JP2894499B2 - Water treatment method - Google Patents

Water treatment method

Info

Publication number
JP2894499B2
JP2894499B2 JP1190658A JP19065889A JP2894499B2 JP 2894499 B2 JP2894499 B2 JP 2894499B2 JP 1190658 A JP1190658 A JP 1190658A JP 19065889 A JP19065889 A JP 19065889A JP 2894499 B2 JP2894499 B2 JP 2894499B2
Authority
JP
Japan
Prior art keywords
catalyst
component
treatment
water
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1190658A
Other languages
Japanese (ja)
Other versions
JPH02174934A (en
Inventor
紀一郎 三井
徹 石井
定男 照井
邦夫 佐野
明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17088307&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2894499(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Publication of JPH02174934A publication Critical patent/JPH02174934A/en
Application granted granted Critical
Publication of JP2894499B2 publication Critical patent/JP2894499B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はオゾンを用いた脱臭処理、殺菌処理、脱色処
理等の水処理においてオゾン反応槽で用いられる水処理
用触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a water treatment catalyst used in an ozone reaction tank in water treatment such as deodorization treatment, sterilization treatment, and decolorization treatment using ozone.

<従来の技術およびその問題点> オゾン処理は水中の有害成分、臭気成分、着色成分等
の酸化的分解除去に広く用いられており、排水、上水の
脱臭処理、殺菌処理、脱色処理等に利用されている。特
に近年トリハロメタンによる汚染の問題や上水道におけ
る取水水質の悪化による臭気問題、排水規制の強化によ
る高度処理の必要性から重要性を増してきている。しか
しながら、オゾンのみの処理ではそれら成分の酸化速度
が遅く、除去効率も低い。これに対してオゾン処理と紫
外線処理とを組み合わせる方法(特開昭63−72396号)
が提案されているが、除去効率は高くなっているものの
処理速度が遅く装置も複雑となっている。また、オゾン
処理に併用することによりオゾンによる除去効率を高め
る触媒(特開昭57−500634号)があるが、処理速度およ
び耐久性の面において充分なものではない。
<Conventional technology and its problems> Ozone treatment is widely used for oxidative decomposition and removal of harmful components, odor components, coloring components, and the like in water. It's being used. In particular, in recent years, the importance of trihalomethane has been increasing due to the problem of pollution, the problem of odor due to the deterioration of water intake quality in waterworks, and the necessity of advanced treatment by strengthening wastewater regulations. However, in the treatment using only ozone, the oxidation rate of these components is low, and the removal efficiency is low. On the other hand, a method in which ozone treatment and ultraviolet treatment are combined (JP-A-63-72396)
Although the removal efficiency is high, the processing speed is slow and the apparatus is complicated. There is also a catalyst (JP-A-57-500634) that enhances the removal efficiency of ozone by using it in combination with ozone treatment, but it is not sufficient in terms of treatment speed and durability.

一方、水中の溶存オゾンはアルカリ性域では比較的速
やかに分解して行くが、中性から酸性域では分解スピー
ドが遅く、分解するまでに時間を要し、残留が問題とな
る。
On the other hand, dissolved ozone in water decomposes relatively quickly in an alkaline region, but its decomposition speed is slow in a neutral to acidic region, it takes time to decompose, and there is a problem of residual.

従って、本発明の目的は脱臭処理、殺菌処理および/
または脱色処理、すなわちこれら脱臭処理、殺菌処理お
よび脱色処理のうち少なくとも一つの処理を行うに優れ
た処理性能を示し、またオゾン分解活性もあり、かつ長
時間にわたり安定性を有する水処理用触媒を提供するこ
とにある。
Accordingly, an object of the present invention is to provide a deodorizing treatment, a sterilizing treatment and / or
Or a decolorization treatment, that is, a water treatment catalyst that exhibits excellent treatment performance in performing at least one of these deodorization treatments, sterilization treatments and decolorization treatments, has ozone decomposition activity, and has stability for a long time. To provide.

<問題点を解決するための手段> この目的は、触媒A成分としてチタン、ケイ素、アル
ミニウムおよびジルコニウムよりなる群から選ばれた少
なくとも一種の元素の酸化物および触媒B成分として、
マンガン、鉄、コバルト、ニッケル、セリウム、タング
ステン、銅、銀、金、白金、パラジウム、ロジウム、ル
テニウムおよびイリジウムよりなる群から選ばれた少な
くとも一種の元素の水に不溶性または難溶性の化合物を
含有してなることを特徴とする水処理用触媒により達成
される。また、本発明は該触媒がペレット、パイプまた
はハニカムの形状に成型された固定床用触媒であること
を特徴とするオゾンを用いる水の脱臭処理、殺菌処理お
よび/または脱色処理において用いられる水処理用触媒
である。
<Means for Solving the Problems> The object of the present invention is to provide, as a catalyst A component, an oxide of at least one element selected from the group consisting of titanium, silicon, aluminum and zirconium, and a catalyst B component.
Contains at least one element selected from the group consisting of manganese, iron, cobalt, nickel, cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium, which is insoluble or hardly soluble in water. This is achieved by a water treatment catalyst characterized by the following. Further, the present invention provides a water treatment used in deodorization treatment, sterilization treatment and / or decolorization treatment of water using ozone, wherein the catalyst is a fixed bed catalyst molded into a pellet, pipe or honeycomb shape. Catalyst.

本発明にかかる触媒の特徴は触媒A成分としてチタ
ン、ケイ素、アルミニウムおよびジルコニウムよりなる
群から選ばれた少なくとも一種の元素の酸化物および触
媒B成分として、マンガン、鉄、コバルト、ニッケル、
セリウム、タングステン、銅、銀、金、白金、パラジウ
ム、ロジウム、ルテニウムおよびイリジウムよりなる群
から選ばれた少なくとも一種の元素の水に不溶性または
難溶性の化合物を含有してなることである。
The feature of the catalyst according to the present invention is that an oxide of at least one element selected from the group consisting of titanium, silicon, aluminum and zirconium as a catalyst A component and manganese, iron, cobalt, nickel, as a catalyst B component,
At least one element selected from the group consisting of cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium contains a compound that is insoluble or hardly soluble in water.

すなわち、本発明者らの検討によれば触媒A成分単独
または触媒B成分単独では、オゾンを用いた水の脱臭処
理、殺菌処理、脱色処理等において充分な処理活性およ
び長期間にわたる安定性は得られず、触媒A成分と触媒
B成分とが共に含有されることにより処理活性が上が
り、経時変化の少ない触媒となることを見い出した。上
記処理の対象となる臭気、着色の原因となる化合物およ
びウィルス、菌等のオゾン酸化は本発明の触媒上で効率
よく進行し、処理速度およびオゾンの使用効率が向上す
るものである。また、本発明の触媒はオゾン分解活性も
有しているため、触媒量を適切に設定することにより残
留オゾン分解をも同時に行なわせることができる。
That is, according to the study of the present inventors, the catalyst A component alone or the catalyst B component alone can obtain sufficient treatment activity and long-term stability in deodorization treatment, sterilization treatment, decolorization treatment, etc. of water using ozone. However, it has been found that when both the catalyst A component and the catalyst B component are contained, the treatment activity is increased, and the catalyst has little change over time. Ozone oxidation of compounds, viruses, bacteria, etc., which cause odor and coloring, which is the object of the above-mentioned treatment, proceeds efficiently on the catalyst of the present invention, and improves the treatment speed and the use efficiency of ozone. Further, since the catalyst of the present invention also has ozonolysis activity, residual ozonolysis can be performed simultaneously by appropriately setting the amount of the catalyst.

本発明の触媒における各触媒成分の比率は触媒A成分
が酸化物として70〜99.99重量%、好ましくは80〜99.95
重量%、触媒B成分が金属または化合物として0.01〜30
重量%、好ましくは0.05〜20重量%であることが適当で
ある。好ましくは前記B成分を構成する元素の内、マン
ガン、鉄、コバルト、ニッケル、セリウム、タングステ
ン、銅および銀の使用量は、化合物(例えば酸化物、硫
化物などの水に不溶性または難溶性の化合物)として0
〜30重量%であり、金、白金、パラジウム、ロジウム、
ルテニウムおよびイリジウムの使用量は金属として0〜
10重量%である(但し、両者の合計量は0.01〜30重量%
である。)。なお、触媒A成分と触媒B成分との合計量
は100重量%である。触媒B成分が上記範囲未満の量で
はオゾンを用いた水の脱臭処理、殺菌処理、脱色処理等
において処理活性が不充分であり、また、白金、パラジ
ウムおよびロジウム等の貴金属の場合、上記範囲を越え
る量では原料コストが高くなり相応した効果が期待でき
ない。一方、触媒A成分を上記範囲内にすることにより
触媒成型性が向上して各種形状の成型が容易になるとと
もに、触媒の長期安定性を増し、さらに活性にも良い影
響を与える。また、触媒A成分および触媒B成分が上記
組成範囲内において相互に分散されていることが触媒活
性の面から好ましい。
The proportion of each catalyst component in the catalyst of the present invention is such that the catalyst A component is 70 to 99.99% by weight as an oxide, preferably 80 to 99.95.
% By weight, wherein the catalyst B component is 0.01 to 30 as a metal or compound
Suitably, it is between 0.05 and 20% by weight. Preferably, among the elements constituting the component B, manganese, iron, cobalt, nickel, cerium, tungsten, copper and silver are used in an amount of a compound (for example, a compound insoluble or hardly soluble in water such as an oxide or a sulfide). ) As 0
~ 30% by weight, gold, platinum, palladium, rhodium,
Ruthenium and iridium are used in amounts of 0 to
10% by weight (however, the total amount of both is 0.01 to 30% by weight
It is. ). The total amount of the catalyst A component and the catalyst B component is 100% by weight. If the amount of the catalyst B component is less than the above range, the treatment activity is insufficient in deodorization treatment of water using ozone, sterilization treatment, decolorization treatment, and the like. If the amount exceeds, the cost of raw materials increases, and a corresponding effect cannot be expected. On the other hand, when the component of the catalyst A is within the above range, the moldability of the catalyst is improved and molding of various shapes is facilitated, the long-term stability of the catalyst is increased, and the activity is also positively affected. It is preferable from the viewpoint of catalytic activity that the catalyst A component and the catalyst B component are mutually dispersed within the above composition range.

また、触媒A成分がチタン、ケイ素およびジルコニウ
ムよりなる群から選ばれた少なくとも二種の元素の複合
酸化物であることが好ましい。これらの複合酸化物は強
い固体酸性や大きいBET表面積を持ち、触媒の活性、触
媒成型性および強度安定性の面から好ましい。
Preferably, the catalyst A component is a composite oxide of at least two elements selected from the group consisting of titanium, silicon and zirconium. These composite oxides have strong solid acidity and a large BET surface area, and are preferable from the viewpoint of catalyst activity, catalyst moldability and strength stability.

本発明で使用する触媒はペレット、パイプまたはハニ
カムの形状に成型されている固定床用触媒であることが
触媒の取り扱いを容易にし、処理水の流通抵抗を下げる
などの面から好ましい。特に処理水中に固形物が含有さ
れる場合においてはハニカムの形状が目詰まりの可能性
を低くできるので好ましい。
The catalyst used in the present invention is preferably a fixed bed catalyst molded in the form of pellets, pipes or honeycombs, from the viewpoint of facilitating the handling of the catalyst and reducing the flow resistance of the treated water. In particular, when the treated water contains solids, the shape of the honeycomb is preferable because the possibility of clogging can be reduced.

このハニカムの形状は、貫通孔の相当直径が2〜20m
m、セル肉厚が0.1〜3mmおよび開口率が50〜90%の範囲
にあることが好ましい。さらに、相当直径が2.5〜15m
m、セル肉厚が0.5〜3mmおよび開口率が50〜80%の範囲
にあることがさらに好ましい。相当直径が2mm未満であ
る場合には圧力損失が大きく、特に水中に固形分が含有
される場合には目詰まりを生じやすくなる。相当直径が
20mmを越える場合には圧力損失は小さくなり目詰まりの
可能性も低くなるものの、触媒活性が充分でない。セル
肉厚が0.1mm未満の場合には圧力損失が小さくなり、触
媒を軽量化できるという利点があるが、触媒の機械的強
度が低下するために好ましくない。セル肉厚が3mmを越
える場合には機械的強度は充分であるが、圧力損失が大
きくなる欠点を有している。開口率についても上記と同
様の理由から50〜90%である。また、貫通孔の形状につ
いては四角形、六角形、コルゲート形などを用いること
ができる。上記の好ましい形状条件を具備したハニカム
型触媒は充分な機械的強度かつ充分な幾何学的表面積を
有しているため、耐久性に優れ、低圧力損失かつ高流速
で対象水を処理することができる。また、水中に固形分
が含有されている場合にも目詰りを生じることなく長期
にわたって高活性を維持することができる。
The shape of this honeycomb has an equivalent diameter of the through hole of 2 to 20 m
m, the cell thickness is preferably in the range of 0.1 to 3 mm and the aperture ratio is in the range of 50 to 90%. In addition, the equivalent diameter is 2.5-15m
m, the cell thickness is more preferably in the range of 0.5 to 3 mm and the aperture ratio is in the range of 50 to 80%. When the equivalent diameter is less than 2 mm, the pressure loss is large, and particularly when water contains solids, clogging tends to occur. Equivalent diameter
If it exceeds 20 mm, the pressure loss is reduced and the possibility of clogging is reduced, but the catalytic activity is not sufficient. When the cell thickness is less than 0.1 mm, there is an advantage that the pressure loss becomes small and the catalyst can be reduced in weight, but it is not preferable because the mechanical strength of the catalyst decreases. When the cell thickness exceeds 3 mm, the mechanical strength is sufficient, but there is a disadvantage that the pressure loss increases. The aperture ratio is also 50 to 90% for the same reason as described above. Further, as the shape of the through hole, a square, a hexagon, a corrugated shape, or the like can be used. Since the honeycomb catalyst having the preferred shape conditions described above has sufficient mechanical strength and sufficient geometric surface area, it is excellent in durability, and can treat target water with low pressure loss and high flow rate. it can. In addition, even when solid content is contained in water, high activity can be maintained for a long time without clogging.

本温発明の触媒の調製法を述べると、以下の方法が挙
げられるが、特にこれらの調製法に限定されるものでは
ないことはもちろんである。すなわち、触媒B成分とし
て挙げた遷移金属、貴金属などの活性成分を含む水溶液
に上記触媒A成分の粉体を加えてよく混合し、これを直
接成型した後、50〜120℃で乾燥後300〜800℃、好まし
くは350〜600℃で1〜10時間、好ましくは2〜6時間焼
成して触媒とすることができる。また、この混合物を焼
成して予め触媒組成粉体を作っておき、それを適当な単
体に担持することによっても触媒化できる。また、別法
として触媒A成分の粉体を成型、乾燥、焼成して予め触
媒担体とし、含浸法によりこれに触媒B成分の金属塩水
溶液を担持、焼成しても触媒化できる。
The method for preparing the catalyst of the present invention includes the following methods, but it is needless to say that the present invention is not limited to these methods. That is, the transition metal mentioned as the catalyst B component, the powder of the catalyst A component is added to an aqueous solution containing an active component such as a noble metal and mixed well, and the mixture is directly molded, dried at 50 to 120 ° C. and dried at 300 to 300 ° C. The catalyst can be calcined at 800 ° C., preferably 350 to 600 ° C., for 1 to 10 hours, preferably 2 to 6 hours. Alternatively, the mixture can be calcined to prepare a catalyst composition powder in advance, and the resulting mixture can be catalyzed by being supported on a suitable simple substance. Alternatively, the catalyst can be formed by molding, drying and calcining a powder of the component of the catalyst A to prepare a catalyst carrier in advance, carrying an aqueous solution of the metal salt of the component of the catalyst B by impregnation and calcining the catalyst.

なお、触媒A成分としてチタン、ケイ素およびジルコ
ニウムよりなる群から選ばれた少なくとも二種の元素の
複合酸化物を用いる場合、これらの複合酸化物粉体は次
のようにして調製することができる。
When a composite oxide of at least two elements selected from the group consisting of titanium, silicon and zirconium is used as the catalyst A component, these composite oxide powders can be prepared as follows.

例えば、チタンおよびケイ素からなる二元系複合酸化
物(以下、TiO2−SiO2とする)粉体の調製法としては以
下の方法が挙げられる。
For example, as a method for preparing a binary composite oxide (hereinafter, referred to as TiO 2 —SiO 2 ) powder composed of titanium and silicon, the following method may be mentioned.

四塩化チタンをシリカゾルと共に混合し、アンモニ
アを添加して沈殿を生成せしめ、この沈殿を洗滌、乾燥
後300〜650℃、好ましくは350〜600℃で焼成せしめる方
法。
A method in which titanium tetrachloride is mixed with a silica sol, ammonia is added to form a precipitate, the precipitate is washed, dried and calcined at 300 to 650 ° C, preferably 350 to 600 ° C.

四塩化チタンにケイ酸ナトリウム水溶液を添加し、
反応せしめて沈殿を生成させ、これを洗滌、乾燥後300
〜650℃、好ましくは350〜600℃で焼成せしめる方法。
Add sodium silicate aqueous solution to titanium tetrachloride,
The mixture was reacted to form a precipitate, which was washed, dried and dried.
A method of baking at 650 ° C, preferably 350-600 ° C.

四塩化チタンの水−アルコール溶液にエチルシリケ
ート[(C2H5O)4Si]を添加し加水分解反応せしめて沈
殿を生成させ、これを洗滌、乾燥後300〜650℃、好まし
くは350〜600℃で焼成せしめる方法。
Ethyl silicate [(C 2 H 5 O) 4 Si] is added to a water-alcohol solution of titanium tetrachloride to cause a hydrolysis reaction to form a precipitate, which is washed, dried, and then dried at 300 to 650 ° C., preferably 350 to 350 ° C. Baking at 600 ° C.

酸化塩化チタン(TiOCl2)とエチルシリケートの水
−アルコール溶液にアンモニアを加えて沈殿を形成せし
め、これを洗滌、乾燥後300〜650℃、好ましくは350〜6
00℃で焼成せしめる方法。
Ammonia is added to a water-alcohol solution of titanium oxychloride (TiOCl 2 ) and ethyl silicate to form a precipitate, which is washed, dried and then dried at 300 to 650 ° C., preferably 350 to 6 ° C.
Baking at 00 ° C.

以上の好ましい方法のうちでもとくにの方法が好ま
しく、この方法は具体的には以下のごとく実施される。
すなわち、上記チタン源およびケイ素源の化合物をTiO2
とSiO2のモル比が所定量になるようにとり、酸性の水溶
液状態またはゾル状態でチタンおよびケイ素を酸化物換
算して1〜100g/、好ましくは10〜80g/の濃度とし
て10〜100℃に保つ。その中へ撹拌下、中和剤としてア
ンモニア水を滴下し、10分間ないし3時間pH5〜10に
て、チタンおよびケイ素よりなる共沈化合物を生成せし
め、別し、よく洗滌したのち80〜140℃で1〜10時間
乾燥し、300〜650℃、好ましくは300〜600℃で1〜10時
間、好ましくは2〜8時間焼成してTiO2−SiO2粉体をえ
ることができる。
Among the above preferred methods, a particularly preferred method is preferred, and this method is specifically carried out as follows.
That is, the compound of the titanium source and the silicon source is TiO 2
And so that the molar ratio of SiO 2 is a predetermined amount, and in the form of an acidic aqueous solution or sol, titanium and silicon are converted to oxides at a concentration of 1 to 100 g /, preferably 10 to 80 g / keep. Under stirring, ammonia water was added dropwise as a neutralizing agent, and a coprecipitated compound consisting of titanium and silicon was formed at pH 5 to 10 for 10 minutes to 3 hours, separated, thoroughly washed, and then washed at 80 to 140 ° C. For 1 to 10 hours, and calcined at 300 to 650 ° C., preferably 300 to 600 ° C. for 1 to 10 hours, preferably 2 to 8 hours to obtain TiO 2 —SiO 2 powder.

また、出発原料としては、チタン源として塩化チタン
類、硫酸チタン類などの無機性チタン化合物および蓚酸
チタン、テトライソプロピルチタネートなどの有機性チ
タン化合物などから選ぶことができ、またケイ素源とし
てはコロイド状シリカ、水ガラス、四塩化ケイ素など無
機性のケイ素化合物およびテトラエチルシリケートなど
有機ケイ素化合物などから選ぶことができる。そしてこ
れら原料中には、微量の不純物、混入物のあるものもあ
るが、えられるTiO2−SiO2の物性に大きく影響を与える
ものでない限り問題とならない。
The starting material can be selected from inorganic titanium compounds such as titanium chlorides and titanium sulfates and organic titanium compounds such as titanium oxalate and tetraisopropyl titanate as a titanium source, and a colloidal silicon source. It can be selected from silica, water glass, inorganic silicon compounds such as silicon tetrachloride, and organosilicon compounds such as tetraethylsilicate. Some of these raw materials have trace impurities and contaminants, but they do not pose a problem unless they significantly affect the physical properties of the obtained TiO 2 —SiO 2 .

また、チタンおよびジルコニウム二元系複合酸化物
(以下、TiO2−ZrO2という)粉体の調整法も同様にして
行なうことができる。
In addition, a method for preparing a titanium and zirconium binary composite oxide (hereinafter, referred to as TiO 2 —ZrO 2 ) powder can be similarly performed.

そして、好ましいTiO2−ZrO2粉体の調整法としては、
以下の方法が挙げられる。
And as a preferred method of adjusting the TiO 2 -ZrO 2 powder,
The following methods are mentioned.

塩化チタンをオキシ塩化ジルコニウムと共に混合
し、アンモニアを添加して沈殿を生成せしめ、この沈殿
を洗滌、乾燥後300〜650℃、好ましくは350〜600℃で焼
成せしめる方法。
A method in which titanium chloride is mixed with zirconium oxychloride, ammonia is added to form a precipitate, and the precipitate is washed, dried and calcined at 300 to 650 ° C, preferably 350 to 600 ° C.

四塩化チタンに硝酸ジルコニウムを添加し、熱加水
分解反応せしめて沈殿を生成させ、これを洗滌、乾燥後
300〜650℃、好ましくは350〜600℃で焼成せしめる方
法。
Zirconium nitrate is added to titanium tetrachloride and subjected to a thermal hydrolysis reaction to form a precipitate, which is washed and dried.
A method of firing at 300 to 650 ° C, preferably 350 to 600 ° C.

また、触媒A成分と共に用いる触媒B成分の出発原料
としては、酸化物、水酸化物、無機酸塩、有機酸塩など
が挙げられ、例えばアンモニウム塩、蓚酸塩、硝酸塩、
硫酸塩またはハロゲン化物などから適宜選ばれる。
Examples of the starting material of the catalyst B component used together with the catalyst A component include oxides, hydroxides, inorganic acid salts, and organic acid salts, such as ammonium salts, oxalates, and nitrates.
It is appropriately selected from sulfates or halides.

本発明の触媒は臭気、着色の原因となる化合物および
ウィルス、菌等を触媒上に吸着し、オゾン酸化を触媒上
で効率よく進行させる。その処理反応速度は温度が上が
ると向上するが、オゾン分解速度も同時に上昇するので
処理温度は0〜60℃の範囲が好ましい。処理水量は目的
とする処理率や条件により異なるが、通常、触媒1当
り1〜1000/hの流量条件で用いられる。圧力条件は特
に限定されないが常圧において充分に用いることができ
る。また、触媒反応層へのオゾンの供給は予めオゾンを
溶解させた状態で供給する方法や、触媒反応層に処理対
象水とともにオゾン含有ガスを流す方法などがある。
The catalyst of the present invention adsorbs odors, compounds that cause coloration, viruses, bacteria, and the like onto the catalyst, and makes ozone oxidation proceed efficiently on the catalyst. The processing reaction rate increases as the temperature increases, but the ozone decomposition rate also increases at the same time. Therefore, the processing temperature is preferably in the range of 0 to 60 ° C. The amount of water to be treated varies depending on the target treatment rate and conditions, but is usually used at a flow rate of 1 to 1000 / h per catalyst. The pressure condition is not particularly limited, but can be sufficiently used at normal pressure. The supply of ozone to the catalytic reaction layer includes a method of supplying ozone in a state where ozone is dissolved in advance, and a method of flowing an ozone-containing gas together with water to be treated through the catalytic reaction layer.

以下に実施例及び比較例を用いて本発明を更に詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples.

実施例1 チタンおよびジルコニウムの二元系複合酸化物を以下
に述べる方法で調製した。チタン源として以下の組成を
有する硫酸チタニルの硫酸水溶液を用いた。
Example 1 A binary composite oxide of titanium and zirconium was prepared by the method described below. An aqueous solution of titanyl sulfate in sulfuric acid having the following composition was used as a titanium source.

TiOSO4(TiO2換算) 250g/ 全H2SO4 1100g/ 別に水50にオキシ塩化ジルコニウム[ZrOCl2・8H
2O]1.93Kgを溶解させ、上記組成の硫酸チタニルの硫酸
水溶液7.7に添加しつつよく混合した。これを温度約3
0℃に維持しつつよく撹拌しながらアンモニア水を徐々
に滴下し、pHが7になるまで加え、共沈ゲルを生成させ
た。さらにそのまま放置して15時間静置した。次いで、
ろ過、水洗後200℃で10時間乾燥した後、500℃で5時間
空気雰囲気下で焼成した。得られた粉体の組成はTiO2:Z
rO2=4:1(モル比)であり、BET表面積は150m2/gであっ
た。
TiOSO 4 (TiO 2 terms) 250 g / total H 2 SO 4 1100g / separate the water 50 of zirconium oxychloride [ZrOCl 2 · 8H
[2 O] 1.93 Kg was dissolved and mixed well while being added to an aqueous sulfuric acid solution 7.7 of titanyl sulfate having the above composition. This is about 3
While maintaining the temperature at 0 ° C. and stirring well, aqueous ammonia was gradually added dropwise until the pH reached 7, thereby forming a coprecipitated gel. Furthermore, it was left as it was and allowed to stand for 15 hours. Then
After filtration and washing with water, drying was performed at 200 ° C. for 10 hours, and calcination was performed at 500 ° C. for 5 hours in an air atmosphere. The composition of the obtained powder is TiO 2 : Z
rO 2 = 4: 1 (molar ratio), and the BET surface area was 150 m 2 / g.

水850mlと前記の粉体1.5Kgさらに澱粉75gを加えて混
合し、ニーダーでよく練り合わせた。これを孔径(貫通
孔の相当直径)3mm、セル肉厚0.6mmで開口率69%のハニ
カム型に押出成型して120℃で6時間乾燥した後、450℃
で6時間焼成した。
850 ml of water, 1.5 kg of the above powder and 75 g of starch were added and mixed, and kneaded well with a kneader. This was extruded into a honeycomb type having a hole diameter (equivalent diameter of through hole) of 3 mm, a cell thickness of 0.6 mm, and an opening ratio of 69%, dried at 120 ° C. for 6 hours, and then heated at 450 ° C.
For 6 hours.

かくして得られた成型体を硝酸第1セリウム水溶液に
含浸し、ついで120℃で6時間乾燥し、400℃で3時間焼
成し、CeO2を5重量%含有する触媒を得た。
The molded body thus obtained was impregnated with a cerous nitrate aqueous solution, dried at 120 ° C. for 6 hours, and calcined at 400 ° C. for 3 hours to obtain a catalyst containing 5% by weight of CeO 2 .

実施例2 実施例1に準じてオキシ塩化ジルコニウムの代わりに
コロイダルシリカを用い、TiO2:SiO2=4:1(モル比)の
組成を持ち、BET表面積が170m2/gであるチタンおよびケ
イ素の二元系複合酸化物の粉体を得た。
Example 2 Titanium and silicon having a composition of TiO 2 : SiO 2 = 4: 1 (molar ratio) and a BET surface area of 170 m 2 / g using colloidal silica instead of zirconium oxychloride according to Example 1. Was obtained as a binary composite oxide powder.

実施例1の方法に準じてこの粉体を5mm径ペレットに
成型し、塩化ロジウム水溶液を用いてロジウムを0.4重
量%含有する触媒を得た。
This powder was formed into pellets having a diameter of 5 mm according to the method of Example 1, and a catalyst containing 0.4% by weight of rhodium was obtained using an aqueous rhodium chloride solution.

実施例3 硝酸マンガン[Mn(NO3・6H2O]0.69Kgを水2.1
に溶解し、市販の酸化チタン粉体5Kgに加え、実施例1
の方法に準じて孔径(貫通孔の相当直径)6mm、セル肉
厚1.08mmで開口率72%のハニカム型に押出成型した。得
られた触媒の組成はMnO2(4重量%)−TiO2(96重量
%)であった。
Example 3 0.69 kg of manganese nitrate [Mn (NO 3 ) 2 .6H 2 O] was added to water 2.1
And added to 5 kg of commercially available titanium oxide powder.
According to the method described in the above, extrusion molding was performed into a honeycomb mold having a hole diameter (equivalent diameter of a through hole) of 6 mm, a cell thickness of 1.08 mm, and an opening ratio of 72%. The composition of the obtained catalyst was MnO 2 (4% by weight) -TiO 2 (96% by weight).

実施例4 市販の4mm径のγ−アルミナ担体を塩化ロジウム水溶
液に含浸し、乾燥、焼成して、Rh(1重量%)−Al2O3
(99重量%)の組成の触媒を得た。
Example 4 A commercially available γ-alumina carrier having a diameter of 4 mm was impregnated with an aqueous rhodium chloride solution, dried and calcined to obtain Rh (1% by weight) -Al 2 O 3.
(99% by weight) of the catalyst was obtained.

実施例5〜13 実施例1〜3に準じて表1記載の組成・形状の触媒を
得た。
Examples 5 to 13 Catalysts having the compositions and shapes shown in Table 1 were obtained according to Examples 1 to 3.

ここで、チタンおよびケイ素の二系元複合酸化物をTS
と、また、チタンおよびジルコニウムの二元系複合酸化
物をTZと表記した。また、二元系複合酸化物の2元素の
モル比を[チタンのモル%:他元素のモル%]と表記し
た。
Here, the binary composite oxide of titanium and silicon is referred to as TS
And a binary composite oxide of titanium and zirconium is denoted as TZ. The molar ratio of the two elements of the binary composite oxide was expressed as [mol% of titanium: mol% of other elements].

実施例14 反応管に実施例1〜13の触媒を200ml充填し、これに
下水二次処理水を4/hrの流量で、またオゾンを含む
ガスをオゾン流量0.5g/hrの割合で流し、常温で反応さ
せた。比較例として反応管に触媒を充填しない場合につ
いても行なった。それぞれの反応器入口、出口での水の
色度、臭気、大腸菌群数、オゾン含有量を測定した。臭
気強度は6段階臭気強度表示法を用いた。処理結果を表
2に示す。
Example 14 A reaction tube was charged with 200 ml of the catalysts of Examples 1 to 13, and sewage secondary treated water was flowed at a flow rate of 4 / hr, and a gas containing ozone was flown at an ozone flow rate of 0.5 g / hr. The reaction was performed at room temperature. As a comparative example, the case where the catalyst was not filled in the reaction tube was also performed. The chromaticity of water, odor, number of coliforms, and ozone content at each reactor inlet and outlet were measured. As the odor intensity, a 6-step odor intensity display method was used. Table 2 shows the processing results.

実施例15 実施例14の条件で反応を1000時間継続した後触媒を抜
き出した。触媒の圧壊強度試験を行ない、反応前触媒と
反応後触媒との強度比を求めた。結果を表3に示す。
Example 15 After the reaction was continued under the conditions of Example 14 for 1000 hours, the catalyst was extracted. A crushing strength test of the catalyst was performed to determine the strength ratio between the catalyst before the reaction and the catalyst after the reaction. Table 3 shows the results.

実施例16 反応管に実施例1および3の触媒を300ml充填し、こ
れにSS(懸濁物質)を500mg/含有する水を10/hの流
量で、またオゾンを含むガスをオゾン流量0.7g/hの割合
で流し、常温で反応させた。反応開始後1000時間を経過
しても触媒は閉塞を起こさなかった。
Example 16 A reaction tube was filled with 300 ml of the catalysts of Examples 1 and 3, and water containing 500 mg / SS (suspended matter) was flowed at a flow rate of 10 / h, and a gas containing ozone was flown at an ozone flow rate of 0.7 g. / h, and reacted at room temperature. Even after 1000 hours from the start of the reaction, the catalyst did not block.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01J 23/70 B01J 23/70 Z (72)発明者 佐野 邦夫 兵庫県姫路市網干区興浜字西沖992番地 の1 日本触媒化学工業株式会社触媒研 究所内 (72)発明者 井上 明 兵庫県姫路市網干区興浜字西沖992番地 の1 日本触媒化学工業株式会社触媒研 究所内 合議体 審判長 沼沢 幸雄 審判官 高木 茂樹 審判官 野田 直人 (56)参考文献 特開 昭63−158189(JP,A) 特開 昭51−34560(JP,A)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI B01J 23/70 B01J 23/70 Z (72) Inventor Kunio Sano 992 Koishihama, Nishioki, Aboshi-ku, Himeji-shi, Hyogo 1 Nippon Shokubai Chemical Co., Ltd. (72) Inventor Akira Inoue 992, Nishioki, Okihama-shi, Abashiri-ku, Himeji City, Hyogo Prefecture References JP-A-63-158189 (JP, A) JP-A-51-34560 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】触媒A成分としてチタン、ケイ素、アルミ
ニウムおよびジルコニウムよりなる群から選ばれた少な
くとも一種の元素の酸化物および触媒B成分として、マ
ンガン、鉄、コバルト、ニッケル、セリウム、タングス
テン、銅、銀、金、白金、パラジウム、ロジウム、ルテ
ニウムおよびイリジウムよりなる群から選ばれた少なく
とも一種の元素の水に不溶性または難溶性の化合物を含
有してなる触媒の存在下に、0〜60℃の温度および常圧
下にオゾンを用いて水の脱臭処理、殺菌処理および/ま
たは脱色処理を行なうことを特徴とする水処理方法。
An oxide of at least one element selected from the group consisting of titanium, silicon, aluminum and zirconium as a catalyst A component and manganese, iron, cobalt, nickel, cerium, tungsten, copper, as a catalyst B component. A temperature of 0 to 60 ° C. in the presence of a catalyst containing a water-insoluble or sparingly soluble compound of at least one element selected from the group consisting of silver, gold, platinum, palladium, rhodium, ruthenium and iridium; A water treatment method comprising performing deodorization treatment, sterilization treatment and / or decolorization treatment of water using ozone under normal pressure.
【請求項2】触媒A成分が酸化物として70〜99.99重量
%であり、触媒B成分が金属または化合物として0.01〜
30重量%であることを特徴とする請求項(1)記載の方
法。
2. The catalyst A component has an oxide content of 70 to 99.99% by weight, and the catalyst B component has a metal or compound content of 0.01 to 99.99% by weight.
The method according to claim 1, wherein the amount is 30% by weight.
【請求項3】触媒がペレット、パイプまたはハニカムの
形状に成型された固定床用触媒であることを特徴とする
請求項(1)記載の方法。
3. The process according to claim 1, wherein the catalyst is a fixed bed catalyst formed in the form of pellets, pipes or honeycombs.
【請求項4】触媒A成分がチタン、ケイ素およびジルコ
ニウムよりなる群から選ばれた少なくとも二種の元素の
複合酸化物であることを特徴とする請求項(1)記載の
方法。
4. The method according to claim 1, wherein the catalyst A component is a composite oxide of at least two elements selected from the group consisting of titanium, silicon and zirconium.
JP1190658A 1988-09-29 1989-07-25 Water treatment method Expired - Lifetime JP2894499B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-242380 1988-09-29
JP24238088 1988-09-29

Publications (2)

Publication Number Publication Date
JPH02174934A JPH02174934A (en) 1990-07-06
JP2894499B2 true JP2894499B2 (en) 1999-05-24

Family

ID=17088307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1190658A Expired - Lifetime JP2894499B2 (en) 1988-09-29 1989-07-25 Water treatment method

Country Status (2)

Country Link
JP (1) JP2894499B2 (en)
CA (1) CA1335518C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655641B1 (en) * 1989-12-07 1992-04-24 Anjou Rech PROCESS OF OZONATION OF WATER WITH ACTIVATION BY HETEROGENEOUS CATALYSIS.
CN102897895B (en) * 2012-11-06 2014-06-18 浙江省农业科学院 Method for degrading humus organic pollutants in water by catalytic ozonation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751005A (en) * 1986-08-22 1988-06-14 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treatment of waste water
JPH01175596A (en) * 1987-12-28 1989-07-12 Suzuki Motor Co Ltd Water jet propulsion system
US4861484A (en) * 1988-03-02 1989-08-29 Synlize, Inc. Catalytic process for degradation of organic materials in aqueous and organic fluids to produce environmentally compatible products

Also Published As

Publication number Publication date
CA1335518C (en) 1995-05-09
JPH02174934A (en) 1990-07-06

Similar Documents

Publication Publication Date Title
US5192452A (en) Catalyst for water treatment
JPH0334997B2 (en)
US5296435A (en) Catalyst and a method of prepare the catalyst
KR940006404B1 (en) Catalyst for treatment of water
JP2894499B2 (en) Water treatment method
JPH0510973B2 (en)
JP3507906B2 (en) DeNOx catalyst
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPH062227B2 (en) Water-resistant carrier, water treatment catalyst containing the carrier, and water treatment method using the catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP2980633B2 (en) Nitrogen oxide removal catalyst
JPS63182032A (en) Deodorizing catalyst
JP3095604B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPH0334998B2 (en)
JPH07214078A (en) Treatment of oxidant in seawater or fresh water
JPH0586254B2 (en)
JP3499251B2 (en) Water treatment catalyst and water treatment method
JPH07171580A (en) Treatment of waste water
JP2919541B2 (en) Nitrogen oxide removal catalyst
JPH07214081A (en) Method for purifying water for breeding marine living things
JP3121832B2 (en) Wastewater treatment method
JPH0334999B2 (en)
JPH0586252B2 (en)
JPH07204668A (en) Treatment of ammonia nitrogen-containing drained water
JPH0585218B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11