JPH01218607A - Filtration membrane and its production - Google Patents

Filtration membrane and its production

Info

Publication number
JPH01218607A
JPH01218607A JP4486688A JP4486688A JPH01218607A JP H01218607 A JPH01218607 A JP H01218607A JP 4486688 A JP4486688 A JP 4486688A JP 4486688 A JP4486688 A JP 4486688A JP H01218607 A JPH01218607 A JP H01218607A
Authority
JP
Japan
Prior art keywords
treatment
filtration membrane
etching
membrane
anodic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4486688A
Other languages
Japanese (ja)
Other versions
JPH07112531B2 (en
Inventor
Akira Hashimoto
明 橋本
Tadao Fujihira
忠雄 藤平
Eizo Isoyama
礒山 永三
Minoru Hasegawa
実 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP4486688A priority Critical patent/JPH07112531B2/en
Publication of JPH01218607A publication Critical patent/JPH01218607A/en
Publication of JPH07112531B2 publication Critical patent/JPH07112531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To obtain a membrane of superior selectivity and permeability, having ultrafine penetrating pores in high density and uniformly, by carrying out an anodic oxidation treatment on both faces of a highly pure aluminum foil to form anodic oxide films having a large number of fine pores and then by applying an electrolytic etching treatment to it. CONSTITUTION:A filtration membrane is produced by carrying out an anodic oxidation treatment on both faces of a highly pure (99.9% or more) aluminum foil with an electrolytic solution of such as sulfuric acid or oxalic acid to form anodic oxide films (ca. 0.1-10mum in thickness) having a large number of fine pores and then by applying an electrolytic etching treatment to it. By this treatment, etching proceeds from the fine pores of the anodic oxide film, the nuclei of etching, and fine etch pits penetrating the foil are formed, which give the foil a separability for fine foreign particles. Moreover, if a monomolecular film of polysiloxane polymer is supported on this membrane, for example, a uniform supporting membrane for gas separation can be formed, because surface diameters of etch pits are so small and uniform.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、気体や液体、あるいはそれらの混合物の浄
化、精製、もしくは固体との分離等の目的のために使用
される濾過膜、特にフィルター要素として多孔質の電解
エツチング箔を利用する濾過膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a filtration membrane used for purposes such as purification, purification, or separation of gases, liquids, or mixtures thereof from solids, particularly as a filter element. The present invention relates to a method for manufacturing a filtration membrane using porous electrolytically etched foil.

従来の技術と課題 従来、前記のような使用目的のための濾過膜としては、
例えば酢酸セルロース系、アセチルセルロース系、ポリ
スルホン系、ポリオレフィン系等の高分子材料からなる
有機濾過膜が最も一般的なものとして多く用いられてい
る。しかしこれらの有機濾過膜は、耐熱性に劣るために
熱殺菌処理ができないことのほか、耐薬品性、耐溶剤性
、耐油性等に問題があり用途が限られるものであった。
Conventional technologies and issues Conventionally, filtration membranes for the above-mentioned purposes have been
For example, organic filtration membranes made of polymeric materials such as cellulose acetate, cellulose acetate, polysulfone, and polyolefin are most commonly used. However, these organic filtration membranes have poor heat resistance and cannot be subjected to heat sterilization treatment, and also have problems with chemical resistance, solvent resistance, oil resistance, etc., and their uses are limited.

一方、耐熱性に優れた濾過膜として、バイコールガラス
、カーボン管、シリカ・アルミナ系セラミックスなどの
無機質材料の多孔質体からなるものが知られており、主
に工業的な分野ではセラミックスの焼結体が多く使用さ
れている。
On the other hand, as filtration membranes with excellent heat resistance, those made of porous bodies of inorganic materials such as Vycor glass, carbon tubes, and silica/alumina ceramics are known. The body is used a lot.

しかしながら、これらの無機質利料からなる濾過膜の場
合、孔径が均一でないこと、濾過機能を果す空孔の方向
が流体の流れ方向と一致しないため流体透過特性に劣る
こと、更には、所要の孔径を有する濾過膜を得るべく孔
径を自由にコントロールしながら製造することが困難で
あり、特に均一な微細孔径を有する濾過膜の製造は困難
であること等の問題があり、やはり用途が制限されるも
のであった。
However, in the case of filtration membranes made of these inorganic materials, the pore diameter is not uniform, and the direction of the pores that perform the filtration function does not match the flow direction of the fluid, resulting in poor fluid permeation properties. It is difficult to manufacture a filtration membrane while freely controlling the pore size in order to obtain a filtration membrane with a uniform micropore size, and there are problems such as the difficulty in manufacturing a filtration membrane with a uniform micropore size, which also limits its use. It was something.

最近、アルミニウム箔を用いた濾過膜として、高純度ア
ルミニウム箔にエツチングを施すことにより、所要の孔
径を有する貫通エツチングピットを形成し、かつ表面に
陽極酸化皮膜あるいは水酸化皮膜を形成して安定化をは
かったものが提案されている(例えは特開昭62−30
511号)。
Recently, filtration membranes using aluminum foil have been stabilized by etching high-purity aluminum foil to form through-etched pits with the required pore size, and by forming an anodic oxide film or hydroxide film on the surface. (For example, Japanese Patent Application Laid-Open No. 62-30
No. 511).

しかしながら、濾過機能を果すための空孔をエツチング
ピットとして形成するものであるため、その孔径のコン
トロールはある程度の自由性が得られるもの\、濾過膜
として所要の流体透過特性が得られる空孔率の範囲では
、その孔径としてμmオーダーのものしか得ることがで
きず、またエツチングピットの表面孔径のばらつきか大
きいため、極めて微細な微粒子の分離に不適であると共
に、特に例えば空気中の酸素を分離濃縮するガス分離膜
の支持体として使用するような場合、分離用担持膜を均
一に形成できないというような問題があった。即ち、」
二足酸素分離用としては、多孔質基体」−に、例えば0
2とN2の溶解速度か02/N2中2/1と報告されて
いるシロキサン系のポリマー単分子膜を累積、複合化し
て使用するが、従来の上記エツチング箔では、エツチン
グピットの孔径が比較的大きく、特に箔の表面部での孔
径が大きく、しかも大きなばらつきを有するために、酸
素分離用の上記単分子膜の担持性が悪く、それを均一に
形成できないというような問題があった。
However, since the pores to perform the filtration function are formed as etched pits, the pore size can be controlled to a certain degree with some degree of freedom. In the range of When used as a support for a gas separation membrane to be condensed, there is a problem in that a supporting membrane for separation cannot be uniformly formed. That is,”
For bipedal oxygen separation, for example, 0
Siloxane-based polymer monomolecular films, which are reported to have a dissolution rate of 2/1 in 02/N2, are used in an accumulated and composite manner. Since the pore diameters are large, especially in the surface area of the foil, and have large variations, there has been a problem that the monomolecular membrane for oxygen separation has poor supporting properties and cannot be uniformly formed.

一方、近時、極めて微細な異粒子の通過を選択的に阻止
することができ、しかも気体透過特性、耐熱性、耐薬品
性等にも優れた性質を有する濾過膜として、多孔質であ
るアルミニウム陽極酸化皮膜の利用が注目されている。
On the other hand, recently, porous aluminum has been used as a filtration membrane that can selectively block the passage of extremely fine foreign particles and has excellent properties such as gas permeability, heat resistance, and chemical resistance. The use of anodic oxide films is attracting attention.

しかしながら、元来、か−る陽極酸化皮膜は脆くて割れ
昌いものであるところから、工業的に利用しうるような
大型膜としての製造は困難なものであった。
However, since such anodic oxide films are originally brittle and breakable, it has been difficult to manufacture them into large films that can be used industrially.

このような問題点に対して最近更に、陽極酸化皮膜の一
面にバックアツプ層として機能しうる多孔質のアルミニ
ウム箔または薄板を積層状に組合わせた濾過膜が提案さ
れている。か\る提案は、特開昭62−1.291.0
6号公報に見られるが、この従来提案の濾過膜は、アル
ミニラム箔または薄板の片面に陽極酸化皮膜を形成する
一方、反対面からアルミニウム素地にフォトリングラフ
ィ技術により前記酸化皮膜の微細孔に連通ずる多数の細
孔を穿設形成するものである。このため、特に上記フォ
トリングラフィ工程において、酸化→フォトレジスト塗
布→マスキング−露光→現像→エツチングーフォトレジ
スト除去の一連の多工程の実施を必要とし、工程管理も
厄介で製造能率が悪く結果的にコスト高につくというよ
うな問題点かあった。
In order to solve these problems, a filtration membrane has recently been proposed in which a porous aluminum foil or thin plate, which can function as a back-up layer, is laminated on one side of an anodic oxide film. The proposal is published in Japanese Unexamined Patent Publication No. 62-1.291.0
As seen in Publication No. 6, this conventionally proposed filtration membrane forms an anodic oxide film on one side of an aluminum foil or thin plate, and connects the fine pores of the oxide film to the aluminum substrate from the other side using photolithography technology. A large number of communicating pores are formed. For this reason, especially in the above-mentioned photolithography process, it is necessary to carry out a series of multiple steps such as oxidation → photoresist coating → masking-exposure → development → etching and photoresist removal, and process control is also complicated, resulting in poor manufacturing efficiency and poor production efficiency. However, there were some problems such as high costs.

」二足のような背景のもと、本発明者らは、先に電解エ
ツチングアルミニウム箔を補強材とした陽極酸化皮膜に
よる濾過膜の製造方法を提案した(特願昭62−21.
9884号)。この製造方法は、高純度アルミニウム箔
を先ず第1工程として片面から電解エツチング処理し、
貫通直前までの深さを有する多数のエツチングピットを
形成せしめ、次いて第2工程として箔の反対面に陽極酸
化処理を施し、該面に多数の微細孔を有する濾過要素と
しての陽極酸化皮膜を形成せしめたのち、最後に第3工
程として溶解性の処理液に浸漬して前記エツチングピッ
トを陽極酸化皮膜の微細孔と連通せしめる貫通処理を施
すものである。ところが、この方法による場合、第1工
程の電解エツチング工程において、箔を貫通する直前ま
での深さにエツチングピッI・の深さをコントロールす
ることが難しく、−部にエツチングピットの貫通部分を
生じることが起こり、工業的生産の場面で工程管理上の
困難性が大きいという新たな問題点の派生が知見された
Against this backdrop, the present inventors previously proposed a method for manufacturing a filtration membrane using an anodized film using electrolytically etched aluminum foil as a reinforcing material (Japanese Patent Application No. 62-21).
No. 9884). This manufacturing method involves electrolytically etching high-purity aluminum foil from one side as the first step.
A large number of etching pits are formed with a depth just up to the depth of the foil, and then, as a second step, the opposite side of the foil is anodized to form an anodized film having a large number of micropores as a filter element. After this formation, the final third step is to perform a penetration treatment in which the etching pits are immersed in a soluble treatment solution to communicate with the fine pores of the anodic oxide film. However, when using this method, it is difficult to control the depth of the etching pit I to a depth just before penetrating the foil in the first electrolytic etching step, and a penetrating portion of the etching pit occurs in the negative part. This has led to the discovery of a new problem in industrial production, which is the great difficulty of process control.

そこで、この発明は更にこの問題点の解決をはかり、極
微細な貫通孔を高密度かつ均一に有して選択性、透過性
に優れた濾過膜を得ることを目的とする。
Therefore, it is an object of the present invention to further solve this problem and to obtain a filtration membrane having extremely fine through-holes at a high density and uniformity and having excellent selectivity and permeability.

課題を解決するための手段 この発明は、高純度アルミニウム箔に対し、先ずその両
面に陽極酸化処理を先行して施し、その酸化皮膜の微細
孔をエツチング核として次段の電解エツチング処理によ
り均一かつ微細な貫通エツチングピットを高密度に形成
せしめるものとなすことを主たる特徴事項とする。
Means for Solving the Problems This invention first performs anodic oxidation treatment on both sides of a high-purity aluminum foil, and uses the fine pores of the oxide film as etching nuclei in the subsequent electrolytic etching treatment to uniformly and oxidize the foil. The main feature is that fine penetrating etching pits are formed at high density.

即ち、この発明は、99.9%以上の高純度アルミニウ
ム箔を用い、その両面に陽極酸化処理を施して多数の微
細孔を有する陽極酸化皮膜を形成したのち、電解エツチ
ング処理を施すことにより前記陽極酸化皮膜の微細孔を
エツチング核とする均一かつ微細な貫通エツチングピッ
トを形成せしめることを特徴とする濾過膜の製造方法で
ある。
That is, the present invention uses high purity aluminum foil of 99.9% or more, anodizes both sides of the foil to form an anodic oxide film having a large number of micropores, and then electrolytically etches the foil to form an anodic oxide film having a large number of micropores. This method of manufacturing a filtration membrane is characterized by forming uniform and fine penetrating etching pits using the micropores of the anodic oxide film as etching nuclei.

素材のアルミニウム箔として、純度99.9%以上の高
純度のものを用いるのは、電解エツチングにより形成さ
れるエツチングピットが箔表面に対して垂直な方向に形
成されることを保証するためであり、不純物の存在によ
って該ピットの形成が妨げられあるいは成長を妨げられ
るのを回避するためである。最も好ましくは純度99.
99%以上のものを用いるのが良い。
The reason why we use high-purity aluminum foil with a purity of 99.9% or higher is to ensure that the etching pits formed by electrolytic etching are formed in a direction perpendicular to the foil surface. This is to avoid impeding the formation or growth of the pits due to the presence of impurities. Most preferably purity is 99.
It is preferable to use 99% or more.

また、その厚さは、O,!5mm以下のものを用いるの
が好適であり、特にO,ltnm程度のものを用いるの
が良い。
Also, its thickness is O,! It is preferable to use a material with a thickness of 5 mm or less, and in particular, a material with a thickness of approximately O, lt nm is preferably used.

製造の第1工程として、上記アルミニウム箔に対しその
両面を先ず陽極酸化処理し、照面に多孔質の陽極酸化皮
膜を形成する。この陽極酸化処理は、電解液として5〜
30wt%硫酸、1〜5wt%しゅう酸、5〜30wt
%リン酸、1〜10wt%クロム酸およびそれらの混酸
浴のうちから選ばれた任意の浴を用い、常法に従って浴
温度10〜50℃程度(硫酸浴10〜30℃、しゅう酸
浴10〜40°C1リン酸浴10〜50℃、クロム酸浴
10〜50°C)で電解処理するものである。また、こ
の電解処理は、直流、交流、交直重量、パルスのいずれ
の電流を用いて行っても良い。また同電解は、−膜電解
で行っても良いし、二段以上の多段に実施しても良く、
この場合、前段電解処理は所定厚さの酸化皮膜が得られ
るまで通常の電解処理を行い、後段電解処理は前段電解
処理時の印加電圧より所定範囲の値に急激に電圧を降下
させた定電圧電解処理によって行うものとするのが有利
である。
As the first manufacturing step, both surfaces of the aluminum foil are anodized to form a porous anodic oxide film on the illuminated surface. This anodic oxidation treatment is performed as an electrolyte
30wt% sulfuric acid, 1-5wt% oxalic acid, 5-30wt
Using any bath selected from % phosphoric acid, 1 to 10 wt % chromic acid, and mixed acid baths thereof, the bath temperature is about 10 to 50 °C (sulfuric acid bath 10 to 30 °C, oxalic acid bath 10 to 50 °C) according to a conventional method. Electrolytic treatment is performed in a 40°C phosphoric acid bath (10 to 50°C) and a chromic acid bath (10 to 50°C). Further, this electrolytic treatment may be performed using any of direct current, alternating current, alternating current, and pulsed current. Further, the same electrolysis may be performed by -membrane electrolysis, or may be performed in multiple stages of two or more stages,
In this case, the first-stage electrolytic treatment is a normal electrolytic treatment until an oxide film of a predetermined thickness is obtained, and the second-stage electrolytic treatment is performed at a constant voltage that is rapidly lowered to a value within a predetermined range from the voltage applied during the first-stage electrolytic treatment. Advantageously, this is carried out by electrolytic treatment.

上記陽極酸化処理により、アルミニウム箔両面に、厚さ
0. 1〜10μmの多孔質の陽極酸化皮膜を形成する
。この皮膜の有する微細孔は、陽極酸化処理条件を変化
させることで、孔径100〜2000人、面積率4.5
〜40%程度の範囲に自由に制御しうるちのである。
By the above anodizing treatment, both sides of the aluminum foil have a thickness of 0. A porous anodic oxide film of 1 to 10 μm is formed. By changing the anodic oxidation treatment conditions, the fine pores of this film can be created with a pore diameter of 100 to 2000 and an area ratio of 4.5.
It can be freely controlled within the range of ~40%.

次に、第2工程として上記第1工程による両面に陽極酸
化皮膜を形成したアルミニウム箔に、常法に従い塩素イ
オンを含む水溶液中で直流による電解エツチング処理を
施す。この電解エツチング処理により、アルミニウム箔
の両面に有する陽極酸化皮膜の微細孔をエツチング核と
して食刻を進行せしめ、箔を貫通した微細な貫通エツチ
ングピットを形成せしめるものとして所期の濾過膜を得
ることができる。
Next, as a second step, the aluminum foil on which anodized films have been formed on both sides in the first step is subjected to an electrolytic etching treatment using a direct current in an aqueous solution containing chlorine ions according to a conventional method. By this electrolytic etching treatment, etching progresses using the fine pores of the anodic oxide film on both sides of the aluminum foil as etching nuclei, and the desired filtration membrane is obtained by forming fine penetrating etching pits that penetrate the foil. Can be done.

この濾過膜は、もちろんそのま−で極微細な異粒子分離
能力をもった高性能なものとして実用に供しうるが、例
えば空気から窒素を分離して酸素濃度を高める場合のよ
うなガス分離用としての用途においては、」二足エツチ
ング箔による濾過膜をガス分離用担持膜の支持体として
使用する。而して、この場合、該支持体の片面にガス分
離用担持膜の担持処理を行い、例えばポリシロキサン系
ポリマー単分子膜を担持せしめたものとする。該担持膜
は薄いほどガス透過性が良好なものとなるが、それ自体
の機械的強度が低下する。従って、良好な透過性を保持
しながら破損を回避するためには、支持体側の透過孔と
して機能するエツチングピットは、特に裏面部孔径にお
いてなるべく小さく均一であることが望ましい。か\る
意味から、この発明によるエツチングアルミニウム箔は
、微細な貫通エツチングピットを高密度かつ均一に形成
せしめうる点で好適である。
Of course, this filtration membrane can be put to practical use as a high-performance membrane with the ability to separate extremely fine foreign particles, but it can also be used for gas separation, such as when separating nitrogen from air to increase oxygen concentration. In applications, bipedal etched foil filtration membranes are used as supports for gas separation carrier membranes. In this case, one side of the support is subjected to a treatment to support a gas separation support membrane, for example, to support a polysiloxane polymer monomolecular film. The thinner the support membrane is, the better the gas permeability will be, but the mechanical strength of the membrane itself will be lower. Therefore, in order to avoid damage while maintaining good permeability, it is desirable that the etching pits functioning as permeation holes on the support side be as small and uniform as possible, especially in the diameter of the holes on the back side. In this sense, the etched aluminum foil according to the present invention is suitable in that fine through-etched pits can be formed uniformly and densely.

実施例 実施例l AlN99アルミニウム材からなり、幅100mm、長
さ200mm、厚さ0.1mmの焼鈍アルミニウム箔(
1)を素材として用い、これを第1工程として次の電解
条件で両面を陽極酸住処理し、これにより、多数の微細
孔(3)を有する厚さ約1.5μmの陽極酸化皮膜(2
)を得た(第1図)。
Examples Example 1 An annealed aluminum foil made of AlN99 aluminum material and having a width of 100 mm, a length of 200 mm, and a thickness of 0.1 mm (
1) is used as a material, and as a first step, both sides are subjected to anodizing treatment under the following electrolytic conditions, thereby forming an anodic oxide film (2
) was obtained (Fig. 1).

(陽極酸化処理条件) 液組成:15wt%硫酸 液   温: 20±1°C 電解条件:直流1.5A/d7dX5分次に、第2工程
の電解エツチング処理として、上記陽極酸化処理済アル
ミニウム箔の両面を次の条件で電解処理し、前記陽極酸
化皮膜の微細孔(3)をエツチング核として箔を貫通し
た多数の貫通エツチングピット(4)を有する所期の濾
過膜(A)を得た。
(Anodizing treatment conditions) Liquid composition: 15wt% sulfuric acid solution Temperature: 20±1°C Electrolytic conditions: DC 1.5A/d7dX5 minutesNext, as the second step electrolytic etching treatment, the above-mentioned anodized aluminum foil was Both surfaces were electrolytically treated under the following conditions to obtain the desired filtration membrane (A) having a large number of through-etching pits (4) that penetrated the foil using the micropores (3) of the anodic oxide film as etching nuclei.

(電解エツチング処理条件) 液組成:5wt%HCQ+ 0、 1wt% H2C204 液   温; 70±2°C 電流密度:D、C15A/dボ 処理時間:100秒 実施例2 陽極酸化処理を下記のとおりとしたほかは、実施例1と
同様にして濾過膜(A)を得た。
(Electrolytic etching treatment conditions) Liquid composition: 5wt% HCQ+ 0, 1wt% H2C204 liquid Temperature: 70±2°C Current density: D, C15A/d processing time: 100 seconds Example 2 Anodizing treatment was performed as follows. A filtration membrane (A) was obtained in the same manner as in Example 1 except for the above steps.

(陽極酸化処理条件) 液組成:15wt%硫酸 液   温:20±1°C 電解方法:多段電解 電解条件:前段、直流IA/d尻×5分後段、前段より
低い電圧で数回 の定電圧電解(最終2V) 上記陽極酸化処理によるアルミニウム箔表面の陽極酸化
皮膜は、厚さ約20人のバリヤー皮膜を有するものであ
った。
(Anodizing treatment conditions) Liquid composition: 15wt% sulfuric acid solution Temperature: 20±1°C Electrolysis method: Multi-stage electrolysis Electrolysis conditions: First stage, DC IA/d bottom x 5 minutes Second stage, constant voltage several times at a lower voltage than the first stage Electrolysis (Final 2V) The anodic oxide film on the surface of the aluminum foil obtained by the above anodic oxidation treatment had a barrier film with a thickness of about 20 μm.

実施例3 陽極酸化処理を下記のとおりとしたほかは、実施例1と
同様にして濾過膜(A)を得た。
Example 3 A filtration membrane (A) was obtained in the same manner as in Example 1, except that the anodic oxidation treatment was performed as follows.

(陽極酸化処理条件) 液組成+3vt%しゅう酸 液   温:30±1°C 電解条件:直流I A/d 7Itx 5分上記陽極酸
化処理により形成し得た陽極酸化皮膜は厚さ約1.5μ
mのものであった。
(Anodizing treatment conditions) Liquid composition + 3vt% oxalic acid solution Temperature: 30±1°C Electrolysis conditions: DC I A/d 7Itx 5 minutes The anodic oxide film formed by the above anodizing treatment has a thickness of approximately 1.5 μm.
It was from m.

実施例4 陽極酸化処理を下記のとおりとしたほかは、実施例1と
同様にして濾過膜(A)を得た。
Example 4 A filtration membrane (A) was obtained in the same manner as in Example 1, except that the anodic oxidation treatment was performed as follows.

(陽極酸化処理条件) 液組成:10wt%リン酸 液   温: 30±1°C 電解条件;直流定電圧10Vxl□分 上記陽極酸化処理により形成し得た陽極酸化皮膜は厚さ
約0.5μmのものであった。
(Anodizing treatment conditions) Liquid composition: 10 wt% phosphoric acid solution Temperature: 30±1°C Electrolytic conditions: DC constant voltage 10 Vxl□min The anodic oxide film formed by the above anodizing treatment has a thickness of approximately 0.5 μm. It was something.

比較例1 実施例、1と同様のアルミニウム箔に、陽極酸化処理を
施すことなく、そのま\実施例1の第2工程と同様の電
解エツチング処理のみを施し、第3図に模式的に示すよ
うなアルミニウム箔(11)に多数の貫通エツチングピ
ット(■4)を有する濾過膜(B)を得た。この濾過膜
(B)のエツチングピット(14)は、孔径においてや
\不拘いであり、特に表面部において孔径の不規則な拡
大部(14a)を有するものであった。
Comparative Example 1 The same aluminum foil as in Example 1 was subjected to the same electrolytic etching treatment as in the second step of Example 1 without being anodized, as schematically shown in Figure 3. A filtration membrane (B) having a large number of etched pits (4) through the aluminum foil (11) was obtained. The etched pits (14) of this filtration membrane (B) had an irregular pore diameter, and in particular had enlarged portions (14a) of irregular pore diameter on the surface.

比較例2 比較例1と同様にして電解エツチングを施したのち、更
に、孔径縮小処理として次の条件による電解処理を施し
て濾過膜を得た。
Comparative Example 2 After electrolytic etching was performed in the same manner as in Comparative Example 1, electrolytic treatment was further performed as a pore size reduction treatment under the following conditions to obtain a filtration membrane.

(孔径縮小処理) 液組成:15vt%硫酸 液  温:25℃ 電解条件:直流1.OA/dTIIX5分〔対比評価〕 上記実施例1〜4及び比較例で得た各濾過膜を試料とし
、各試料にガス分離用担持膜(5)としてポリシロキサ
ン系ポリマー単分子膜を担持せしめ、気体透過装置に組
込んで気体透過特性を調べると共に、担持膜の担持処理
性についても調査した。結果を下記第1表に示す。
(Pore size reduction treatment) Liquid composition: 15vt% sulfuric acid solution Temperature: 25°C Electrolysis conditions: DC 1. OA/dTIIX 5 minutes [Comparative evaluation] Each of the filtration membranes obtained in Examples 1 to 4 and the comparative example above was used as a sample, and each sample was supported with a polysiloxane polymer monomolecular film as a gas separation support membrane (5). In addition to investigating the gas permeation characteristics by incorporating it into a gas permeation device, we also investigated the support processability of the support membrane. The results are shown in Table 1 below.

〔以下余白〕[Margin below]

第1表 (注)担持処理性は次により評価した。 Table 1 (Note) Supporting processability was evaluated as follows.

O: 第2図に示されるように担持膜が均一に欠陥なく
皮膜形成されたもの。
O: As shown in FIG. 2, the supporting film was formed uniformly and without defects.

×二 第3図に示されるように担持膜に破れ、欠損等の
皮膜欠陥が認められ たもの。
×2 As shown in Figure 3, film defects such as tears and defects were observed in the supporting film.

上記第1表に示されるように、この発明の実施例におい
ては、担持膜の担持処理前後においていずれも良好で安
定した気体透過特性を示し、比較例のように担持膜欠陥
による透過特性の有害な変化が起こることがなく、優れ
た分離機能を実現しうるものであることを確認し得た。
As shown in Table 1 above, the examples of the present invention exhibited good and stable gas permeation properties both before and after the supporting treatment of the supported film, and as in the comparative example, defects in the supported film caused adverse effects on the permeation properties. It was confirmed that no significant changes occurred and that excellent separation function could be achieved.

発明の効果 この発明によれば、元来アルミニウム製のものであって
、耐熱性、耐薬品性、耐油性等の諸物性に優れた濾過膜
を得ることができるのはもとより、陽極酸化皮膜の微細
孔を含めて箔の厚さ方向に垂直に貫通エツチングピット
による流体の流通孔を有するものとなしうることにより
、流体透過特性に優れた濾過膜を得ることができる。
Effects of the Invention According to the present invention, it is possible to obtain a filtration membrane that is originally made of aluminum and has excellent physical properties such as heat resistance, chemical resistance, and oil resistance. By having fluid circulation holes including micropores and etched pits extending perpendicularly to the thickness direction of the foil, a filtration membrane with excellent fluid permeation properties can be obtained.

特に、電解エツチングの前に、陽極酸化処理を施して箔
の両面に多孔質の陽極酸化皮膜を形成せしめるものとし
たことにより、エツチング段階で表面溶解を防止しっ\
、陽極酸化皮膜の微細孔をエツチング核として均一かつ
微細な貫通エツチングピットを高密度に形成せしめるこ
とができる。従って、実質上陽極酸化皮膜の微−] 8
 − 細孔をフィルター要素として機能させるものとなすこと
ができ、製造上使用目的に応じて所要の孔径の孔を均一
に形成せしめることができると共に、特に極微細孔をも
ち、極めて微細な異粒子の分離にも有効に使用しうるよ
うな濾過膜を製造することが可能となる。
In particular, before electrolytic etching, anodizing is performed to form a porous anodic oxide film on both sides of the foil, which prevents surface dissolution during the etching stage.
By using the fine pores of the anodic oxide film as etching nuclei, uniform and fine penetrating etching pits can be formed at a high density. Therefore, the amount of the anodic oxide film is substantially reduced.
- Pores can be made to function as filter elements, and pores with a required pore size can be uniformly formed depending on the purpose of use in manufacturing, and in particular, extremely fine foreign particles with extremely fine pores can be formed. It becomes possible to manufacture a filtration membrane that can be effectively used for the separation of

更に、この発明は、電解エツチングと、陽極酸化処理と
のいずれも簡易な表面処理技術を主工程としてそれらの
組合わせにおいて実施しうるちのであるから、製造が簡
易であり、前記特開昭62’−129106号公報に示
されるようなそれ自体に多工程の組合わせを要するフォ
トリングラフィ技術を利用するような製造方法に較べ、
はるかに生産性が良く、任意孔径の均一な孔をもった濾
過膜を廉価に製造することが可能となる。
Furthermore, since the present invention can be carried out in combination with both electrolytic etching and anodic oxidation using simple surface treatment techniques as main steps, manufacturing is simple, and it is possible to carry out the manufacturing process in accordance with the above-mentioned JP-A-62 Compared to a manufacturing method that uses photolithography technology, which itself requires a combination of multiple steps, as shown in '-129106,
It is possible to manufacture a filtration membrane having uniform pores of arbitrary pore size at a low cost with much better productivity.

更にまた、原料材とするアルミニウム箔に対し、先ず第
1工程としてその両面を陽極酸化処理し、次に第2工程
として両面から電解エツチングして陽極酸化皮膜の微細
孔を貫通せしめるものであるから、先に本発明者らが提
案した前述の製造方法に較べ、工程数の削減と共に工程
管理を容易化でき、製造能率、歩留りの向」二をはかる
ことかできる。
Furthermore, the aluminum foil used as the raw material is first anodized on both sides in the first step, and then electrolytically etched on both sides in the second step to penetrate the micropores of the anodic oxide film. Compared to the above-mentioned manufacturing method previously proposed by the present inventors, the number of steps can be reduced and process management can be simplified, and manufacturing efficiency and yield can be improved.

また、請求項第2項においては、陽極酸化処理によって
、均一で微細な孔を高密度分布に有する陽極酸化皮膜を
形成できる点で有利であり、請求項第3項においては、
エツチング処理時に箔の表面溶解を抑制しつ\、微細孔
から成長した貫通エツチングピットの確実な形成を可能
とする。
Further, in claim 2, it is advantageous in that an anodized film having uniform and fine pores in a high density distribution can be formed by anodizing treatment, and in claim 3,
It suppresses the surface dissolution of the foil during the etching process and enables reliable formation of through-etching pits grown from micropores.

更に、請求項第4項及び第5項の濾過膜は、ガス分離用
担持膜に皮膜欠陥を生じることなく、耐久性、分^1F
特性に優れたガス分離用、特に酸素分離用のものとなし
うる。
Furthermore, the filtration membranes according to claims 4 and 5 do not cause film defects in the supporting membrane for gas separation, and have excellent durability and 1F.
It can be used for gas separation, especially oxygen separation, with excellent properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はこの発明による濾過膜の製造方法を
工程順に示すものであり、第1図は陽極酸化処理工程終
了時の状態を、第2図は電解エツチング処理終了後ガス
分離用担持膜を担−2〇 − 持せしめた時の状態をそれぞれ示す模式断面図である。 第3図はエツチング処理のみで形成した濾過膜を担持膜
処理後の状態において示す模式断面図である。 (1)・・・アルミニウム箔、(2)・・・陽極酸化皮
膜、(3)・・・微細孔、(4)・・・貫通エツチング
ピット、(5)・・・担持膜。 以上
Figures 1 and 2 show the manufacturing method of a filtration membrane according to the present invention in the order of steps, with Figure 1 showing the state at the end of the anodizing process, and Figure 2 showing the state after the electrolytic etching process is completed. FIG. 2 is a schematic cross-sectional view showing the state in which the supporting film is supported. FIG. 3 is a schematic cross-sectional view showing a filtration membrane formed only by etching treatment after being treated with a supported membrane. (1)... Aluminum foil, (2)... Anodized film, (3)... Fine pores, (4)... Penetration etching pits, (5)... Support film. that's all

Claims (1)

【特許請求の範囲】 (1)99.9%以上の高純度アルミニウム箔を用い、
その両面に陽極酸化処理を施して多数の微細孔を有する
陽極酸化皮膜を形成したのち、電解エッチング処理を施
すことにより前記陽極酸化皮膜の微細孔をエッチング核
とする均一かつ微細な貫通エッチングピットを形成せし
めることを特徴とする濾過膜の製造方法。 (2)陽極酸化処理は、硫酸、しゅう酸、リン酸、クロ
ム酸のうちから選ばれた1種または2種以上を含む電解
液を用いて行う請求項 (1)に記載の濾過膜の製造方法。 (3)陽極酸化皮膜は、厚さを0.1〜10μmの範囲
に形成する請求項(1)または(2)に記載の濾過膜の
製造方法。 (4)請求項(1)により貫通エッチングピットを形成
したアルミニウム箔の片面にガス分離用担持膜を形成し
てなる濾過膜。 (5)ガス分離用担持膜がポリシロキサン系ポリマー単
分子膜からなる請求項(4)に記載の濾過膜。
[Claims] (1) Using high purity aluminum foil of 99.9% or more,
After anodic oxidation treatment is performed on both sides to form an anodic oxide film having many micropores, an electrolytic etching treatment is performed to form uniform and fine penetrating etching pits using the micropores of the anodic oxide film as etching nuclei. 1. A method for manufacturing a filtration membrane, characterized by forming a filtration membrane. (2) Manufacturing the filtration membrane according to claim (1), wherein the anodizing treatment is performed using an electrolytic solution containing one or more selected from sulfuric acid, oxalic acid, phosphoric acid, and chromic acid. Method. (3) The method for manufacturing a filtration membrane according to claim (1) or (2), wherein the anodic oxide film is formed to have a thickness in the range of 0.1 to 10 μm. (4) A filtration membrane comprising a supporting membrane for gas separation formed on one side of an aluminum foil in which through-etched pits are formed according to claim (1). (5) The filtration membrane according to claim (4), wherein the gas separation support membrane comprises a polysiloxane polymer monolayer.
JP4486688A 1988-02-26 1988-02-26 Filtration membrane and manufacturing method thereof Expired - Lifetime JPH07112531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4486688A JPH07112531B2 (en) 1988-02-26 1988-02-26 Filtration membrane and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4486688A JPH07112531B2 (en) 1988-02-26 1988-02-26 Filtration membrane and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01218607A true JPH01218607A (en) 1989-08-31
JPH07112531B2 JPH07112531B2 (en) 1995-12-06

Family

ID=12703418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4486688A Expired - Lifetime JPH07112531B2 (en) 1988-02-26 1988-02-26 Filtration membrane and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07112531B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251130A (en) * 2006-03-17 2007-09-27 Epitech Technology Corp Light emitting diode and its manufacturing method
JP2011122769A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2012088051A (en) * 2012-01-26 2012-05-10 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251130A (en) * 2006-03-17 2007-09-27 Epitech Technology Corp Light emitting diode and its manufacturing method
JP2011122769A (en) * 2009-12-10 2011-06-23 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface
JP2012088051A (en) * 2012-01-26 2012-05-10 Mitsubishi Electric Corp Heat transfer material for heat exchanger and method for processing heat transfer surface

Also Published As

Publication number Publication date
JPH07112531B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
Rigby et al. An anodizing process for the production of inorganic microfiltration membranes
US7631769B2 (en) Fluid control device and method of manufacturing the same
US7393391B2 (en) Fabrication of an anisotropic super hydrophobic/hydrophilic nanoporous membranes
US8231789B2 (en) Cross-flow filtration method and cross-flow filtration device
JPH01262903A (en) Method for producing filter membrane
KR100619354B1 (en) Nano particle filter using aluminum anodizing oxide template and manufacturing method thereof
US4722771A (en) Process for manufacturing a partially permeable membrane
JP2009074133A (en) Microstructure
JPH0637291B2 (en) Double-sided microporous alumina porous membrane and method for producing the same
KR20180009240A (en) Composite membranes consisted of patterned metallic supporters and metal oxide membranes fabricated by making a patterned layer on the surface of the metal and their fabrication method
JPH01218607A (en) Filtration membrane and its production
KR20090078611A (en) Method for manufacturing a porous anodic aluminum oxide template with even diameter of both ends
US4717455A (en) Process for manufacturing a microfilter
JP4990737B2 (en) Manufacturing method of fine structure
JP2008093652A (en) Microstructure and its manufacturing method
JP2009068076A (en) Fine structure and method of manufacturing the same
JPS6171804A (en) Porous aluminum oxide membrane
JP2008238048A (en) Precision filter unit
KR20130043601A (en) Method to fabricate nanoporous alumina membranes with through-hole pores which are open at both ends
KR20180040743A (en) Ionic diode membrane comprising branched nanopore and method for preparing thereof
CN101812712A (en) High-speed preparation method of extra small bore diameter porous anodized aluminium film
JPS59213402A (en) Filter
JPH01262904A (en) Method for producing filter membrane
KR20110106003A (en) Method for preparing nanoporous memebrane structure from low quality aluminum sheet
KR20180046975A (en) Method for separating polymer using metal-oxide membrane