JPH01218744A - Twin drum type continuous casting machine - Google Patents

Twin drum type continuous casting machine

Info

Publication number
JPH01218744A
JPH01218744A JP4551088A JP4551088A JPH01218744A JP H01218744 A JPH01218744 A JP H01218744A JP 4551088 A JP4551088 A JP 4551088A JP 4551088 A JP4551088 A JP 4551088A JP H01218744 A JPH01218744 A JP H01218744A
Authority
JP
Japan
Prior art keywords
drum
cooling
drums
molten metal
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4551088A
Other languages
Japanese (ja)
Inventor
Shigeru Ogawa
茂 小川
Toshio Kikuma
敏夫 菊間
Kunimasa Sasaki
佐々木 邦政
Atsumu Yamane
山根 伍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4551088A priority Critical patent/JPH01218744A/en
Publication of JPH01218744A publication Critical patent/JPH01218744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To freely control distribution of thicknesses to width direction of continuous cast strip and to improve working efficiency in cold-rolling stage after that by adjusting cooling condition to width direction of a drum at the time of producing the metal strip from molten metal in twin drum type continuous casting machine. CONSTITUTION:The molten metal 4 is charged into molten metal basin part 3 constituting of two cooling drums 1a, 1b and side weirs 2a, 2b and both cooling drums 1a, 1b are rotated to mutually reverse directions, and the molten metal is continuously drawn from gap 5 between both drums 1a, 1b as the metal strip 6. In this case, both cooling drums 1a, 1b are deformed by heating with the molten metal 4 and as the width of drum gap 5 is varied to the drum axial direction, variation to the rolling reduction force applying to the solidified shell formed with the cooling drum is developed to change thickness of the metal strip 6. This is measured with a thickness meter 17 and by this result, coolant quantity or temp. from cooling water nozzle 11 for the cooling drums 1a, 1b is adjusted at plural position in the width direction of the drums to control the developing speed of the solidified shell. By this method, the continuous casting metal strip 6 without flaw, fold and crack is produced and working efficiency in cold-rolling at the next stage is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属薄帯の肉厚を幅方向に関して調整するこ
とができるツインドラム式連続鋳造機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a twin-drum continuous casting machine that can adjust the thickness of a metal ribbon in the width direction.

〔従来の技術〕     、 最近、溶鋼等の溶融金属から最終形状に近い数mm〜数
十mm程度の厚みをもつ金属薄帯を直接的に製造する方
法が注目されている。この連続鋳造法によるとき、従来
のような多段階にわたる熱延工程を必要とすることな、
ぐ、また最終形状にする圧延も軽度なもので済むため、
工程及び設備の簡略化が可能となる。
[Prior Art] Recently, a method of directly manufacturing a metal ribbon having a thickness of several mm to several tens of mm, which is close to the final shape, from molten metal such as molten steel has been attracting attention. When using this continuous casting method, there is no need for a multi-step hot rolling process as in the conventional method.
Moreover, only a light rolling process is required to form the final shape.
It is possible to simplify the process and equipment.

第3図は、この連続鋳造法の一つとして知られているツ
インドラム方式の設備構成を示す(特開昭60−137
562号公報参照)。
Figure 3 shows the equipment configuration of the twin-drum method, which is known as one of the continuous casting methods (Japanese Patent Application Laid-Open No. 60-137
(See Publication No. 562).

この方式においては、互いに逆方向に回転する一対の冷
却ドラムla、 lbO間に、ドラム軸方向両端をサイ
ド堰2a、 2bで仕切り、湯溜り部3を形成する。そ
して、この湯溜り部3に溶融金属4を注入し、冷却ドラ
ムla、 lbを介して溶融金属4を抜熱することによ
り、それぞれの冷却ドラムla、 lbの周面に凝固シ
ェルを形成させる。この凝固シェルは、成長しながら冷
却ドラムla、 lbの回転に伴ってドラムギャップ5
に移行する。ドラムギャップ5で、それぞれの冷却ドラ
ム1.a、 lb側周面形成された凝固シェルは、圧接
・一体化され、金属薄帯6として冷却ドラムla、 l
b間から搬出される。
In this system, a pool 3 is formed between a pair of cooling drums la and lbO that rotate in opposite directions, with side weirs 2a and 2b partitioning both ends in the axial direction of the drums. Then, the molten metal 4 is poured into the sump 3 and heat is removed from the molten metal 4 through the cooling drums la, lb, thereby forming a solidified shell on the circumferential surface of each of the cooling drums la, lb. As the solidified shell grows, the drum gap 5 increases as the cooling drums la and lb rotate.
to move to. With a drum gap 5, each cooling drum 1. The solidified shells formed on the peripheral surfaces of the sides a and lb are pressure-welded and integrated into the cooling drums la and l as thin metal strips 6.
It is carried out from between b.

このツインドラム式連続鋳造機においては、溶融金属4
の保有熱によって冷却ドラムla、 lbが加熱され、
ドラムプロフィールが変わり、ドラムギャップ5の幅が
ドラム軸方向に関して均一でなくなる。このようなドラ
ムギャップ5で凝固シェルを圧下するとき、凝固シェル
に加わる圧下刃に変動が生じ、割れ、皺等の欠陥が発生
する原因となる。そこで、このドラムプロフィールを所
定の形状に維持するたt1サーマルクラウンを相殺する
ように冷却ドラムla、 lbを加圧又は熱収縮によっ
て変形させる種々の手段が開発されている(時開 ′昭
59’−163057号公報、特開昭60−27458
号公報、特開昭61−262452号公報等参照)。
In this twin-drum continuous casting machine, molten metal 4
The cooling drums la and lb are heated by the heat retained in the
The drum profile changes and the width of the drum gap 5 is no longer uniform in the axial direction of the drum. When the solidified shell is rolled down with such a drum gap 5, fluctuations occur in the rolling blade applied to the solidified shell, which causes defects such as cracks and wrinkles. Therefore, in order to maintain the drum profile in a predetermined shape, various means have been developed for deforming the cooling drums la, lb by pressurization or thermal contraction so as to offset the t1 thermal crown. -163057 Publication, JP-A-60-27458
(See Japanese Patent Application Laid-Open No. 61-262452, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の方式では、凝固、シエ、ルの′ 
  肉厚を幅方向に関して制御することができない。
However, in the conventional method, the
Wall thickness cannot be controlled in the width direction.

そのため、冷却ドラ、ムla、 lbのプロフィール、
を矯正した場合にあっても、このプロフィールと凝固シ
ェルの幅方向肉厚分布が適合しないとき、圧下量の幅方
向分布が不均一となり、割れや皺等の欠陥が発生するこ
とが避けられない。
Therefore, the cooling drum, unevenness, lb profile,
Even if the profile is corrected, if the thickness distribution in the width direction of the solidified shell does not match, the distribution of the reduction amount in the width direction will become uneven, and defects such as cracks and wrinkles will inevitably occur. .

また、鋳造された金属薄帯6を後続する冷延工程で加工
するときの加工効率から、一般に金属薄帯6に中央部を
厚くし両端部を薄くした凸クラウンを付けることが好ま
しい。一方、用途によっては例えば電磁材料のように、
幅方向肉厚偏差は極力小さいことが望まれているものも
ある。このように金属薄帯の製造プロセスとしては幅方
向の肉厚分布を自在に制御できるものが望まれている。
Furthermore, from the viewpoint of processing efficiency when processing the cast metal ribbon 6 in the subsequent cold rolling process, it is generally preferable to provide the metal ribbon 6 with a convex crown that is thicker at the center and thinner at both ends. On the other hand, depending on the application, such as electromagnetic materials,
In some cases, it is desired that the wall thickness deviation in the width direction be as small as possible. As described above, it is desired that the metal ribbon manufacturing process be capable of freely controlling the thickness distribution in the width direction.

ところが、幅方向に関して肉厚が変動する金属薄帯を製
造するための技術がこれまでのところ開発されていない
However, no technology has been developed so far for producing a metal ribbon whose thickness varies in the width direction.

そこで、本発明は、このような要求に応えるべく開発さ
れたものであり、ドラム軸方向に関して冷却条件を変え
ることによって、冷却ドラムの周面で成長する凝固シェ
ルの幅方向分布を自在に制御できるものとし、割れや皺
等の欠陥のない任意の肉厚分布の金属薄板を製造し、後
続する冷延等の工程における加工効率を改善することを
目的とする。
The present invention was developed to meet these demands, and by changing the cooling conditions in the axial direction of the drum, it is possible to freely control the widthwise distribution of the solidified shells growing on the circumferential surface of the cooling drum. The purpose of this method is to manufacture thin metal sheets with arbitrary wall thickness distribution without defects such as cracks and wrinkles, and to improve processing efficiency in subsequent processes such as cold rolling.

〔課題を解決するための手段つ 本発明のツインドラム式連続鋳造機は、その目的を達成
するために、一対の冷却ドラムの表面に供給した溶融金
属を急冷凝固して金属薄帯を製造する連続鋳造機におい
て、前記冷却ドラムの軸方向に沿って3以上のゾーンに
区分した冷媒吹付は用ノズルを前記冷却ドラムの周面に
対向させて配置し、それぞれのゾーンに供給される冷媒
の温度及び/又は流量を制御する制御機構を各ゾーン毎
に設けたことを特徴とする。
[Means for Solving the Problem] In order to achieve the object, the twin-drum continuous casting machine of the present invention rapidly solidifies molten metal supplied to the surfaces of a pair of cooling drums to produce a metal ribbon. In a continuous casting machine, the cooling drum is divided into three or more zones along the axial direction, and a nozzle for spraying the cooling drum is arranged to face the circumferential surface of the cooling drum, and the temperature of the refrigerant supplied to each zone is adjusted. and/or a control mechanism for controlling the flow rate is provided for each zone.

第1図は、本発明ツインドラム式連続鋳造機の要部を示
す側面図である。なお、同図において、第3図に示した
部材等に対応するものについては同一の符番で指示した
FIG. 1 is a side view showing the main parts of the twin-drum continuous casting machine of the present invention. In addition, in the same figure, parts corresponding to those shown in FIG. 3 are indicated by the same reference numbers.

この連続鋳造機においても、従来と同様に互いに逆方向
に回転する一対の冷却ドラムla、 lbを対峙させて
いる。そして、この冷却ドラムla、 lbO間に注湯
された溶融金属4を、冷却ドラムla、 lbを介して
抜熱し、ドラムギャップ5から金属薄帯6として送り出
している。
In this continuous casting machine as well, a pair of cooling drums la and lb, which rotate in opposite directions, face each other as in the conventional casting machine. The heat of the molten metal 4 poured between the cooling drums la and lbO is removed through the cooling drums la and lb, and the metal ribbon 6 is sent out from the drum gap 5.

そして、湯溜り部3から出た冷却ドラムla、 lbの
周面に対して、冷媒吹付はノズル11から水、潤滑剤を
混合したエマルジョン等の冷媒12を吹き付ける。この
冷媒吹付はノズル11は、第2図に示すように、冷却ド
ラムla、 lbO軸方向に関して両端部及び中央部の
3個のゾーンI、  I[、IIIに区分されている。
Then, a refrigerant 12 such as an emulsion containing water and a lubricant is sprayed from a nozzle 11 onto the circumferential surfaces of the cooling drums la and lb emerging from the water reservoir 3. As shown in FIG. 2, the nozzle 11 for this refrigerant spraying is divided into three zones I, I[, and III at both ends and the center in the axial direction of the cooling drums la and lbO.

それぞれのゾーン1.  II、 IIIにある冷媒吐
出口13は、ゾーン毎に支管14を介して冷媒供給管1
5に接続されている。この冷媒供給管15は、それぞれ
流量調整弁16を備えている。なお、冷媒吹付はノズル
11の区分数を3個よりも多数のゾーンとし、ドラム軸
方向に関する冷却条件の制御をより細かく行うこともで
きる。
Each zone 1. The refrigerant discharge ports 13 located in II and III are connected to the refrigerant supply pipe 1 via branch pipes 14 for each zone.
5. The refrigerant supply pipes 15 each include a flow rate regulating valve 16. In addition, in the refrigerant spraying, the number of zones of the nozzle 11 may be more than three, so that the cooling conditions in the direction of the drum axis can be controlled more precisely.

他方、冷却ドラムla、 lbから送り出された金属薄
帯6の肉厚を幅方向に沿って測定するため、金属薄帯6
の幅方向中央部及び両端部のそれぞれに合計3個の厚み
計17が配置されている。これら厚み計17で検出され
た金属薄帯6の幅方向厚み分布は、適宜の演算器(図示
せず)に入力されて、冷却ドラムla、 lbの目標周
面温度に対応した冷媒流量を表す制御信号に変換される
。この制御信号が前述の流量調整弁16に入力される。
On the other hand, in order to measure the thickness of the metal thin strip 6 sent out from the cooling drums la and lb along the width direction,
A total of three thickness gauges 17 are arranged at the center and both ends in the width direction. The thickness distribution in the width direction of the metal ribbon 6 detected by the thickness gauges 17 is input to an appropriate calculator (not shown) to represent the refrigerant flow rate corresponding to the target peripheral surface temperature of the cooling drums la and lb. converted into a control signal. This control signal is input to the aforementioned flow rate adjustment valve 16.

したがって、金属薄帯6の目標板厚に応じて、冷媒吹付
はノズル11から冷却ドラムla、 lbの周面に吹き
付けられる冷媒12の流量をドラム軸方向に沿って調整
し、冷却ドラムla、 lbの軸方向に関する周面温度
を所定のパターンに対応したものにする。
Therefore, depending on the target thickness of the metal ribbon 6, the flow rate of the refrigerant 12 sprayed from the nozzle 11 onto the circumferential surface of the cooling drums la, lb is adjusted along the drum axis direction, and the cooling drums la, lb are sprayed. The circumferential surface temperature in the axial direction is made to correspond to a predetermined pattern.

第2図では、冷媒12の流量を冷却ドラムla、 lb
の軸方向に変えることにより、冷却ドラムla、 lb
の周面で成長する凝固シェルのドラム軸方向に関する肉
厚分布を調整している。しかし、ドラム軸方向に関する
冷却条件を制御する方法としては、冷却ドラムla、 
lbの周面に吹き付ける冷媒12の温度を変える方式を
採用することができる。
In FIG. 2, the flow rate of the refrigerant 12 is determined by the cooling drum la, lb
By changing the axial direction of the cooling drum la, lb
The thickness distribution of the solidified shell growing on the circumferential surface of the drum in the axial direction of the drum is adjusted. However, as a method of controlling cooling conditions in the drum axial direction, cooling drum la,
It is possible to adopt a method of changing the temperature of the refrigerant 12 sprayed onto the circumferential surface of the lb.

この場合、それぞれ異なった温度で冷媒を収納している
貯蔵タンクに冷媒供給管15を接続する。
In this case, the refrigerant supply pipe 15 is connected to storage tanks containing refrigerants at different temperatures.

或いは、冷媒供給管15の途中に加熱器又は冷却器を設
け、厚み計17からの情報に基づいてその加熱器又は冷
却器を制御し、冷媒吐出口13に向けて送られる冷媒の
温度を調整しても良い。
Alternatively, a heater or a cooler is provided in the middle of the refrigerant supply pipe 15, and the heater or cooler is controlled based on information from the thickness gauge 17 to adjust the temperature of the refrigerant sent toward the refrigerant discharge port 13. You may do so.

なお、噴射された冷媒が金属薄帯6及び溶融金属4に接
触しないように、冷媒吹付はノズル11の上流側及び下
流側に遮蔽板18を設けることが望ましい。このとき、
遮蔽板18の先端に磁石を取り付け、磁気吸引力により
遮蔽板18と冷却ドラムla。
In order to prevent the injected refrigerant from coming into contact with the metal ribbon 6 and the molten metal 4, it is desirable to provide shielding plates 18 on the upstream and downstream sides of the nozzle 11 for refrigerant spraying. At this time,
A magnet is attached to the tip of the shielding plate 18, and magnetic attraction forces the shielding plate 18 and the cooling drum la.

1bとの間を僅かな間隙に維持することができる。1b can be maintained at a small gap.

〔実施例〕〔Example〕

実施例1ニ ドラム軸方向長さ800 mmで径1200mmの冷却
ドラムを使用して、5US304のステンレス鋼組成を
もつ温度1490℃の溶鋼を流量1100kg/分で湯
溜り部に注湯し、肉厚2mm、板幅800 mmの金属
薄帯を製造した。鋳造の経過に伴って、冷却ドラムが溶
鋼によって加熱され、冷却ドラムのプロフィールが変化
した。このプロフィール変化に起因して、ドラムギャッ
プで凝固シェルに加わる圧下刃が不均一となり、製品で
ある金属薄帯に疵、皺1割れ等の欠陥が発生した。
Example 1 Using a cooling drum with an axial length of 800 mm and a diameter of 1200 mm, molten steel having a stainless steel composition of 5US304 at a temperature of 1490°C was poured into the pool at a flow rate of 1100 kg/min, and the wall thickness was 2 mm. , a metal ribbon with a plate width of 800 mm was manufactured. As the casting progressed, the cooling drum was heated by the molten steel and the profile of the cooling drum changed. Due to this profile change, the rolling blade applied to the solidified shell in the drum gap became uneven, and defects such as scratches and wrinkles occurred in the metal ribbon product.

このプロフィール変化は、冷却ドラムから送り出される
金属薄帯の幅方向に沿った肉厚変動として現れる。そこ
で、鋳造された金属薄帯の肉厚を幅方向に配置した複数
の厚み計17によって測定した。測定された肉厚が大き
な個所に対応するドラムギャップは、冷却ドラムのサー
マルクラウンに起因して大きな間隙をもつものである。
This profile change appears as a thickness variation along the width direction of the metal ribbon fed out from the cooling drum. Therefore, the thickness of the cast metal ribbon was measured using a plurality of thickness gages 17 arranged in the width direction. The drum gap corresponding to the area where the measured wall thickness is large has a large gap due to the thermal crown of the cooling drum.

そこで、この部分にあたる冷却ドラムの周面に対するゾ
ーンI、Iの冷媒吹付はノズル11から噴射される冷媒
の吹付は流量をそれぞれ8Nm’/分に増加させ、凝固
シェルの成長を促進させた。他方、サーマルクラウンに
よって小さな間隙となったドラムギャップの中央部に対
しては、ゾーン■の冷媒吹付はノズル11から噴射され
る冷媒の吹付は流量を6Nm+ 7分に抑え、凝固シェ
ルの成長を抑制した。
Therefore, the flow rate of the refrigerant sprayed from the nozzle 11 in zones I and I to the circumferential surface of the cooling drum corresponding to this portion was increased to 8 Nm'/min, respectively, and the growth of the solidified shell was promoted. On the other hand, for the center of the drum gap, which has become a small gap due to the thermal crown, the refrigerant spray in zone 1 is injected from the nozzle 11, and the flow rate is suppressed to 6 Nm + 7 minutes, suppressing the growth of the solidified shell. did.

このようにして、サーマルクラウンに対応して凝固シェ
ルの成長を制御したため、ドラムギャップ5で圧下され
る凝固シェルに均一な圧下刃が働く。そのため、従来の
ような疵、皺1割れ等の発生がみられず、健全な表面性
状をもつ金属薄帯を製造することができた。
In this way, since the growth of the solidified shell is controlled in accordance with the thermal crown, a uniform rolling edge acts on the solidified shell rolled down in the drum gap 5. Therefore, it was possible to produce a metal ribbon with a sound surface quality without the occurrence of scratches, wrinkles, cracks, etc. as in the conventional method.

8一 実施例2: 冷延工程における加工効率を改善するため、中央部の厚
みが2.1mmで両端部の厚みが2.0mmの凸クラウ
ンをもち、板幅800mmの金属薄帯を鋳造した。
81 Example 2: In order to improve processing efficiency in the cold rolling process, a metal ribbon with a width of 800 mm and a convex crown with a thickness of 2.1 mm at the center and 2.0 mm at both ends was cast. .

このときに使用した冷却ドラムは、中央部の直径が12
0(1mmで、両端部の直径が12’00.1 mmで
、ドラム軸方向長さが8”00 mmであった。このよ
うな冷却ドラムを対として対峙基せ、中央部の間隙が2
、l mmで、両端部の間隙が2.0mmのドラムギャ
ップを形成した。
The cooling drum used at this time had a diameter of 12 mm at the center.
0 (1 mm), the diameter at both ends was 12'00.1 mm, and the axial length of the drum was 8'00 mm. Such cooling drums were placed facing each other as a pair, and the gap in the center was 2 mm.
, l mm, and a drum gap of 2.0 mm between both ends was formed.

このドラムギャップで、それぞれの冷却ドラム周面に形
成された凝固シェルに均一な圧下刃が作用するように、
ドラム軸方向に関する凝固シェルの成長をゾーン1.n
、IIIにおける冷媒吹付は量を変えることによって制
御した。すなわち、ゾーンI、IIIにおける冷媒吹付
は流量をそれぞれ6Nm+ 7分とし、ゾーン■におけ
る冷媒吹付は流量を1ON’m”7分とした。これによ
り、冷却ドラムの周面に成長した凝固シェルは、幅方向
中央部では厚く、両端部では薄い凸クラウンの断面形状
をもつものとなった。この凸クラウンのため、ドラムギ
ャップで凝固シェルに加わる圧下刃が均一化され、欠陥
のない金属薄帯を製造することができた。
In this drum gap, uniform reduction blades act on the solidified shell formed on the circumferential surface of each cooling drum.
The growth of the solidified shell in the direction of the drum axis is defined as zone 1. n
, III was controlled by varying the amount. That is, the flow rate of the refrigerant spraying in Zones I and III was 6 Nm + 7 minutes, respectively, and the flow rate of the refrigerant spraying in Zone ■ was 1 ON'm'' 7 minutes.As a result, the solidified shell that grew on the circumferential surface of the cooling drum was It has a cross-sectional shape with a convex crown that is thick at the center in the width direction and thin at both ends.Because of this convex crown, the rolling edge applied to the solidified shell in the drum gap is uniform, resulting in a defect-free metal ribbon. could be manufactured.

これに対し、冷媒吹付は流量をドラム軸方向に関して均
一にした冷却ドラムを使用して鋳造を行ったところ、中
央部で成長した凝固シェルは、ドラムギャップ中央部の
大きな間隙を埋めるには不充分な厚みてあり、充分な圧
下刃が作用しなかった。そのため、得られた金属薄帯に
は、疵、皺。
On the other hand, when casting was performed using a cooling drum with a uniform flow rate in the axial direction of the drum, the solidified shell that grew in the center was insufficient to fill the large gap in the center of the drum gap. It was so thick that the rolling blade did not work properly. Therefore, the obtained metal ribbon has scratches and wrinkles.

割れ等の欠陥が特に幅中央部に激しく発生した。Defects such as cracks were particularly severe in the center of the width.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、冷却ドラム
の周面に対する冷却条件を、ドラム軸方向に関して少な
くとも中央部及び両端部で独立して制御している。この
ため、たとえばサーマルクラウンの発生によりドラムギ
ャップの間隙がドラム軸方向に変化した場合にあっても
、その間隙の変動を相殺するように凝固シェルの成長を
制御することにより、ドラムギャップで圧下さ、れる凝
固シェルが受ける圧下刃を一定したものにすることがで
きる。また、冷延に効果的な凸クラウンをもつ金属薄帯
を製造する場合にも、凝固シェルの成長をドラム軸方向
に関して制御することができるため、同様にドラムギャ
ップで圧下される凝固シェルが受ける圧下刃は一定した
ものとなる。このようにして、一定した圧下刃で凝固シ
ェルが圧下されるため、得られた金属薄帯は、疵、皺1
割れ等の欠陥がなく、優れた表面性状をもつものとなる
As described above, in the present invention, the cooling conditions for the circumferential surface of the cooling drum are independently controlled at least at the center and both ends in the axial direction of the drum. Therefore, even if the gap in the drum gap changes in the drum axial direction due to the occurrence of a thermal crown, for example, by controlling the growth of the solidified shell to offset the variation in the gap, the reduction in pressure in the drum gap can be reduced. The reduction edge applied to the solidified shell can be made constant. In addition, when manufacturing a metal ribbon with a convex crown that is effective for cold rolling, the growth of the solidified shell can be controlled in the direction of the drum axis, so the solidified shell that is rolled down in the drum gap is similarly subjected to The rolling blade remains constant. In this way, the solidified shell is rolled down with a constant rolling blade, so the obtained metal ribbon has no scratches or wrinkles.
It has no defects such as cracks and has excellent surface quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具体的に説明するための図であり、第
2図は冷却ドラムと冷媒吹付はノズルとの関係を示す。 他方、第3図は、従来のツインドラム方式の連続鋳造機
を示す。 特許出願人 新日本製鐵 株式会社(ばか1名)代  
理  人  小  堀   益 (ほか2名)第1図 第2図 第3図
FIG. 1 is a diagram for specifically explaining the present invention, and FIG. 2 shows the relationship between the cooling drum and the refrigerant spray nozzle. On the other hand, FIG. 3 shows a conventional twin-drum type continuous casting machine. Patent applicant: Nippon Steel Corporation (one idiot)
Masato Kobori (and 2 others) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、一対の冷却ドラムの表面に供給した溶融金属を急冷
凝固して金属薄帯を製造する連続鋳造機において、前記
冷却ドラムの軸方向に沿って3以上のゾーンに区分した
冷媒吹付け用ノズルを前記冷却ドラムの周面に対向させ
て配置し、それぞれのゾーンに供給される冷媒の温度及
び/又は流量を制御する制御機構を各ゾーン毎に設けた
ことを特徴とするツインドラム式連続鋳造機。
1. In a continuous casting machine that manufactures metal ribbon by rapidly solidifying molten metal supplied to the surfaces of a pair of cooling drums, a refrigerant spray nozzle divided into three or more zones along the axial direction of the cooling drums. twin-drum continuous casting, characterized in that each zone is provided with a control mechanism for controlling the temperature and/or flow rate of the refrigerant supplied to each zone. Machine.
JP4551088A 1988-02-27 1988-02-27 Twin drum type continuous casting machine Pending JPH01218744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4551088A JPH01218744A (en) 1988-02-27 1988-02-27 Twin drum type continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4551088A JPH01218744A (en) 1988-02-27 1988-02-27 Twin drum type continuous casting machine

Publications (1)

Publication Number Publication Date
JPH01218744A true JPH01218744A (en) 1989-08-31

Family

ID=12721408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4551088A Pending JPH01218744A (en) 1988-02-27 1988-02-27 Twin drum type continuous casting machine

Country Status (1)

Country Link
JP (1) JPH01218744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520243A (en) * 1992-11-30 1996-05-28 Ishikawajima-Harima Heavy Industries Company Limited Metal strip casting
JP2006334597A (en) * 2005-05-31 2006-12-14 Mitsubishi-Hitachi Metals Machinery Inc Twin-roll type continuous caster and casting method thereby
JP2011020126A (en) * 2009-07-14 2011-02-03 Mitsubishi-Hitachi Metals Machinery Inc Roll temperature controller and driving method, of twin roll type continuous casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520243A (en) * 1992-11-30 1996-05-28 Ishikawajima-Harima Heavy Industries Company Limited Metal strip casting
JP2006334597A (en) * 2005-05-31 2006-12-14 Mitsubishi-Hitachi Metals Machinery Inc Twin-roll type continuous caster and casting method thereby
JP4580280B2 (en) * 2005-05-31 2010-11-10 三菱日立製鉄機械株式会社 Twin roll type continuous casting machine and twin roll type continuous casting method
JP2011020126A (en) * 2009-07-14 2011-02-03 Mitsubishi-Hitachi Metals Machinery Inc Roll temperature controller and driving method, of twin roll type continuous casting machine

Similar Documents

Publication Publication Date Title
TWI418420B (en) Process and apparatus for the continuous production of a thin metal strip
US5227251A (en) Thin continuous cast plate and process for manufacturing the same
KR100944437B1 (en) Roll crown forming method of twin roll type strip caster
JPH01218744A (en) Twin drum type continuous casting machine
US2033046A (en) Roll cooling means
JPH02307652A (en) Method for controlling crown in thin continuous casting
GB2080716A (en) Method for the continuous casting of steel
JPH02179343A (en) Method for continuously casting strip
JPH0327843A (en) Method for uniformly and rapidly cooling continuous cast strip in width direction
WO2000050189A1 (en) In-line continuous cast-rolling process for thin slabs
JPH01218743A (en) Cooling drum for metal strip continuous casting
JPH01186246A (en) Cooling drum for metal strip continuous casting
JPS63207452A (en) Method and apparatus for continuously casting metal sheet
JPS5930455A (en) Cooling method of roll for production of quickly cooled light-gage strip
JPH06328205A (en) Cooling roll in metal strip continuous casting apparatus
JPH06590A (en) Twin roll continuous caster and method for cooling roll
JPH01166862A (en) Roll mold in twin roll type continuous casting machine
JPS6384701A (en) Method and apparatus for producing thin metallic strip having rugged pattern
JPH09103845A (en) Austenitic stainless steel thin slab and its production
JPS63171255A (en) Non-solidified rolling method
JPS59163057A (en) Production of quickly cooled light-gage metallic strip and cooling roll
JPS61108454A (en) Cooling roll
JP2702491B2 (en) Cooling drum for continuous strip casting machine
JP2759767B2 (en) Rolls for continuous casting of sheet metal
JPS63192539A (en) Method and apparatus for continuously casting metal strip