit testing
Van Sickle Transient recovery voltages and circuit-breaker performance
Mikulecky Current Limiting Fuse Arc-Voltage Characteristics
CN115236462A (en) Gas discharge tube follow current interruption capability experiment device and method
JPH04290976A (en) Performance examining method for circuit breaker trip resistor
JPH0651036A (en) Short line fault testing device
Sakaguchi et al. Investigation of Pre-Breakdown Current Based on Difference of Elapsed Time from Current Zero in VCB
Ragaller et al. Introduction and survey: physical and network phenomena