JPH01219034A - Production of optical fiber glass preform - Google Patents

Production of optical fiber glass preform

Info

Publication number
JPH01219034A
JPH01219034A JP4234088A JP4234088A JPH01219034A JP H01219034 A JPH01219034 A JP H01219034A JP 4234088 A JP4234088 A JP 4234088A JP 4234088 A JP4234088 A JP 4234088A JP H01219034 A JPH01219034 A JP H01219034A
Authority
JP
Japan
Prior art keywords
fluorine
glass
pressure
temperature
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4234088A
Other languages
Japanese (ja)
Inventor
Akira Urano
章 浦野
Shinji Ishikawa
真二 石川
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4234088A priority Critical patent/JPH01219034A/en
Publication of JPH01219034A publication Critical patent/JPH01219034A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the subject optical fiber glass preform having a refractive index distribution by heating the fine glass particles consisting essentially of quartz at specified temp. and pressure in an atmosphere contg. fluorine or a fluorine compd. to vitrify the particles and to simultaneously vary the amt. of fluorine added in the radial direction. CONSTITUTION:The fine glass particles consisting essentially of quartz are heated in an atmosphere contg. fluorine or a fluorine compd. to add fluorine into the particles, and vitrified. In this case, the heating temp. is controlled to >=1,000 deg.C, and the pressure of the atmosphere is kept at 400-0.1Torr. The fine glass particles having >=0.5 porosity is preferably used. As the fluorine or fluorine compd., F2, SiF4, CF4, CCl2F2, NF3, etc., can be exemplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は径方向にフッ素の添加量f:変化させることに
よ)、屈折率に分布をもたせた光ファイバ用ガラス母材
の製造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a glass base material for optical fibers having a refractive index distribution by changing the amount of fluorine added in the radial direction. .

〔従来の技術〕[Conventional technology]

光通信技術のための石英ガラスから成る光ファイバはフ
ァイバコアからファイバクラッドに向かって低下する適
当な屈折率分布を有しなければならない。これはファイ
バコアに屈折率を高める物質、例えばGaO2,A/2
03. P2O3などをドーピングすることにょシ、又
はファイバクラクトに屈折率を低下するガラス添加物、
例えば”2o5又はフッ素(F)tドーピングすること
にょシ得られ、その際フッ素の場合には1/202−の
代わ夛にSlに結合している。純粋な石英ガラスの損失
最低値における1、5趨の光波長で用いるためにはB2
O3及びP2O3はほとんど問題とならない。なぜなら
ばこれらのドーピング物質は吸収損失を高めるからであ
る(「低OH含有量の光ファイバの伝送損失に及ぼすド
ー ピング物質の影響(ICffaot of dop
ants on transmission loss
low−OH−content optical fi
bers) Jxレクトロニクス レターズ(Erec
tr、 Lett、) 、第12巻(1976年)、第
549ページないし第550ページ参照)。その上ドー
ピング物質Goo2゜AIO及びP2O3はファイバの
レーリー散乱損失を高める(「ガラス光導波路における
伝送(Propagation in glass o
ptical waveguldes)J、レビュー 
オプ モダン フィジックス(Reマiswor Mo
d、 Phyg、)、第51巻(1979年)、第34
1ページないし第367ページ参朋)。酸化物のドーピ
ング物質の別の重大な欠点は、ファイバの中に周囲から
拡散侵入するおそれのある水素分子と反応しようとしそ
の際OH基を形成しようとする傾向であl)、on基は
1.4μ墓付近の波長範囲における光伝送の永久的低下
を招く。これに対し、フッ素をドープした石英ガラスだ
けが純粋の石英ガラスの低い損失を達成し、その上51
02よJ H2との反応性が小さい(「光ファイバにお
ける残存ハロゲンの水素損失増加特性に及ぼす影響(I
Cffectg of residualhaloge
n in optical flbers on hy
4rogen 1ossincrease chara
oteristicss) Jコンフエレンスオグチカ
ル ファイバ コミツテイ−(c o n r *Op
t、 Fiber Oomm、)、サンディエゴ、19
85年2月11日ないし13日、テクニカル ダイジェ
スト(Techn、 Digcs+sす、第46ページ
ないし第47ページ、オプチカル ンサイエテイーオプ
 アメリカ(Opt、 Boo、 of Americ
a)、1985年参照)。多重クラッドを備えたファイ
バを製造しようとするときには酸化物のドーピング物質
のほかにフッ化物が必要となシ、かかるファイバにおい
ては少なくとも一つのクラッドが石英ガラスの屈折率よ
シ小さい屈折率を有するべきである(「1,28μmな
いし1.65μmの波長領域にわたって2 pg/kJ
n” nu未満の散乱を有する低損失四重クラッドシン
グルモード光ファイバ(Low−1oss quadr
uple−clad singla−moda lig
ht−gu14es with dispersion
 below2 pg/FAm nu over th
e 1.28− L65 pw+ wavelengt
hrange) J 、xレクトoニクス レターズ(
]E1ectr。
Optical fibers made of quartz glass for optical communication technology must have a suitable refractive index profile decreasing from the fiber core towards the fiber cladding. This is a material that increases the refractive index in the fiber core, such as GaO2, A/2.
03. doping with P2O3, etc., or glass additives to lower the refractive index of the fiber clad;
For example, it can be obtained by doping with 2o5 or fluorine (F), in which case fluorine is bonded to Sl instead of 1/202-. B2 for use with five optical wavelengths
O3 and P2O3 pose little problem. This is because these doping substances increase the absorption loss (see ``Influence of doping substances on the transmission loss of optical fibers with low OH content'').
ants on transmission loss
low-OH-content optical fi
bers) Jx Lectronics Letters (Erec
tr, Lett, ), Vol. 12 (1976), pp. 549-550). Moreover, the doping substances Goo2°AIO and P2O3 increase the Rayleigh scattering losses of the fiber (Propagation in glass optical waveguides).
ptical waves) J, Review
Op Modern Physics (Remy Wor Mo
d, Phyg, ), Volume 51 (1979), No. 34
(See pages 1 to 367). Another important drawback of oxide doping materials is their tendency to react with hydrogen molecules that can diffuse into the fiber from the environment, forming OH groups (l); .4μ This results in a permanent reduction in optical transmission in the wavelength range near the grave. In contrast, only fluorine-doped fused silica glass achieves the lower losses of pure fused silica glass, and still has 51
02 has low reactivity with J H2 (“Effect of residual halogen in optical fiber on hydrogen loss increase characteristics (I
Cffectg of residual haloge
n in optical flbers on hy
4rogen 1ossincrease chara
oteristicss) J Conference Organic Fiber Committee (co n r *Op
t, Fiber Oomm, ), San Diego, 19
February 11-13, 1985, Technical Digest (Techn, Digcs+s, pages 46-47, Opt, Boo, of America)
a), 1985). Fluoride is required in addition to the oxide doping material when fibers with multiple claddings are to be manufactured, and in such fibers at least one cladding should have a refractive index less than that of fused silica. (2 pg/kJ over the wavelength range 1.28 μm to 1.65 μm
Low-loss quadruple-clad single-mode optical fiber with scattering less than
uple-clad singla-moda lig
ht-gu14es with dispersion
below2 pg/FAm nu over th
e 1.28- L65 pw+ wave length
hrange) J, x Lectonics Letters (
]E1ectr.

Lett、)第18巻(1982年)第1023ページ
ないし第1024ページ診朋)。
Lett, Volume 18 (1982), pages 1023 to 1024).

810□ガラス微粒子が火炎加水分解によ〕作られ円筒
形の基体の外面上べ析出される%に効率の良い安価な外
面析出プロセス例えばVAD法(気相軸付法)等は、フ
ッ素をドープしたガラスの製造には残念ながら適してい
ない(「気相軸付は法におけるフッ素ドーピングと光フ
ァイバ製造へのその応用(Fluorine dopi
ng in theMAD method andit
s applioationss to optica
lfiber fabrication) J、第9回
ユーロビアンコン 7エレンス オプチカル コミツテ
イ(]Europ、 Conf、 Opt、 Ooa+
m、) il事録、ジュネーブ、1983年10月23
日ないし26日、第13ページないし第16ページ、オ
ランダ、アムステルダム、1985年参照)。これに対
する根拠は 2 H2O+ SiF4# 4 HF 十5in2 ・
・・(1)上記(11式により与えられる化学的平衝の
不利な状態でアシ、平衡は高温の際には7)化水素側に
在る。従って高温の火炎においては最初例えばOF4.
02F6などのようなりレオンの形で又はOF、C1な
どの形で又はSiF4  の形で存在し得る混合された
フッ化物が結局フッ化水素(HF)  に転換され、こ
の7ツ化水素は5102  の中への小さい溶解度しか
持たないため大部分はガス状になって逃げる。
810□ Fine glass particles are produced by flame hydrolysis and deposited on the outer surface of a cylindrical substrate. A highly efficient and inexpensive outer surface deposition process such as the VAD method (vapor deposition method) is a fluorine-doped method. Unfortunately, it is not suitable for the production of optical fiber glass.
ng in theMAD method andit
applications to optica
lfiber fabrication) J, 9th Eurobiancon 7 Elens Optical Committee (]Europ, Conf, Opt, Ooa+
m,) il proceedings, Geneva, October 23, 1983.
(See pages 13-16, Amsterdam, Netherlands, 1985). The basis for this is 2 H2O+ SiF4# 4 HF 15in2 ・
... (1) The chemical equilibrium given by the above equation (11) is in an unfavorable state, and the equilibrium is on the 7) hydrogen chloride side at high temperatures. Therefore, in a high temperature flame, for example, OF4.
The mixed fluoride, which may be present in the leon form such as 02F6 or in the form OF, C1 etc. or in the form SiF4, is eventually converted to hydrogen fluoride (HF), which is converted into hydrogen heptadide in 5102. Since it has only a small solubility in the gas, most of it escapes in the form of a gas.

7ツ累をドープされた石英ガラスは水素の無い雰囲気か
らの管状の基本体の内壁上への析出、例えば周知の内付
け(MOVD)法によシ製造できる。しかしながらこの
方法は析出速度が低い。
The doped quartz glass can be produced by deposition on the inner wall of a tubular basic body from a hydrogen-free atmosphere, for example by the well-known method of mounting-on-the-wall (MOVD). However, this method has a low deposition rate.

基体の外面上への析出の際にフッ素ドーピングの問題は
、’!−j’5102ガラス微粒子から成るドープされ
ていない堆積体ガラス嶽粒子体が作られ、そしてこのガ
ラス微粒子体が後に水素を用いない乾燥兼焼結プロセス
の間にフッ素又はフッ素化合物を含有するガスを用いて
拡散によシドープされることによ)従来は解決されてい
る。
The problem of fluorine doping during deposition on the external surface of the substrate is '! -j'5102 An undoped stack of glass particles is produced, which is later exposed to a gas containing fluorine or fluorine compounds during a hydrogen-free drying and sintering process. This solution has been previously solved by doping by diffusion using

ドーピング量分布の形成のために多孔質の物体の中への
フッ素の拡散速度が材料の密度に反比例するという事情
を利用しようと努力されている。そのために8102ガ
ラス微粒子体はコアの中で高めの密度をまたクラッドの
中で低めの密度を有しなければならない(「気相軸付は
法のための新しく開発された7ツ累ドーピング技術(N
ewiy aevelopell fluorine 
doping techniquefox VAD p
rocass) J、第10回ユーロピアンコンフエレ
ンス オプチカル コミツテイ−(ICurop、 G
onf、 Opt、 Gown、) 、シュトウットガ
ルト、1984年9月3日ないし6日、第294ページ
ないし第295ページ、VDiC出版社、ベルリン、1
984年参照)。出発材としてSiO□から成る中冥な
棒を用いることにより(「外付は法によるフッ素をドー
プしたファイバ(Fluorine−dopelfib
ars by the outside vapor 
depositionprocess) J、テクニカ
ル ダイジェスト(Teohn。
Efforts have been made to take advantage of the fact that the rate of diffusion of fluorine into a porous body is inversely proportional to the density of the material in order to create a doping distribution. To this end, the 8102 glass particles must have a higher density in the core and a lower density in the cladding. N
ewiy aevelopell fluorine
doping techniquefox VAD p
rocas) J, 10th European Conference Optical Committee (ICurop, G
onf, Opt, Gown, ), Stuttgart, September 3-6, 1984, pages 294-295, VDiC Verlag, Berlin, 1
984). By using a hollow rod made of SiO
ars by the outside vapor
deposition process) J, Technical Digest (Teohn.

Digest) 、コンフエレンス オプチカル ファ
イバ コミツテイー(Oonf、 Opt、 Fibe
r Oomm、)、ニューオーリアンズ、1984年1
月25日ないし25日、第22ページないし第23ペー
ジオグチカル ンサイエテイー オプ アメリカ(Op
t、 8oo、 of America)、1984年
参m)、又は5102  ガラス微粒子から成る密度の
異なる粉末の析出によりこのことが達成できる。しかし
ながらフッ素が拡散する温度において同時に始まるガラ
スの焼結は欠点がある。なぜならば太いガラス微粒子体
に対して低い温度の際には非常に長い拡散時間を余儀な
くされるからである。
Digest), Conference Optical Fiber Committee (Oonf, Opt, Fiber
r Oomm, ), New Orleans, 1984 1
25th or 25th of the month, pages 22 or 23
This can be achieved by precipitation of powders of different densities consisting of glass particles. However, sintering of the glass that begins simultaneously at the temperature at which fluorine diffuses has drawbacks. This is because when the temperature is low for thick glass particles, a very long diffusion time is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来の技術では、ガラス微粒子体をフッ素
又はフッ素化合物ガスを含む雰囲気中で加熱し焼結・透
明化する所謂焼結工程におけるフッ素又はフッ素化合物
ガスの該ガラス微粒子体中への拡散過程に喪する時間が
、光ファイバの製造効率を低下させるという問題があっ
た。さらにフッ素又はフッ素化合物ガスの拡散を抑制す
るためにガラス微粒子体の気孔′4を局所的に小さくす
る必要がある場合、例えば径方向にフッ累添加部分の屈
折率分布を変化させようとするときには、その部分のガ
ス置換がうまく行われず、得られた透明ガラス体中に気
泡が残留する問題もあつ九。
As mentioned above, in the conventional technology, fluorine or fluorine compound gas is diffused into the glass particulate body in the so-called sintering process in which the glass particulate body is heated in an atmosphere containing fluorine or fluorine compound gas to sinter and become transparent. There is a problem in that the time required for the process reduces the manufacturing efficiency of optical fibers. Furthermore, when it is necessary to locally reduce the pores 4 of the glass fine particles in order to suppress the diffusion of fluorine or fluorine compound gas, for example, when trying to change the refractive index distribution of the fluorine-doped portion in the radial direction, There is also the problem that gas replacement in that area is not performed well and bubbles remain in the resulting transparent glass body.

本発明はこのような問題点を解消して、径方向にフッ素
の添加量を変化させて屈折率分布を形成した光ファイバ
用母材を製造できる新規な方法を提供しようとするもの
である。
The present invention aims to solve these problems and provide a new method for manufacturing an optical fiber base material in which the amount of fluorine added is varied in the radial direction to form a refractive index distribution.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、ガラス微粒子へのフッ素添加機構につい
て研究を重ね、ガラス微粒子表面での7ツ累との反応速
度が強い温度依存性を有することを見出し、この時ガラ
ス微粒子体の径方向に温度分布を形成しておけば、フッ
J[加量の分布を形成できることを見出した。そしてこ
の知見に基き、従来技術とは全く発想を変えて、焼結工
程での雰囲気ガス圧力を減じることによシ該雰囲気ガス
による熱伝導を阻害してガラス微粒子体の径方向に急激
な温度分布を形成させて7ツ累との反応速度を変化させ
フッ素添加量を変化させる本発明の方法に到ったのであ
る。
The present inventors have repeatedly researched the mechanism of fluorine addition to glass particles, and found that the reaction rate with fluorine on the surface of glass particles has a strong temperature dependence. It has been found that by forming a temperature distribution, it is possible to form a distribution of weight. Based on this knowledge, in a completely different way from the conventional technology, by reducing the atmospheric gas pressure during the sintering process, the heat conduction by the atmospheric gas is inhibited, and the temperature rises rapidly in the radial direction of the glass particles. We have arrived at the method of the present invention, which changes the amount of fluorine added by forming a distribution and changing the reaction rate with the fluorine.

すなわち、本発明は石英を主成分とするガラス微粒子体
をフッ素又はソツ累化合物を含む雰囲気下で加熱して該
ガラス微粒子体中にフッ素t−a加しながら透明ガラス
化する焼結工11において、加熱温度が1000℃以上
で該2ツ累又はフッ素化合物ガスを含む雰囲気の圧力t
−400TOrr以下0.1Torr以上の範囲内の減
圧に保持するととt%徴とする光ファイバ用ガラス母材
の製造方法に関する。
That is, in the sintering process 11 of the present invention, glass fine particles containing quartz as a main component are heated in an atmosphere containing fluorine or a sulfuric compound to form transparent vitrification while adding fluorine t-a into the glass fine particles. , the pressure t of the atmosphere containing the two or fluorine compound gas at a heating temperature of 1000°C or higher
The present invention relates to a method for producing a glass preform for an optical fiber that exhibits a t% characteristic when maintained at a reduced pressure within a range of -400 TOrr or less and 0.1 Torr or more.

本発明において前記ガラス微粒子はその気孔率が0.5
以上であることが特に好ましい。
In the present invention, the glass fine particles have a porosity of 0.5.
It is particularly preferable that it is above.

以下、本発明を図面を参照して具体的に説明すると、第
1囚は本発明の一具体例の説明図で、VAD法等により
作製した石英(Sin2)  ’に主成分するガラス微
粒子体1を加熱炉(図は抵抗加熱炉)の炉心管2内に挿
入し、ヒータ3によシ加熱する。炉内へはフッ素又は7
ツ累化合物ガスを含有する雰囲気ガスを供給する。炉内
温度 、が1000℃までは内圧調整弁5で配管6側に
雰囲気ガスを導く。炉内温度が1000℃以上の領域に
おいて、炉内雰囲気ガス圧力を400Torr以下0.
I Torr以上の減圧状態になるように真空ポンプ4
にて調圧し、ニードル弁5で調整する。7は排気口であ
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings. Figure 1 is an explanatory diagram of a specific example of the present invention. is inserted into the furnace core tube 2 of a heating furnace (resistance heating furnace shown) and heated by the heater 3. Fluorine or 7 into the furnace
An atmospheric gas containing a compound gas is supplied. When the temperature inside the furnace reaches 1000° C., atmospheric gas is guided to the piping 6 side by the internal pressure regulating valve 5. In a region where the furnace temperature is 1000°C or higher, the furnace atmosphere gas pressure is set to 400 Torr or less.
Vacuum pump 4 so that the pressure is reduced to more than I Torr.
The pressure is regulated using the needle valve 5. 7 is an exhaust port.

本発明において石英を主成分とするガラス微粒子体の製
造は、例えばWAD法、OVD法といったスート付は法
の他ゾルゲル法やプレス成形法(ガラス微粒子を集めて
静水圧プレス等によシ成形する方法)等の種々の公知技
術によシ行なうことができる。
In the present invention, glass particles mainly composed of quartz can be produced by a soot-applied method such as a WAD method or an OVD method, as well as a sol-gel method or a press molding method (glass particles are collected and molded using a hydrostatic press, etc.). This can be done by various known techniques such as method).

本発明に用い得るフッ素又はフッ素化合物ガスとしては
、例えばF2. SiF4. SF6.例えばOF4等
のフルオロカーボン系ガス、例えばCG12F2.、C
C/3F等のクロロフルオロカーボン、例L td N
F3 * ”25等の金属元素を含まないフッ化剤等が
挙げられる。
Examples of the fluorine or fluorine compound gas that can be used in the present invention include F2. SiF4. SF6. For example, fluorocarbon gas such as OF4, for example CG12F2. , C
Chlorofluorocarbons such as C/3F, e.g. L td N
Examples include fluorinating agents that do not contain metal elements such as F3*''25.

本発明において400 Torr % 0.I Tor
rの減圧とする温度範囲は、1000℃以上で上限は通
常的1600℃である。1000℃未満ではフッ素の反
応速度が極めて遅く生産効率が悪い。
In the present invention, 400 Torr% 0. I Tor
The temperature range for reducing the pressure of r is 1000°C or higher, and the upper limit is usually 1600°C. Below 1000°C, the reaction rate of fluorine is extremely slow and production efficiency is poor.

また、本発明のように減圧することによってガラス微粒
子体の表面と中心付近に温度差をつけた場合でも、ガラ
ス微粒子体の表面ははy炉温に追従してお、j5.16
00℃を越えると少なくとも微粒子体表面は透明ガラス
化が完了してし1い、減圧しても実質的に意味がない。
Furthermore, even when a temperature difference is created between the surface and the center of the glass particle body by reducing the pressure as in the present invention, the surface of the glass particle body follows the furnace temperature.
When the temperature exceeds 00° C., at least the surface of the fine particles has completely become transparent and vitrified, and there is virtually no point in reducing the pressure.

なお、減圧手段は例えば真空ポンプ等の公知技術を用い
ればよい。
Note that, for example, a known technique such as a vacuum pump may be used as the pressure reducing means.

〔作用〕[Effect]

焼結プロセスにおけるガラス微粒子体中へのフッ素添加
機構は久の3段階からなっている。
The mechanism of adding fluorine into the glass particles during the sintering process consists of three stages.

即ち、ガラス微粒子体中へフッ素又はフッ素化合物ガス
が拡散・浸透する第1段階、ガラス微粒子表面において
フッ素原子とガラス@粒子が反応する第2段階、フッ素
がガラス微粒子中に拡散する第3段階である。前述のよ
うに第1段階においてフッ素又はフッ素化合物ガスの拡
散速度を制御する方法については従来技術で考案されて
きたが、種々の問題がある。
That is, in the first stage, fluorine or fluorine compound gas diffuses and permeates into the glass fine particles, in the second stage, fluorine atoms and glass@particles react on the surface of the glass fine particles, and in the third stage, fluorine diffuses into the glass fine particles. be. As described above, methods for controlling the diffusion rate of fluorine or fluorine compound gas in the first stage have been devised in the prior art, but there are various problems.

一方、本発明者らの検討によル、第2段階においてガラ
ス微粒子表面で起る反応の速度は、強い温度依存性を示
すことが明らかになった。
On the other hand, studies conducted by the present inventors have revealed that the rate of reaction occurring on the surface of the glass particles in the second stage exhibits strong temperature dependence.

つま)、ガラス微粒子の径方向に温度分布を形成させる
ことによシ、フッ素の添加量に分布をもたせることが可
能であることが判った。第2囚はこの温度依存性を示す
データの1例であって、フッ素原料ガスの濃度を一定に
保った抵抗炉中にガラス微粒子体を挿入し、その微粒子
体中へのフッ素尚加量(重量ル)の時間変化を二水準(
T=1200℃及びT=1000℃)の炉温に対して示
したものである。同図から判るように、炉温か1200
℃の場合は1000℃の場合に比べて約2倍の反応速度
になっている。
Finally, it has been found that by forming a temperature distribution in the radial direction of the glass particles, it is possible to provide a distribution in the amount of fluorine added. The second case is an example of data showing this temperature dependence. A glass particulate body is inserted into a resistance furnace in which the concentration of fluorine raw material gas is kept constant, and the amount of fluorine added to the particulate body ( Two levels (
The figures are shown for furnace temperatures of T=1200°C and T=1000°C. As you can see from the figure, the furnace temperature is 1200
When the temperature is 1000°C, the reaction rate is about twice as high as that at 1000°C.

そこで、例えば炉内圧を大気圧に保ち、炉温を極めて速
い昇温速度で上昇させると、ガラス微粒子体表面温度は
ヒーターからの輻射を受けて上昇に追従するが、内部は
熱伝導による遅れがあるため表面と温度差が生じる。し
かしながら、この方法でフッ素の添加量に分布を持たせ
るためKは極めて速い昇温速度が必要で1)、得られる
ガラス体中に気泡が残留するという問題があった。
Therefore, for example, if the furnace internal pressure is kept at atmospheric pressure and the furnace temperature is raised at an extremely fast heating rate, the surface temperature of the glass particles will follow the rise due to radiation from the heater, but inside there will be a delay due to heat conduction. This creates a temperature difference with the surface. However, in order to provide a distribution in the amount of fluorine added in this method, an extremely fast heating rate of K is required (1), and there is a problem in that bubbles remain in the resulting glass body.

これに対し本発明者らはさらに鋭意・検討を進めた結果
、フッ素の添加量分布を形成するためによ)効果的で気
泡残留の問題のない手段を見出した。本発明者らは、ま
ずガラス微粒子体の熱伝導メカニズムはつき研究し、ガ
ラス微粒子体自身の熱伝導率は下記(21式で表される
その気孔率(Pa) 気孔率(Pc) =1−ρ/ρ。・・・(2)によって
変化し、気孔率が0.5以上ではガラス微粒子体の熱伝
導率は雰囲気ガスのそれに対し1/1000以下になる
ことを見出した。つtp、大気圧下では雰囲気ガスの熱
伝導率を制御することで、ガラス微粒子体の温度分布を
形成できるわけである。実際に雰囲気ガスの圧力を40
0Torr  にすると熱板°導率は約%にな)、効果
的な温度分布を形成できた。又、この手段によれば、昇
温速度を速くしても、大気圧の場合に比べて気泡が残留
しにいという利点がある。従つて、ガラス微粒子体の表
面付近と中心付近の温度を極めて大きくすることができ
る。尚、雰囲気ガスをQ、I Torr 程度の減圧に
すると、その熱伝導率はガラス微粒子体のそれとはy等
しくなシ、これ以下に減圧しても効果の増大は望み難い
In response to this, the inventors of the present invention have conducted further intensive studies and have found a means that is effective (for forming the distribution of the amount of fluorine added) and does not cause the problem of bubbles remaining. The present inventors first studied the thermal conductivity mechanism of the glass fine particles, and found that the thermal conductivity of the glass fine particles themselves is as follows (its porosity (Pa) expressed by equation 21: Porosity (Pc) = 1- ρ/ρ... It was found that the thermal conductivity of the glass particles is 1/1000 or less of that of the atmospheric gas when the porosity is 0.5 or more. Under atmospheric pressure, the temperature distribution of glass particles can be formed by controlling the thermal conductivity of the atmospheric gas.In fact, the pressure of the atmospheric gas can be adjusted to 40
When the temperature was set to 0 Torr, the conductivity of the hot plate was approximately %), making it possible to form an effective temperature distribution. Moreover, according to this means, there is an advantage that even if the heating rate is increased, bubbles are less likely to remain than in the case of atmospheric pressure. Therefore, the temperature near the surface and near the center of the glass particle body can be made extremely high. Note that when the atmospheric gas is reduced in pressure to about Q, I Torr, its thermal conductivity is equal to that of the glass particles, y, and even if the pressure is reduced below this level, it is difficult to expect an increase in the effect.

以上のように本発明によれば焼結プロセスにおける雰囲
気ガスの拡散過程にかかる時間による制約がなくなるだ
けでなく、減圧下で焼結を行なうことによ多気泡のない
良好なガラス母材を製造することができる。
As described above, according to the present invention, not only is there no restriction due to the time required for the diffusion process of atmospheric gas in the sintering process, but also a good glass base material without many bubbles can be produced by sintering under reduced pressure. can do.

なお、以上の説明は炉内の温度を昇温させてゆく方式の
加熱(均熱炉)t−例にして行った力ζ本発明の方法は
いわゆるゾーン炉のように一定温度に保持された炉中に
ガラス微粒子体を挿入してゆく方法にも有効で、前記し
たと同様の効果が得られるものである。
The above explanation is based on a heating method that raises the temperature inside the furnace (soaking furnace). This method is also effective for inserting glass particles into a furnace, and the same effects as described above can be obtained.

〔実施例〕〔Example〕

実施例1 VAD法により#!遺した純粋石英ガラス微粒子体を第
1図に示した抵抗加熱炉の炉心管内に挿入し、本発明に
よシフッ素化と焼結を行なった。該ガラス微粒子体の気
孔率は0.7であった。
Example 1 #! by VAD method! The remaining pure silica glass particles were inserted into the core tube of the resistance heating furnace shown in FIG. 1, and fluorinated and sintered according to the present invention. The porosity of the glass fine particles was 0.7.

炉温1000℃に保つ九炉中に該微粒子体を挿入後、炉
温を1000℃から1500℃1で10℃/分の速さで
昇温し、t500℃で1時間保持後降温して1000℃
で母材t−取ル出した。1000℃S1500℃の温度
範囲内アは炉内f 20 Torr  に保った。仁の
際炉内へは81F4t−200CC7分供給し続けた。
After inserting the particulate material into a nine furnace that maintains the furnace temperature at 1,000°C, the furnace temperature was raised from 1,000°C to 1,500°C at a rate of 10°C/min, held at t500°C for 1 hour, and then lowered to 1,000°C. ℃
The base material T-removed was taken out. Within the temperature range of 1000°C and 1500°C, the temperature inside the furnace was maintained at f 20 Torr. 81F4t-200CC was continuously supplied into the furnace for 7 minutes.

1300℃以上では雰囲気1He(大気圧)とした。こ
の結果得られた透明ガラス母材は第3図に示すような屈
折率分布を有してお)、満足できるものであった。なお
、母材中に気泡の残留はなかった実施例2 実施例1と同様の気孔率0.7の純粋石英ガラスWk粒
子体全第1図の構成で本発明によシフッ素添加、焼結し
た。1000℃に保った炉内に該微粒子体を挿入し、1
000℃から1500’ctで5℃/分の速度で昇温し
、このときの雰囲気は1300℃までは81F47 G
 Torrの減圧、1300℃を越えてはHa 517
分(大気圧)とし、1500℃で30分保持後1000
℃に降温して、透明ガラス体を取)出した。得られ九透
明ガラス体の屈折率分布は第4図に示すとおシで満足な
ものであプ、気泡の発生は見られなかった。
At 1300° C. or higher, the atmosphere was 1He (atmospheric pressure). The transparent glass base material obtained as a result had a refractive index distribution as shown in FIG. 3), which was satisfactory. In addition, Example 2, in which no air bubbles remained in the base material, was prepared by adding fluorine and sintering according to the present invention, using the same pure silica glass Wk particle body with a porosity of 0.7 as in Example 1 and having the configuration shown in Figure 1. did. The fine particles were inserted into a furnace kept at 1000°C, and
The temperature was raised from 000°C to 1500'ct at a rate of 5°C/min, and the atmosphere at this time was 81F47G up to 1300°C.
Torr vacuum, over 1300℃ Ha 517
minutes (atmospheric pressure), and held at 1500℃ for 30 minutes.
The temperature was lowered to ℃ and the transparent glass body was taken out. The refractive index distribution of the obtained transparent glass body, as shown in FIG. 4, was satisfactory and no bubbles were observed.

実施例3 実施例1と同様の構成によシ、気孔率0.7の純粋石英
ガラス微粒子体を第1図の構成で本発明によシフッ素龜
加、焼結した。炉内の初期温度1000℃で1000℃
から1600℃まで15℃/分の速度で昇温し、このと
きの雰囲気は5iF41A/分、炉内圧400 Tor
r  とした。
Example 3 A pure quartz glass fine particle body having a porosity of 0.7 was added with fluorine according to the present invention and sintered using the same structure as in Example 1, and the structure shown in FIG. 1000℃ at initial temperature of 1000℃ in the furnace
The temperature was raised at a rate of 15°C/min from
It was set as r.

1000℃に降温後取り出した透明ガラス体に気泡はな
く、第5図に示す屈折率分布を有していた。
The transparent glass body taken out after cooling to 1000°C had no bubbles and had the refractive index distribution shown in FIG.

実施例4 実施例3において5iF450 cc/分、炉内圧を0
.1 Torr  とした以外は全く同様に行ったとこ
ろ、気泡がなく第6図に示す屈折率分布を有する透明ガ
ラス母材を得ることができた。
Example 4 In Example 3, 5iF450 cc/min, furnace pressure was 0
.. When the same procedure was carried out except that the pressure was changed to 1 Torr, a transparent glass base material without bubbles and having the refractive index distribution shown in FIG. 6 could be obtained.

実施例5 フッ素化合物ガスとして8F6’i用いた点以外は実施
例1と同じに行って透明ガラス体を得たところ、このガ
ラス体の屈折率分布ははr!3図と同じであつ九。これ
よ〕ガスの種類゛にかかわらず同様の効果を得られるこ
とがわかる。
Example 5 A transparent glass body was obtained in the same manner as in Example 1 except that 8F6'i was used as the fluorine compound gas. The refractive index distribution of this glass body was r! Same as Figure 3, Atsushi. This shows that the same effect can be obtained regardless of the type of gas.

比較例 炉内圧を大気圧とし、5iF4200α/分、Ha  
7.4J3/分とした以外は実施例1と同様に行って、
透明ガラス体(比較品)t−得た。なおこの例でもSi
F4  の分圧は実施例1と同じである。該ガラス体中
には気泡は存在しなかった力ζフッ素の象加量は外周部
から中心まで径方向に均一であった。
Comparative example Furnace pressure was atmospheric pressure, 5iF4200α/min, Ha
The same procedure as in Example 1 was carried out except that the setting was 7.4J3/min.
A transparent glass body (comparative product) t- was obtained. Note that in this example as well, Si
The partial pressure of F4 is the same as in Example 1. There were no air bubbles in the glass body.The amount of fluorine inlaid was uniform in the radial direction from the outer periphery to the center.

以上の実施例1〜5および比較例の結果から、加熱温度
1000℃51600℃の範囲内でフッ素文はフッ素化
合物ガスを含む雰囲気圧力を4005O0I Torr
  の範囲内とすることによりガラスの径方向にフッ素
添加量分布が形成さ枢これによが径方向に屈折率分布を
形成したガラス母材が気゛−泡残留等なく得られること
がわかる。
From the results of Examples 1 to 5 and Comparative Examples above, it is clear that within the heating temperature range of 1000°C and 51600°C, the atmospheric pressure containing fluorine compound gas is 4005°C to 4005°C.
It can be seen that by setting the amount within the range of 1, a fluorine doping amount distribution is formed in the radial direction of the glass, and thereby a glass base material having a refractive index distribution in the radial direction can be obtained without residual air bubbles.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明はガラス微粒子体の焼結工
程において、温度1000℃以上で雰囲気ガス圧力f:
400Torr以下0.1Torr以上の範囲内に制御
することによシ、ガラス微粒子体の径方向に温度分布を
形成し、これによりフッ素との反応速度を制御すること
によシ、屈折率分布を制御できる。このために、拡散速
度による制約やガラス母材中への気泡残留といった問題
もなく、効率的にかつ制御性よく、フッ素が添加され径
方向に屈折率分布を有する光ファイバ用母材を製造する
ことができる有利な方法である。
As described in detail above, in the sintering process of glass microparticles, the present invention is performed at a temperature of 1000°C or higher and an atmospheric gas pressure f:
By controlling the temperature within the range of 400 Torr or less and 0.1 Torr or more, a temperature distribution is formed in the radial direction of the glass fine particles, and thereby the refractive index distribution is controlled by controlling the reaction rate with fluorine. can. For this purpose, an optical fiber base material doped with fluorine and having a refractive index distribution in the radial direction can be manufactured efficiently and with good controllability without problems such as restrictions due to diffusion speed or bubbles remaining in the glass base material. This is an advantageous method that can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)石英を主成分とするガラス微粒子体をフッ素又は
フッ素化合物を含む雰囲気下で加熱して該ガラス微粒子
体中にフッ素を添加しながら透明ガラス化する焼結工程
において、加熱温度が1000℃以上で該フッ素又はフ
ッ素化合物ガスを含む雰囲気の圧力を400Torr以
下0.1Torr以上の範囲内の減圧に保持することを
特徴とする光ファイバ用ガラス母材の製造方法。
(1) In the sintering process in which a glass particulate body mainly composed of quartz is heated in an atmosphere containing fluorine or a fluorine compound to make it transparent while adding fluorine to the glass particulate body, the heating temperature is 1000°C. A method for manufacturing a glass preform for an optical fiber, characterized in that the pressure of the atmosphere containing the fluorine or fluorine compound gas is maintained at a reduced pressure within a range of 400 Torr or less and 0.1 Torr or more.
(2)ガラス微粒子体は気孔率が0.5以上であること
を特徴とする特許請求の範囲第1項に記載の光ファイバ
用ガラス母材の製造方法。
(2) The method for manufacturing a glass preform for an optical fiber according to claim 1, wherein the glass fine particles have a porosity of 0.5 or more.
JP4234088A 1988-02-26 1988-02-26 Production of optical fiber glass preform Pending JPH01219034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4234088A JPH01219034A (en) 1988-02-26 1988-02-26 Production of optical fiber glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4234088A JPH01219034A (en) 1988-02-26 1988-02-26 Production of optical fiber glass preform

Publications (1)

Publication Number Publication Date
JPH01219034A true JPH01219034A (en) 1989-09-01

Family

ID=12633284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4234088A Pending JPH01219034A (en) 1988-02-26 1988-02-26 Production of optical fiber glass preform

Country Status (1)

Country Link
JP (1) JPH01219034A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
EP2712848A1 (en) * 2012-09-27 2014-04-02 Heraeus Quarzglas GmbH & Co. KG Hydrogen-assisted fluorination of soot bodies
WO2022065486A1 (en) * 2020-09-28 2022-03-31 住友電気工業株式会社 Method for manufacturing fluorine-containing silica glass
WO2022065474A1 (en) * 2020-09-28 2022-03-31 住友電気工業株式会社 Method for producing fluorine-containing silica glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520140A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Reduction of fiber optic cane / preform deformation during consolidation
EP2712848A1 (en) * 2012-09-27 2014-04-02 Heraeus Quarzglas GmbH & Co. KG Hydrogen-assisted fluorination of soot bodies
WO2014048694A1 (en) * 2012-09-27 2014-04-03 Heraeus Quarzglas Gmbh & Co. Kg Hydrogen-supported fluorination of soot bodies
CN104661972A (en) * 2012-09-27 2015-05-27 赫罗伊斯石英玻璃股份有限两合公司 Hydrogen-supported fluorination of soot bodies
JP2015535795A (en) * 2012-09-27 2015-12-17 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Quarzglas GmbH & Co. KG Fluorination of soot bodies using hydrogen
US9416044B2 (en) 2012-09-27 2016-08-16 Heraeus Quarzglas Gmbh & Co. Kg Hydrogen-supported fluorination of soot bodies
WO2022065486A1 (en) * 2020-09-28 2022-03-31 住友電気工業株式会社 Method for manufacturing fluorine-containing silica glass
WO2022065474A1 (en) * 2020-09-28 2022-03-31 住友電気工業株式会社 Method for producing fluorine-containing silica glass

Similar Documents

Publication Publication Date Title
US3884550A (en) Germania containing optical waveguide
CA1251044A (en) Fluorine doped optical waveguide
US4772302A (en) Optical waveguide manufacture
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
US4643751A (en) Method for manufacturing optical waveguide
US4804247A (en) Quartz glass optical fiber
US4335934A (en) Single mode fibre and method of making
US5221308A (en) Low loss infrared transmitting hollow core optical fiber method of manufacture
CA1263807A (en) Optical waveguide manufacture
US6843076B2 (en) Single step laydown method of making dry fiber with complex fluorine doped profile
JPH01219034A (en) Production of optical fiber glass preform
EP0164127A2 (en) Method for producing glass preform for optical fibers
JPS6131324A (en) Production of base material for optical fiber
JPH0210095B2 (en)
JP3188309B2 (en) Method for manufacturing optical fiber preform for optical amplifier
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP3157000B2 (en) Optical waveguide
CA1261127A (en) Optical waveguide manufacture
JP3315786B2 (en) Optical amplifier type optical fiber
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP2831842B2 (en) Manufacturing method of optical fiber base material
JPH07109144A (en) Production of rare earth element-doped silica glass fiber preformed material
JP2000159531A (en) Production of optical fiber preform
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JP3310159B2 (en) Method for producing transparent glass body for Co-doped optical attenuator