JPH01218634A - Water-resistant catalyst support, its manufacturing method, water-treatable catalyst deposited on said support and water treating method using said catalyst - Google Patents

Water-resistant catalyst support, its manufacturing method, water-treatable catalyst deposited on said support and water treating method using said catalyst

Info

Publication number
JPH01218634A
JPH01218634A JP63044336A JP4433688A JPH01218634A JP H01218634 A JPH01218634 A JP H01218634A JP 63044336 A JP63044336 A JP 63044336A JP 4433688 A JP4433688 A JP 4433688A JP H01218634 A JPH01218634 A JP H01218634A
Authority
JP
Japan
Prior art keywords
water
catalyst
zirconium
titanium
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63044336A
Other languages
Japanese (ja)
Other versions
JPH062227B2 (en
Inventor
Kiichiro Mitsui
三井 紀一郎
Toru Ishii
徹 石井
Kunio Sano
邦夫 佐野
Akira Inoue
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP63044336A priority Critical patent/JPH062227B2/en
Publication of JPH01218634A publication Critical patent/JPH01218634A/en
Publication of JPH062227B2 publication Critical patent/JPH062227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To permit a catalyst support to be used stably for a long period of time under severe water treating conditions, by forming a water-resistant and -treatable catalyst support containing the multiple oxide of titanium and zirconium having a crystal of ZrTiO4. CONSTITUTION:A titanium compound and a zirconium compound are heated at a temperature of 600-1000 deg.C, preferably 660-900 deg.C to form a water-resistant catalyst support containing a multiple oxide of titanium and zirconium having a bond structure of ZrTiO4. At least one metallic, water-insoluble or indissoluble compound selected as a catalytically active component from the group consisting of Mn, Fe, Co, Ni, Ce, W, Cu, Ag, Au, Pt, Pd, Rh, Ru and Ir is deposited on this catalyst support to form a water-treatable catalyst. It is preferable for said catalyst support to have the composition of TiO2 of 20-90 molar percent and ZrO2 of to 10-80 molar percent.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は耐水性を有する担体、その製造方法ならびに該
担体を含有してなる水処理用触媒および該触媒を用いて
なる水処理方法に関する。詳しく述べると本発明は、酸
性・アルカリ性の水中または熱水中などにおいても安定
な耐水性を有する担体、その製造方法ならびに該担体を
含有してなる水処理用触媒および該触媒を用いてなる水
処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a water-resistant carrier, a method for producing the same, a water treatment catalyst containing the carrier, and a water treatment method using the catalyst. Specifically, the present invention relates to a carrier having stable water resistance even in acidic/alkaline water or hot water, a method for producing the same, a water treatment catalyst containing the carrier, and a water treatment catalyst containing the catalyst. Regarding processing method.

〈従来の技術〉 水処理用の担体および触媒は水の化学的処理、生物学的
処理等に巾広く使用され、上水処理、廃水処理などに利
用されている。それらの担体の素材としてはプラスチッ
ク、活性炭、セラミック等を用いたものがある。水処理
条件によっては苛酷な条件下で使用するものもあり、特
に、化学的酸素要求物質(以下CO[)成分とする)を
含む廃水を高温、高圧下で酸化分解する湿式酸化法の条
件は厳しく、これに使用される担体の耐久性を高める方
法としてチタニア製担体を用いる方法などが提案されて
いる。
<Prior Art> Carriers and catalysts for water treatment are widely used in chemical treatment, biological treatment, etc. of water, and are utilized in clean water treatment, waste water treatment, etc. Materials for these carriers include plastics, activated carbon, ceramics, and the like. Depending on the water treatment conditions, some methods are used under harsh conditions, and in particular, the conditions for wet oxidation, which oxidizes and decomposes wastewater containing chemical oxygen demand substances (hereinafter referred to as CO [) components) under high temperature and high pressure, are In order to improve the durability of the carrier used for this purpose, a method using a titania carrier has been proposed.

〈発明が解決しようとする問題点〉 従来の水処理用の担体および触媒には苛酷な条件下では
長期間の使用に耐えないという問題があった。例えば高
温の熱水中で使用するプラスチック製のものでは溶融を
起こしたり、セラミック製のものでは成分の溶出を起こ
したりすることがある。また、鉱酸や有機酸を含有する
低p l−1の廃水中で使用すると成分の劣化や溶出が
促進されることがあった。特に、湿式酸化法に使用され
る担体および触媒には高度の熱水中における耐久性およ
び幅広いpH条件における安定性が要求されるが、これ
らの条件を十分に満足するものはなかった。
<Problems to be Solved by the Invention> Conventional carriers and catalysts for water treatment have a problem in that they cannot withstand long-term use under severe conditions. For example, plastic items used in high-temperature hot water may melt, and ceramic items may cause components to be eluted. Furthermore, when used in low pl-1 wastewater containing mineral acids and organic acids, deterioration and elution of components may be accelerated. In particular, supports and catalysts used in wet oxidation methods are required to have high durability in hot water and stability under a wide range of pH conditions, but there have been no supports that fully satisfy these conditions.

本発明者らの検討によると、例えば、チタニア製担体を
用いた湿式酸化用触媒は初期的には耐水性があるが、長
期間経るにしたがって触媒強度の低下が起こることが知
見された。
According to studies conducted by the present inventors, it has been found that, for example, a wet oxidation catalyst using a titania carrier is initially water resistant, but the catalyst strength decreases over a long period of time.

したがって、本発明の目的は、上記種々の欠点に鑑み、
水処理においてこれら従来品に比して長期間にわたり強
度安定性を有する担体および触媒を提供することにある
。さらに本発明の別の目的= 5− は前記担体の製造方法および前記触媒の使用方法を提供
することにある。
Therefore, in view of the various drawbacks mentioned above, the object of the present invention is to
The object of the present invention is to provide a carrier and a catalyst that have strength stability for a longer period of time than these conventional products in water treatment. Another object of the present invention is to provide a method for producing the carrier and a method for using the catalyst.

〈問題点を解決するための手段〉 これらの諸口的は本発明によれば、 (1)ZrTiO4なる結晶構造を有するチタンおよび
ジルコニウムの複合酸化物を含有することを特徴とする
耐水性担体。
<Means for Solving the Problems> According to the present invention, (1) a water-resistant carrier characterized by containing a composite oxide of titanium and zirconium having a crystal structure of ZrTiO4;

(2)チタン化合物およびジルコニウム化合物の混合物
を600〜1000℃の温度範囲で加熱することを特徴
とするZrTiO4なる結晶構造を有するチタンおよび
ジルコニウムの複合酸化物を含有する耐水性担体の製造
方法。
(2) A method for producing a water-resistant carrier containing a composite oxide of titanium and zirconium having a crystal structure of ZrTiO4, which comprises heating a mixture of a titanium compound and a zirconium compound in a temperature range of 600 to 1000°C.

(3)ZrTiC)4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有してなる担体に、触
媒活性成分として、マンガン、鉄、コバルト、ニッケル
、セリウム、タングステン、銅、銀、金、白金、パラジ
ウム、ロジウム、ルテニウムおよびイリジウムよりなる
群から選ばれた少なくとも1種の金属またはその水に不
溶性または難溶性の化合物を担持せしめてなることを特
徴とする水処理用触媒。
(3) Manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, gold, platinum as catalytically active components on a carrier containing a composite oxide of titanium and zirconium having a crystal structure of ZrTiC)4. A water treatment catalyst comprising at least one metal selected from the group consisting of , palladium, rhodium, ruthenium and iridium, or a water-insoluble or sparingly soluble compound thereof.

(8) Z rT i O4なる結晶構造を有するチタ
ンおよびジルコニウムの複合酸化物を含有してなる担体
に、触媒活性成分とじて、マンガン、鉄、コバルト、ニ
ッケル、セリウム、タングステン、銅、銀、金、白金、
パラジウム、ロジウム、ルテニウムおよびイリジウムよ
りなる群から選ばれた少なくとも1種の金属またはその
水に不溶性または難溶性の化合物を担持せしめてなる水
処理用触媒を用い、廃水を100〜370℃の温度範囲
で、かつ該廃水が液相を保持する圧力下に、該廃水中の
有機性および無機性物質を窒素、炭酸ガスおよび水にま
で分解するに必要な理論量の1.0〜1゜5倍量の酸素
を含有するガスの供給下に該廃水を湿式酸化することを
特徴とする水処理方法。
(8) Manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, and gold as catalytically active components are added to a carrier containing a composite oxide of titanium and zirconium having a crystal structure of Z rT i O4. ,platinum,
Using a water treatment catalyst made of at least one metal selected from the group consisting of palladium, rhodium, ruthenium, and iridium, or a water-insoluble or sparingly soluble compound supported thereon, wastewater is heated in a temperature range of 100 to 370°C. and 1.0 to 1.5 times the theoretical amount necessary to decompose organic and inorganic substances in the wastewater into nitrogen, carbon dioxide, and water under a pressure that maintains the liquid phase of the wastewater. A water treatment method characterized in that the wastewater is wet oxidized under the supply of a gas containing a certain amount of oxygen.

によって達成される。achieved by

本発明にがかる担体の特徴は、ZrTiO4なる結晶構
造を有するチタンおよびジルコニウムの複合酸化物を含
有ことである。
A feature of the carrier according to the present invention is that it contains a composite oxide of titanium and zirconium having a crystal structure of ZrTiO4.

一般に、チタンおよびジルコニウムからなる二元系複合
酸化物は例えば田部浩三、触媒、第17巻、No、 3
.72頁(1975年)によっても周知のように、固体
酸として知られ、構成するおのおの単独の酸化物には見
られない顕著な酸性を示す。
In general, binary composite oxides consisting of titanium and zirconium are described, for example, by Kozo Tabe, Catalysts, Vol. 17, No. 3.
.. 72 (1975), it is known as a solid acid and exhibits remarkable acidity that is not found in the constituent oxides alone.

すなわち、前記複合酸化物は酸化チタンおよび酸化ジル
コニウムを単に混合したものではなく、チタンおよびジ
ルコニウムがいわゆる二元系複合酸化物を形成すること
によりその特異な物性が発現するものと認めることので
きるものである。この複合酸化物は低温での焼成ではX
線回折による分析の結果、非晶質もしくはほぼ非晶質に
近い微細構造を有している。
In other words, the composite oxide is not simply a mixture of titanium oxide and zirconium oxide, but it can be recognized that titanium and zirconium form a so-called binary composite oxide, resulting in its unique physical properties. It is. When fired at low temperatures, this composite oxide
As a result of analysis by line diffraction, it has an amorphous or almost amorphous microstructure.

一方、本発明者らはチタン化合物およびジルコニウム化
合物の混合物を600〜io’oo℃、好ましくは66
0〜900℃の温度範囲で加熱することによりZrTi
C)4なる結晶構造を有するチタンおよびジルコニウム
の複合酸化物を生成させることができ、これが耐水性担
体の成分として優れていることを知見した。
On the other hand, the present inventors prepared a mixture of a titanium compound and a zirconium compound at a temperature of 600 to io'oo°C, preferably 66°C.
ZrTi by heating in the temperature range of 0~900℃
It has been found that a composite oxide of titanium and zirconium having the crystal structure C) 4 can be produced and is excellent as a component of a water-resistant carrier.

このZrT104なる結晶構造を含有してなる担体の製
造方法としては、予め緊密なチタンとジルコニアの化合
物を生成せしめておき、これを600〜1000℃、好
ましく660〜900℃の温度範囲で加熱する方法がさ
らに好ましい。加熱温度が600℃未満では充分にZr
TiO4の結晶構造を持たせられない。また、i oo
o℃以上では酸化物の比表面積が著しく低下し、担体成
型性および担体強度の低下を眉く。
A method for producing a carrier containing the crystal structure of ZrT104 is a method in which a close compound of titanium and zirconia is formed in advance and then heated at a temperature range of 600 to 1000°C, preferably 660 to 900°C. is even more preferable. When the heating temperature is less than 600℃, Zr
It cannot have the crystal structure of TiO4. Also, i oo
At temperatures above 0° C., the specific surface area of the oxide decreases significantly, resulting in a decrease in carrier moldability and carrier strength.

なお、ZrTiO4なる物質はX線回折により同定する
ことができる。(HcClune、W、F、etc、。
Note that the substance ZrTiO4 can be identified by X-ray diffraction. (HcClune, W, F, etc.

’1982 Powder Diffraction 
File、InorganicPhases、Alph
abetical Index ” 、 JCPDS 
Tnter−national Center for
 Diffraction Data。
'1982 Powder Diffraction
File, InorganicPhases, Alpha
abetical Index”, JCPDS
Tinter-national Center for
Diffraction Data.

Penn5ylvania、 1982参照)。(see Penn 5ylvania, 1982).

本発明の耐水性担体においては耐熱水性能上ZrTiO
4なる結晶構造を有するチタンおよび−9= ジルコニウムの複合酸化物の担体中に占める割合が10
重量%以上であることが好ましく、20重量%以上であ
ることがさらに好ましい。
In the water-resistant carrier of the present invention, ZrTiO is used in terms of hot water resistance.
The proportion of the composite oxide of titanium and -9=zirconium in the carrier having a crystal structure of 4 is 10.
It is preferably at least 20% by weight, more preferably at least 20% by weight.

そして、この担体成分の組成としてはTiO2として2
0〜90モル%およびZrC)+として10〜80モル
%の範囲にあることが、耐久性および担体成型性、強度
を優れたものとする上で好ましい結果を与える。さらに
、T i 02として30〜80モル%およびZrO2
として20〜70モル%の範囲にあることがより好まし
い結果を与える。
The composition of this carrier component is 2 as TiO2.
A range of 0 to 90 mol % and 10 to 80 mol % of ZrC)+ gives preferable results in terms of durability, carrier moldability, and strength. Furthermore, 30 to 80 mol% as T i 02 and ZrO2
A more preferable result is obtained when the content is in the range of 20 to 70 mol%.

また、ZrTiO4なる結晶構造を有するチタンおよび
ジルコニウムの複合酸化物とランタン、ネオジム等の希
土類元素の酸化物、チタニア、ジルコニア等とを併用し
て担体とすることもできる。
Further, a composite oxide of titanium and zirconium having a crystal structure such as ZrTiO4 and an oxide of a rare earth element such as lanthanum or neodymium, titania, zirconia, etc. can be used in combination to form a carrier.

本発明者らは、上記複合酸化物を含有する担体成分を用
いると、ペレット、球状、ハニカム型等に成型した場合
、その耐久性および成型性が格段に優れているために、
高温、高圧、低pH1低p l−1等苛酷な条件が要求
される水処理に用いても、長期にわたって担体形状およ
び強度を維持することを知見した。しかも、この担体に
触媒成分を担持した触媒は耐久性に加えて水の処理効率
にも優れることを知見した。
The present inventors have found that when using a carrier component containing the above-mentioned composite oxide, the durability and moldability are significantly superior when molded into pellets, spheres, honeycomb shapes, etc.
It has been found that the carrier maintains its shape and strength over a long period of time even when used in water treatment which requires severe conditions such as high temperature, high pressure, and low pH of 1 to 1. Moreover, it has been found that a catalyst in which a catalyst component is supported on this carrier is not only durable but also excellent in water treatment efficiency.

すなわち、本発明者らの検討によれば、チタンおよびジ
ルコニウムの酸化物の単独、あるいは単なる混合物では
優れた性能が得られず、例えばハニカム状に成型できて
も長期の使用に耐えることができないことが知見された
のに対し、これらの元素を上記複合酸化物を含有する形
にしてはじめて優れた耐久性および成型性を具有するこ
とが認められたのである。特に、上記複合酸化物を含有
する担体は、耐熱水性において一段と優れた担体強度に
おける耐久性を有することが認められた。
That is, according to the studies of the present inventors, excellent performance cannot be obtained by using titanium and zirconium oxides alone or simply as a mixture, and even if they can be formed into a honeycomb shape, for example, they cannot withstand long-term use. However, it was found that excellent durability and moldability can only be achieved by incorporating these elements into a form containing the above-mentioned composite oxide. In particular, the carrier containing the above-mentioned composite oxide was found to have even better durability in terms of carrier strength in terms of hot water resistance.

本発明の水処理用触媒における前記触媒活性成分の担持
量は金属または化合物の形で0.05〜25重量%の範
囲が適当である。好ましくは、マンガン、鉄、コバルト
、ニッケル、セリウム、タングステン、銅および銀の使
用量は、化合物(例えば酸化物、塩化物、硫化物等)と
してO〜25−11 = 重量%であり、白金、金、パラジウム、ロジウム、ルテ
ニウムおよびイリジウムの使用量は金属として0〜10
重量%である(ただし、両者の合計量は0.05〜25
重量%である。)。さらに好ましくは、触媒活性成分は
金属または化合物の形で0.1〜15重量%である。好
ましくは、マンガン、鉄、コバルト、ニッケル、セリウ
ム、タングステン、銅および銀の使用量は化合物として
0〜15重量%であり、白金、金、パラジウム、ロジウ
ム、ルテニウムおよびイリジウムの使用量は金属として
0〜5重量%(ただし、両者の合計量は0.1〜15重
量%である。)。
The amount of the catalytically active component supported in the water treatment catalyst of the present invention is suitably in the range of 0.05 to 25% by weight in the form of metal or compound. Preferably, the amounts of manganese, iron, cobalt, nickel, cerium, tungsten, copper and silver used as compounds (e.g. oxides, chlorides, sulfides, etc.) are O~25-11 = % by weight, platinum, The amount of gold, palladium, rhodium, ruthenium and iridium used is 0 to 10 as metals.
% by weight (however, the total amount of both is 0.05 to 25
Weight%. ). More preferably, the catalytically active component is from 0.1 to 15% by weight in metal or compound form. Preferably, the amounts of manganese, iron, cobalt, nickel, cerium, tungsten, copper and silver used as compounds are 0 to 15% by weight, and the amounts of platinum, gold, palladium, rhodium, ruthenium and iridium used as metals are 0 to 15% by weight. ~5% by weight (however, the total amount of both is 0.1 to 15% by weight).

触媒活性成分が上記範囲外では水処理活性が不充分であ
り、また、白金、パラジウムおよびロジウム等の貴金属
の場合、原料コストが高くなり相応した充分な効果が発
神できない。
If the catalytic active component is outside the above range, the water treatment activity will be insufficient, and in the case of noble metals such as platinum, palladium and rhodium, the raw material cost will be high and a correspondingly sufficient effect cannot be produced.

本発明の担体および触媒は、前記のとおり特定された組
成からなるものが好ましく、形状としてはペレッ1〜、
球状、リング状、サドル型、粉体、破砕型、ハニカム等
の一体構造体等種々のものを採用することができる。好
ましくはハニカム型構造体であり、特に好ましくは該構
造体において、貫通孔の相当直径が2〜20m、セル肉
厚が0.5〜3 mmおよび開口率が50〜80%の範
囲にある形状を有するものである。ハニカム型構造体は
その孔径(貫通孔相当直径)を大きくすれば流通抵抗は
それに比例し小さくなり固形物による目詰りも防止でき
るが、それと同時に構造体の幾何学的表面積も小さくな
り、ある一定の処理効率を発揮するに“は孔径を大きく
した分、構造体量を多くする必要がある。よって、その
孔径は処理効率および処理性能との関係から限定される
The carrier and catalyst of the present invention preferably have the composition specified above, and are in the form of pellets,
Various shapes such as a spherical shape, a ring shape, a saddle shape, a powder shape, a crushed type, and an integral structure such as a honeycomb can be adopted. Preferably, it is a honeycomb structure, and particularly preferably, the structure has a shape in which the equivalent diameter of the through hole is in the range of 2 to 20 m, the cell wall thickness is in the range of 0.5 to 3 mm, and the aperture ratio is in the range of 50 to 80%. It has the following. In a honeycomb structure, if the pore diameter (through-hole equivalent diameter) is increased, the flow resistance decreases proportionally and clogging by solid matter can be prevented, but at the same time, the geometric surface area of the structure also decreases, and In order to achieve the processing efficiency of 1, it is necessary to increase the amount of the structure by increasing the pore diameter.Therefore, the pore diameter is limited due to the relationship with processing efficiency and processing performance.

前記のハニカム型構造体において貫通孔の相当直径は2
〜20m、好ましくは4〜12mmの範囲である。相当
直径が2姻未満である場合には圧力損失が大きく、特に
被処理水中に固形分が含有される場合には目詰りを生じ
やすくなり長期に使用することが困難となる。相当直径
が20mmを越える場合には圧力損失は小さくなり目詰
りの可能性も低くなるものの、処理活性が充分でない。
In the honeycomb structure described above, the equivalent diameter of the through hole is 2
-20m, preferably 4-12mm. If the equivalent diameter is less than 2 mm, the pressure loss will be large, and especially if the water to be treated contains solids, clogging will easily occur, making it difficult to use it for a long time. If the equivalent diameter exceeds 20 mm, the pressure loss will be small and the possibility of clogging will be reduced, but the processing activity will not be sufficient.

セル肉厚は0.5〜3#、好ましくは0.5〜2 mm
の範囲である。セル肉厚が0.5 s未満の場合には圧
力損失が小さくなり、構造体を軽量化できるという利点
はあるが、機械的強度が低下するために好ましくない。
Cell thickness is 0.5-3mm, preferably 0.5-2mm
is within the range of When the cell wall thickness is less than 0.5 s, there is an advantage that the pressure loss is small and the weight of the structure can be reduced, but it is not preferable because the mechanical strength is reduced.

セル肉厚が3#を越える場合には機械的強度は充分であ
るが、圧力損失が大きくなる欠点を有している。
When the cell wall thickness exceeds 3#, mechanical strength is sufficient, but there is a drawback that pressure loss becomes large.

開口率についても上記と同様の理由から50〜80%で
ある。
The aperture ratio is also 50 to 80% for the same reason as above.

上記の諸事情を考慮した上で、本発明で使用する特に好
ましいハニカム型構造体としては、貫通孔の相当直径が
2〜20#、セル肉厚が0.5〜3門および開口率が5
0〜80%の範囲である。これらの条件を具備したハニ
カム型構造体は、反応温度が100〜370℃であり、
反応圧力が被処理水の液相を保持する圧力以上である高
温高圧の苛酷な反応条件下においても、充分な機械的強
度を有しており、しかも構造体の幾何学的表面積も充分
有しているために、耐久性に優れ、低圧力損失で高線速
度で水処理することができる。また、被処理水中に固形
分が含有されている場合にでも目詰りを生じることなく
長期にわたって高活性を維持することができる。
Considering the above circumstances, a particularly preferable honeycomb structure used in the present invention has an equivalent diameter of through holes of 2 to 20#, a cell wall thickness of 0.5 to 3 gates, and an aperture ratio of 5.
It ranges from 0 to 80%. A honeycomb structure having these conditions has a reaction temperature of 100 to 370°C,
It has sufficient mechanical strength even under severe reaction conditions of high temperature and pressure, where the reaction pressure is higher than the pressure that maintains the liquid phase of the water to be treated, and the geometric surface area of the structure is also sufficient. Because of this, it has excellent durability and can perform water treatment at high linear speeds with low pressure loss. Moreover, even when solid content is contained in the water to be treated, high activity can be maintained for a long period of time without clogging.

貫通孔の形としては四角形、六角形、波型等いずれの形
でもその相当直径が上記の範囲内であれば採用すること
ができる。
As for the shape of the through-hole, any shape such as square, hexagonal, wave-like, etc. can be adopted as long as its equivalent diameter is within the above-mentioned range.

本発明のZrTiO4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有する担体を調製する
には、まずチタン源として塩化チタン類、硫酸チタン、
チタン酸類などの無機性チタン化合物および蓚酸チタン
、テトライソプロピルチタネートなどの有機性チタン化
合物などから選ぶことができ、またジルコニウム源とし
てはオキシ塩化ジルコニウム、硝酸ジルコニウム、硫酸
ジルコニウムなどの無機性ジルコニウム化合物および蓚
酸ジルコニウムなどの有機性ジルコニウム化合物のなか
から選ぶことができる。
In order to prepare a carrier containing a composite oxide of titanium and zirconium having a crystal structure called ZrTiO4 of the present invention, titanium chlorides, titanium sulfate, titanium sulfate,
It can be selected from inorganic titanium compounds such as titanic acids and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate. Zirconium sources include inorganic zirconium compounds such as zirconium oxychloride, zirconium nitrate, and zirconium sulfate, and oxalic acid. It can be selected from organic zirconium compounds such as zirconium.

そして、好ましい調製法としては、以下の方法が挙げら
れる。
Preferred preparation methods include the following methods.

■ 四塩化チタンをオキシ塩化ジルコニウムと共に混合
し、アンモニアを添加して沈殿を生成せしめ、この沈殿
を洗滌、乾燥後600〜1000℃、好ましくは660
〜900℃で加熱せしめる方法。
■ Titanium tetrachloride is mixed with zirconium oxychloride, ammonia is added to form a precipitate, and this precipitate is washed and dried at 600 to 1000°C, preferably 660°C.
A method of heating at ~900°C.

■ 四塩化チタンに硝酸ジルコニルを添加し、熱加水分
解反応せじめて沈澱を生成させ、これを洗滌、乾燥後6
00〜1000℃、好ましくは660〜900℃で加熱
せしめる方法。
■ Zirconyl nitrate is added to titanium tetrachloride, a thermal hydrolysis reaction is performed to form a precipitate, which is washed, dried, and then
A method of heating at 00 to 1000°C, preferably 660 to 900°C.

■ チタン酸に硝酸ジルコニルを添加し、加熱して熱分
解せしめ、ついで600〜1000℃、好ましくは66
0〜900℃で加熱せしめる方法。
■ Add zirconyl nitrate to titanic acid, heat it to thermally decompose it, and then heat it to 600-1000°C, preferably 66°C.
A method of heating at 0 to 900°C.

以上の好ましい方法のうちでもとくに■の方法が好まし
く、この方法は具体的には以下のごと〈実施される。す
なわち、上記チタン源およびジルコニウム源の化合物を
T i 02と7rO2のモル比が所定量になるように
とり、酸性の水溶液状態でチタンおよびジルコニウムを
酸化物換算して1〜100g/lのS痕として10〜1
00℃に保つ。その中へ撹拌下、中和剤としてアンモニ
ア水を滴下し、10分間ないし3時間pH2〜10にて
、チタンおよびジルコニウムよりなる共沈化合物を生成
せしめ、炉別し、よく洗滌したのち80〜140℃で1
〜10時間乾燥し、600〜1000℃、好ましくは6
60〜900℃で0.5〜10時間加熱する方法である
Among the above preferred methods, method (2) is particularly preferred, and this method is specifically carried out as follows. That is, the above-mentioned titanium source and zirconium source compounds are taken so that the molar ratio of T i 02 and 7rO2 is a predetermined amount, and titanium and zirconium are converted into oxides as S marks of 1 to 100 g/l in an acidic aqueous solution state. 10-1
Keep at 00℃. Aqueous ammonia was added dropwise as a neutralizing agent into the solution while stirring, and the pH was kept at pH 2-10 for 10 minutes to 3 hours to form a coprecipitated compound consisting of titanium and zirconium. 1 in °C
Dry for ~10 hours at 600-1000°C, preferably 6
This is a method of heating at 60 to 900°C for 0.5 to 10 hours.

上記の方法で調製されたZrTiO4なる結晶構造を有
するチタンおよびジルコニウムの複合酸化物を含有する
担体(以下T i 02−ZrO2とする。)を用いて
、以下に示す方法により完成触媒がえられる。−例を示
せばT i 02−ZrO2粉体を成型助剤と共に加え
、適量の水を添加しつつ混合、混練し、押し出し成型機
で球状、ペレット状、板状、ハニカム状等に成型する。
A finished catalyst can be obtained by the method shown below using a carrier containing a composite oxide of titanium and zirconium having a crystal structure called ZrTiO4 (hereinafter referred to as T i 02-ZrO2) prepared by the above method. - For example, T i 02-ZrO2 powder is added together with a molding aid, mixed and kneaded while adding an appropriate amount of water, and molded into a sphere, pellet, plate, honeycomb, etc. using an extrusion molding machine.

成型物を50〜120℃で乾燥後、300〜800℃好
ましくは350〜600℃で、1〜10時間好ましくは
2〜6時間空気流通下で焼成して触媒を得ることができ
る。
After drying the molded product at 50 to 120°C, it is calcined at 300 to 800°C, preferably 350 to 600°C, for 1 to 10 hours, preferably 2 to 6 hours, to obtain a catalyst.

触媒活性成分の出発原料としては、酸化物、水酸化物、
無機酸化塩、有機酸塩などが挙げられ、例えばアンモニ
ウム塩、蓚酸塩、硝酸塩、硫酸塩またはハロゲン化物な
どから適宜選ばれる。
Starting materials for catalyst active components include oxides, hydroxides,
Examples include inorganic oxide salts and organic acid salts, such as ammonium salts, oxalates, nitrates, sulfates, halides, and the like.

Ti02−ZrO2にマンガン、鉄、ニッケル、コバル
ト、タングステン、セリウム、銅、銀、金、白金、パラ
ジウム、ロジウム、ルテニウムおよび/またはイリジウ
ムを添加して触媒化する場合、上記金属塩の水溶液をT
 i 02−Z ro+成型体に含浸させて担持した後
、乾燥、焼成することにより触媒とすることができる。
When Ti02-ZrO2 is catalyzed by adding manganese, iron, nickel, cobalt, tungsten, cerium, copper, silver, gold, platinum, palladium, rhodium, ruthenium and/or iridium, an aqueous solution of the above metal salt is
i 02-Z ro+ It can be made into a catalyst by impregnating and supporting the molded body, followed by drying and firing.

また、T i 02−Z ro2粉体に上記金属塩の水
溶液を成型助剤と共に加え、混練成型する方法も採用で
きる。
Alternatively, a method may be adopted in which an aqueous solution of the metal salt described above is added to the T i 02-Z ro2 powder together with a molding aid, and the mixture is kneaded and molded.

本発明の水処理用担体および触媒は、上水、下水、廃水
等に接触させることによって該水中に含有される目的成
分を処理することができる。具体的な処理例を数例あげ
れば熱水中の重金属吸着、水中のオゾン除去、強アルカ
リ性・強酸性の水のか過、熱水中における酸化処理、水
中の細菌、微生物の殺菌処理等がある。
The water treatment carrier and catalyst of the present invention can treat target components contained in water by bringing them into contact with clean water, sewage, waste water, etc. Some specific treatment examples include heavy metal adsorption in hot water, ozone removal in water, filtration of strongly alkaline and strongly acidic water, oxidation treatment in hot water, and sterilization of bacteria and microorganisms in water. .

特に、本発明が提供する水処理方法は、活性汚泥処理し
た上澄み水あるいは沈降さゼた活性汚泥、醗酵廃水、有
機化合物重合工程からの廃水、シアン含有廃水、フェノ
ール含有廃水、含油廃水、その他の化学工場廃水をはじ
め食品工場等からの一般産業廃水、ざらには、し尿、下
水、下水汚泥等の被酸化性の有機物または無機物を含有
する廃水を湿式酸化処理するのに優れている。また、廃
水との接触方式はカラム充填方式、バッチ方式等いずれ
であってもよいがハニカム型触媒を使用すると、固形物
を0.1g/1以上含んでいる廃水でも長期に安定して
処理することができる。
In particular, the water treatment method provided by the present invention can be applied to activated sludge-treated supernatant water or settled activated sludge, fermentation wastewater, wastewater from an organic compound polymerization process, cyanide-containing wastewater, phenol-containing wastewater, oil-containing wastewater, and other wastewater. It is excellent for wet oxidation treatment of chemical factory wastewater, general industrial wastewater from food factories, etc., wastewater containing oxidizable organic or inorganic substances such as human waste, sewage, and sewage sludge. In addition, the method of contact with wastewater may be column packing method, batch method, etc., but if a honeycomb type catalyst is used, even wastewater containing 0.1 g/1 or more of solids can be treated stably over a long period of time. be able to.

本発明にお【ブる反応条件は、反応温度は370℃以下
、通常100〜370℃、より好ましくは200〜30
0℃である。反応系の圧力は反応塔内で廃水が液相を保
つに充分な圧力、すなわち1〜約200 KFI/ c
rn  の圧力であれば良い3.送入される分子状酸素
含有ガスは酸化分解するに必要な理論M素置の1〜1.
5倍量を使用づ−る。触媒の使用量は反応塔の空間容積
の5〜99%程度の量が充填される。廃水は所定温度の
触媒床に沸留時間6〜120分、好ましくは12〜60
分で分子状酸素含有ガスと共に流して酸化される。
The reaction conditions applicable to the present invention are that the reaction temperature is 370°C or lower, usually 100 to 370°C, more preferably 200 to 30°C.
It is 0°C. The pressure of the reaction system is sufficient to maintain the liquid phase of the wastewater in the reaction tower, that is, 1 to about 200 KFI/c.
3. The pressure should be rn. The molecular oxygen-containing gas to be fed is in the theoretical M equipment required for oxidative decomposition.
Use 5 times the amount. The amount of catalyst used is about 5 to 99% of the space volume of the reaction column. The waste water is boiled over a catalyst bed at a predetermined temperature for a boiling time of 6 to 120 minutes, preferably 12 to 60 minutes.
It is oxidized by flowing with molecular oxygen-containing gas in minutes.

分子状酸素含有ガスとしては空気、酸素と空気の混合ガ
ス、または通常、酸素富化空気と呼ばれているガスを使
用しつる。反応系のl)Hは酸性側でもアルカリ性側で
も採用できる。
As the molecular oxygen-containing gas, air, a mixed gas of oxygen and air, or a gas commonly called oxygen-enriched air is used. l)H in the reaction system can be employed either on the acidic side or on the alkaline side.

以下に実施例および比較例を用いて本発明をさらに詳細
に説明するが、本発明はこれらの実施例のみに限定され
るものではない。
The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例 1 チタン源とIノで以下の組成を有する硫酸チタニルの硫
酸水溶液を用いた。
Example 1 A sulfuric acid aqueous solution of titanyl sulfate having the following composition as a titanium source and I was used.

T i OS 04 (Ti02換算>    2’ 
50 g/ 1全1−+2304        11
00Q/1水1001にオキシ塩化ジルコニウム(Zr
OCl2 ・8H20)1.99Kgを溶解させ、上記
組成の硫酸チタニルの硫酸水溶液2.96j!を添加し
つつよく混合した。これを温度的30℃に維持しつつよ
く撹拌しながらアンモニア水を徐々に滴下し、p!=1
が7になるまで加え、さらにそのまま放置して15時間
静置した。
Ti OS 04 (Ti02 conversion >2'
50 g/1 total 1-+2304 11
00Q/1 Zirconium oxychloride (Zr
Dissolve 1.99Kg of OCl2 .8H20) into an aqueous sulfuric acid solution of titanyl sulfate with the above composition. was added and mixed well. While maintaining the temperature at 30°C and stirring well, ammonia water was gradually added dropwise to p! =1
The mixture was added until the number reached 7, and the mixture was further left to stand for 15 hours.

かくしてえられたT i 02−7 r02ゲルをか過
し水洗後200 ’Cで10時間乾燥した。次いで空気
雰囲気下で700℃で3時間加熱した。えられた粉体の
組成はTiO2:Zr02=6:/1(モル比)であり
、BET表面積は60′IrL/gであり、X線回折分
析の結果ZrT104なる結晶構造を有していた。ここ
でえられた粉体を以降P−1と呼びこの粉体を用いて以
下に述べる方法で触媒を調製した。
The T i 02-7 r02 gel thus obtained was filtered, washed with water, and then dried at 200'C for 10 hours. The mixture was then heated at 700° C. for 3 hours in an air atmosphere. The composition of the obtained powder was TiO2:Zr02=6:/1 (molar ratio), the BET surface area was 60'IrL/g, and X-ray diffraction analysis revealed that it had a crystal structure of ZrT104. The powder thus obtained was hereinafter referred to as P-1, and a catalyst was prepared using this powder by the method described below.

水900dど前記粉体1500gさらに澱粉75gを加
え、混合しニーダ−でよく練り合わぜた。
To 900 d of water, 1,500 g of the above powder and 75 g of starch were added, mixed, and kneaded well in a kneader.

さらに適量の水を加えつつ練った後、それぞれ孔径(貫
通孔の相当直径>4mで開孔率64%のハニカム型に押
出成型して120℃で6時間乾燥した後、450℃で6
時間焼成した かくしてえられた成型体を塩化白金酸水溶液中に含浸し
、ついで120℃で6時間乾燥した後、400°Cで3
時間焼成した。
After kneading with further addition of an appropriate amount of water, extrusion molding into a honeycomb mold with a pore size (equivalent diameter of through holes > 4 m and porosity of 64%), drying at 120°C for 6 hours, and drying at 450°C for 6 hours.
The thus obtained molded body, which had been fired for an hour, was impregnated in an aqueous chloroplatinic acid solution, then dried at 120°C for 6 hours, and then heated at 400°C for 3 hours.
Baked for an hour.

= 21− 得られた完成触媒の組成は重量比でP−1:Pt=98
.2:0.8あった。
= 21- The composition of the finished catalyst obtained is P-1:Pt=98 in weight ratio
.. 2: There was 0.8.

実施例 2 水41 ニ硝酸ジルコニル(ZrO(NO3) 2−2
820)1.29Kgを溶解させ、チタン酸0.9Kg
(TiO2換算)をこれに加えてよく混合しつつ80’
Cで乾燥した。次いで空気雰囲気下で750℃で3時間
焼成した。えられた粉体の組成はTiO2と7rO2の
モル比が7:3であった。また、この粉体のBET表面
積は30TrL2/gであり、X線回折分析の結果Zr
Ti○4なる結晶構造を有していた。ここでえられた粉
体を以降P−2と呼ぶ。
Example 2 Water 41 Zirconyl dinitrate (ZrO(NO3) 2-2
820) Dissolve 1.29Kg and 0.9Kg titanic acid
(TiO2 equivalent) was added to this and 80' was added while mixing well.
It was dried at C. Then, it was fired at 750° C. for 3 hours in an air atmosphere. The composition of the obtained powder had a molar ratio of TiO2 and 7rO2 of 7:3. In addition, the BET surface area of this powder is 30TrL2/g, and as a result of X-ray diffraction analysis, Zr
It had a crystal structure of Ti○4. The powder obtained here is hereinafter referred to as P-2.

水450 dと前記粉体1000Qさらに澱粉30Gを
加え、混合しニーダ−でよく練り合わゼた。これを5m
径の円柱状のペレットに押出成型して乾燥した後、45
0℃で6時間焼成した。
450 d of water, 1000 Q of the above powder, and 30 G of starch were added, mixed, and kneaded well with a kneader. 5m of this
After extrusion molding into cylindrical pellets with a diameter of 45 mm and drying,
It was baked at 0°C for 6 hours.

次に塩化白金酸水溶液の代りに硝酸パラジウム水溶液を
用いる以外は実施例1に記載の方法に準じて重量比でP
−2: Pd = 98.5 : 1.5の触媒を得た
Next, the method described in Example 1 was followed except that a palladium nitrate aqueous solution was used instead of the chloroplatinic acid aqueous solution.
-2: A catalyst with Pd = 98.5: 1.5 was obtained.

実施例 3 実施例1および2でえられた各触媒を用いて、以下のよ
うな方法で、湿式酸化法による廃水処理を行なった。ス
テンレス製反応管に触媒を充填し、反応管の下部から予
熱混合された廃水および酸素濃度21%の空気を500
0時間連続して導入して、反応管の入口部と出口部でC
OD (Cr)を測定し、5000時間反応後の除去率
を求めた。
Example 3 Using each of the catalysts obtained in Examples 1 and 2, wastewater was treated by a wet oxidation method in the following manner. A stainless steel reaction tube was filled with catalyst, and 500% of preheated mixed waste water and air with an oxygen concentration of 21% were introduced from the bottom of the reaction tube.
After continuous introduction for 0 hours, C
The OD (Cr) was measured and the removal rate after 5000 hours of reaction was determined.

また、触媒の強度についても初期と5000時間反応後
測定し触媒強度比を求めた。なお、処理に供した廃水の
性状はCOD (Cr)40g/j!、[)H3であっ
た。反応条件は反応湿1230℃、反応圧力60 Kg
 / cm 2であり、廃水の空間速度1.58r−1
(空塔基準)、空気の空間速度2401」r”(空塔基
準、標準状態)で反応管に導入した。得られた結果を第
1表に示す。
The strength of the catalyst was also measured at the initial stage and after 5000 hours of reaction to determine the catalyst strength ratio. The properties of the wastewater used for treatment were COD (Cr) 40g/j! , [)H3. The reaction conditions were a reaction humidity of 1230°C and a reaction pressure of 60 kg.
/ cm2, and the space velocity of the wastewater is 1.58 r−1
(based on the empty column) and an air space velocity of 2401"r" (based on the empty column, under standard conditions).The results obtained are shown in Table 1.

第    1    表Chapter 1 Table

Claims (8)

【特許請求の範囲】[Claims] (1)ZrTiO_4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有することを特徴とす
る耐水性担体。
(1) A water-resistant carrier characterized by containing a composite oxide of titanium and zirconium having a crystal structure of ZrTiO_4.
(2)チタニア(TiO_2)として20〜90モル%
およびジルコニア(ZrO_2)として10〜80モル
%を含有してなることを特徴とする特許請求の範囲第1
項記載の担体。
(2) 20 to 90 mol% as titania (TiO_2)
and 10 to 80 mol% of zirconia (ZrO_2).
Carrier described in Section.
(3)チタン化合物およびジルコニウム化合物の混合物
を600〜1000℃の温度範囲で加熱することを特徴
とするZrTiO_4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有する耐水性担体の製
造方法。
(3) A method for producing a water-resistant carrier containing a composite oxide of titanium and zirconium having a crystal structure of ZrTiO_4, which comprises heating a mixture of a titanium compound and a zirconium compound at a temperature range of 600 to 1000°C.
(4)加熱温度が660〜900℃の範囲であることを
特徴とする特許請求の範囲第3項記載の方法。
(4) The method according to claim 3, wherein the heating temperature is in the range of 660 to 900°C.
(5)ZrTiO_4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有してなる担体に、触
媒活性成分として、マンガン、鉄、コバルト、ニッケル
、セリウム、タングステン、銅、銀、金、白金、パラジ
ウム、ロジウム、ルテニウムおよびイリジウムよりなる
群から選ばれた少なくとも1種の金属またはその水に不
溶性または難溶性の化合物を担持せしめてなることを特
徴とする水処理用触媒。
(5) Manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, gold, platinum, palladium as catalytically active components in a carrier containing a composite oxide of titanium and zirconium having a crystal structure called ZrTiO_4. 1. A water treatment catalyst comprising at least one metal selected from the group consisting of rhodium, ruthenium and iridium, or a water-insoluble or sparingly soluble compound thereof.
(6)担体の組成がTiO_2として20〜90モル%
およびZrO_2として10〜80モル%であることを
特徴とする特許請求の範囲第5項記載の触媒。
(6) The composition of the carrier is 20 to 90 mol% as TiO_2
The catalyst according to claim 5, characterized in that the amount of ZrO_2 is 10 to 80 mol%.
(7)触媒活性成分の担持量が0.05〜25重量%の
範囲であることを特徴とする特許請求の範囲第5項記載
の触媒。
(7) The catalyst according to claim 5, wherein the supported amount of the catalytically active component is in the range of 0.05 to 25% by weight.
(8)ZrTiO_4なる結晶構造を有するチタンおよ
びジルコニウムの複合酸化物を含有してなる担体に、触
媒活性成分として、マンガン、鉄、コバルト、ニッケル
、セリウム、タングステン、銅、銀、金、白金、パラジ
ウム、ロジウム、ルテニウムおよびイリジウムよりなる
群から選ばれた少なくとも1種の金属またはその水に不
溶性または難溶性の化合物を担持せしめてなる水処理用
触媒を用い、廃水を100〜370℃の湿度範囲で、か
つ該廃水が液相を保持する圧力下に、該廃水中の有機性
および無機性物質を窒素、炭酸ガスおよび水にまで分解
するに必要な理論量の1.0〜1.5倍量の酸素を含有
するガスの供給下に該廃水を湿式酸化することを特徴と
する水処理方法。
(8) Manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, gold, platinum, palladium as catalytically active components in a carrier containing a composite oxide of titanium and zirconium having a crystal structure called ZrTiO_4. Using a water treatment catalyst comprising at least one metal selected from the group consisting of rhodium, ruthenium, and iridium, or a water-insoluble or sparingly soluble compound thereof, wastewater is treated at a humidity range of 100 to 370°C. , and 1.0 to 1.5 times the theoretical amount necessary to decompose organic and inorganic substances in the wastewater into nitrogen, carbon dioxide, and water under a pressure that maintains the liquid phase of the wastewater. 1. A water treatment method comprising wet oxidizing the wastewater while supplying a gas containing oxygen.
JP63044336A 1988-02-29 1988-02-29 Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst Expired - Lifetime JPH062227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63044336A JPH062227B2 (en) 1988-02-29 1988-02-29 Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63044336A JPH062227B2 (en) 1988-02-29 1988-02-29 Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst

Publications (2)

Publication Number Publication Date
JPH01218634A true JPH01218634A (en) 1989-08-31
JPH062227B2 JPH062227B2 (en) 1994-01-12

Family

ID=12688673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63044336A Expired - Lifetime JPH062227B2 (en) 1988-02-29 1988-02-29 Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst

Country Status (1)

Country Link
JP (1) JPH062227B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585053A1 (en) * 1992-08-21 1994-03-02 Japan Tobacco Inc. Method of preparing an alcohol
US6149820A (en) * 1997-10-20 2000-11-21 Haldor Topsoe A/S Catalyst, process and process unit for the abatement of noxious compounds in water
US6913332B1 (en) 2003-01-09 2005-07-05 University Of South Florida Collapsible computer workstation
CN103740165A (en) * 2013-12-27 2014-04-23 淄博广通化工有限责任公司 Special nano zirconium dioxide composite powder material for architectural outer wall insulation paint
CN108114728A (en) * 2017-12-28 2018-06-05 广东粤能净环保科技有限公司 A kind of method that catalytic wet oxidation catalyst is prepared with waste acetic acid
CN115518642A (en) * 2022-10-10 2022-12-27 辽宁华泰环保科技集团有限公司 Composite catalyst for high-concentration organic wastewater treatment and preparation method and use method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062228U (en) * 1992-06-10 1994-01-14 国際試薬株式会社 Toilet tool
CN1317072C (en) * 2004-06-09 2007-05-23 中国科学院大连化学物理研究所 Nobel metal catalyst for treating industrial waste water, preparing method and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297643A (en) * 1985-10-25 1987-05-07 Nippon Shokubai Kagaku Kogyo Co Ltd Ozone decomposing catalyst
JPH0334997A (en) * 1989-06-30 1991-02-14 Naochika Takahashi Lymphoid cell-activating factor, production thereof and production of virus antibody using same factor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297643A (en) * 1985-10-25 1987-05-07 Nippon Shokubai Kagaku Kogyo Co Ltd Ozone decomposing catalyst
JPH0334997A (en) * 1989-06-30 1991-02-14 Naochika Takahashi Lymphoid cell-activating factor, production thereof and production of virus antibody using same factor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585053A1 (en) * 1992-08-21 1994-03-02 Japan Tobacco Inc. Method of preparing an alcohol
US5576467A (en) * 1992-08-21 1996-11-19 Japan Tobacco Inc. Method of preparing an alcohol
US6149820A (en) * 1997-10-20 2000-11-21 Haldor Topsoe A/S Catalyst, process and process unit for the abatement of noxious compounds in water
US6913332B1 (en) 2003-01-09 2005-07-05 University Of South Florida Collapsible computer workstation
CN103740165A (en) * 2013-12-27 2014-04-23 淄博广通化工有限责任公司 Special nano zirconium dioxide composite powder material for architectural outer wall insulation paint
CN103740165B (en) * 2013-12-27 2015-07-15 淄博广通化工有限责任公司 Special nano zirconium dioxide composite powder material for architectural outer wall insulation paint
CN108114728A (en) * 2017-12-28 2018-06-05 广东粤能净环保科技有限公司 A kind of method that catalytic wet oxidation catalyst is prepared with waste acetic acid
CN115518642A (en) * 2022-10-10 2022-12-27 辽宁华泰环保科技集团有限公司 Composite catalyst for high-concentration organic wastewater treatment and preparation method and use method thereof

Also Published As

Publication number Publication date
JPH062227B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPS63158189A (en) Treatment of waste water
US5145587A (en) Method for treatment of waste water
US5082820A (en) Carrier for gas-treating catalyst, method for production thereof and gas-treating catalyst incorporating said carrier therein
US4140654A (en) Catalyst composition with support comprising titanium oxide and clay mineral for vapor phase reduction of nitrogen oxides
US5278123A (en) Monolithic catalysts for converting sulfur compounds into SO2
US5296435A (en) Catalyst and a method of prepare the catalyst
JPS6123019B2 (en)
JPH01218634A (en) Water-resistant catalyst support, its manufacturing method, water-treatable catalyst deposited on said support and water treating method using said catalyst
KR940006404B1 (en) Catalyst for treatment of water
US4188365A (en) Process for catalytic vapor phase reduction of nitrogen oxides and catalyst composition used therefor
JPH01218684A (en) Process for treating waste water
JPH0510973B2 (en)
JP3121832B2 (en) Wastewater treatment method
CA1301965C (en) Method for treatment of waste water
JPH01218685A (en) Process for treating waste water
JPS63182032A (en) Deodorizing catalyst
JP2002079091A (en) Catalyst for treating wastewater and wastewataer treatment method using the same
JP3783875B2 (en) Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method
JPH0335000B2 (en)
JPH07171580A (en) Treatment of waste water
JPH04100595A (en) Wastewater treatment method
JP2894499B2 (en) Water treatment method
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas
JPH07214078A (en) Treatment of oxidant in seawater or fresh water
JPH0197461A (en) Sterilizing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 15