JPS59213402A - Filter - Google Patents

Filter

Info

Publication number
JPS59213402A
JPS59213402A JP8539783A JP8539783A JPS59213402A JP S59213402 A JPS59213402 A JP S59213402A JP 8539783 A JP8539783 A JP 8539783A JP 8539783 A JP8539783 A JP 8539783A JP S59213402 A JPS59213402 A JP S59213402A
Authority
JP
Japan
Prior art keywords
aluminum
filter
film
oxide film
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8539783A
Other languages
Japanese (ja)
Inventor
Ikuo Ishiguro
石黒 郁男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Corp
Original Assignee
Pilot Pen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Pen Co Ltd filed Critical Pilot Pen Co Ltd
Priority to JP8539783A priority Critical patent/JPS59213402A/en
Publication of JPS59213402A publication Critical patent/JPS59213402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve the precision of filtration and the water permeability by providing micropores, having specified pore diameter and passing through vertically to the film surface, to an anodic aluminum oxide film obtained from aluminum or an aluminum alloy. CONSTITUTION:A substrate of aluminum or an aluminum alloy is anodically treated in an acidic or alkaline electrolyte to form an aluminum oxide film, having micropores which are arranged vertically to the surface part of the substrate. At the same time, after forming an activated layer between the substrate and the aluminum oxide film, the substrate and the activated layer are removed by dissolving chemically. In this way, the filter, consisting of aluminum oxide and having micropores passing through vertically to the film surface, can be obtained. The pore diameter of the micropore is regulated to about 50-1,000Angstrom , and the thickness of the film, for example, to 20-100mum.

Description

【発明の詳細な説明】 本発明は限外f過、気体分離などに用いる分離膜に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separation membrane used for ultraf filtration, gas separation, etc.

従来、この種の分離膜は主に、セルロースアセテート、
アクリロニトリル、ポリスルホン。
Conventionally, this type of separation membrane has mainly been made of cellulose acetate,
Acrylonitrile, polysulfone.

ポリカーボネートなどの高分子合成ポリマーで作成され
ている。この分離膜は(1)孔径が不均一である。(2
)耐圧性が悪い、(3)耐溶剤性が悪い。
It is made from synthetic polymers such as polycarbonate. This separation membrane has (1) non-uniform pore diameters; (2
) Poor pressure resistance; (3) Poor solvent resistance.

という欠点がある。There is a drawback.

本発明者は従来の分離膜における前記の(1)。The present inventor has discovered the above-mentioned (1) regarding conventional separation membranes.

(2)、 (3)の欠点を改善するには無機材料が最適
であるという観点から、金属、金属酸化物にッケル、ス
テンレス、酸化けい素など)の微粉末の焼結物について
研究したが、孔径が不均一で満足できるものが得られな
かった。本発明者はさらに鋭意研究を続けた結果、酸化
アルミニウムが最適な材料であることを発見して本発明
のフィルターを発明した。
From the viewpoint that inorganic materials are optimal for improving the drawbacks of (2) and (3), research has been conducted on sintered fine powders of metals, metal oxides, nickel, stainless steel, silicon oxide, etc. However, the pore diameter was non-uniform and a satisfactory result could not be obtained. As a result of further intensive research, the present inventor discovered that aluminum oxide was the most suitable material and invented the filter of the present invention.

本発明のフィルターは皮膜表面に垂直に貫通した微細孔
を酸化アルミニウム皮膜に設けたものである。酸化アル
ミニウム皮膜はアルミニウム又はアルミニウム合金の陽
極酸化皮膜より得られるものである。このアルミニウム
の陽極酸化皮膜は結晶構造としてα−アルミナ、γ−ア
ルミナ、非晶質アルミナなどであり、いずれの結晶構造
のものでもよい。濾過作用に適するように結晶構造に結
晶水を含んだものであってもよく、微細孔の孔径は約5
0〜l、o o o Xの範囲であり、その断面の各部
分で同じ孔径が保たれている必要は全くない。微細孔は
フィルターの表面に対して垂直又ははソ垂直に配置され
ていることが必要であるが、それが少し曲がっていても
、多少ジグザグ状になっていても構わない。
The filter of the present invention has an aluminum oxide film provided with micropores that penetrate perpendicularly to the surface of the film. The aluminum oxide film is obtained from an anodized film of aluminum or an aluminum alloy. This aluminum anodic oxide film has a crystal structure of α-alumina, γ-alumina, amorphous alumina, etc., and may have any crystal structure. The crystal structure may contain water of crystallization so as to be suitable for filtration, and the diameter of the micropores is approximately 5.
0 to l, o o o x, and there is no need for the same pore size to be maintained in each part of the cross section. The fine pores must be arranged perpendicularly or perpendicularly to the surface of the filter, but they may be slightly curved or zigzag-like.

本発明では、これらを総称して垂直という。In the present invention, these are collectively referred to as vertical.

本発明のフィルターは次のような特徴がある。The filter of the present invention has the following features.

すなわち、微細孔はその孔径が均一に良く揃っており2
表面に対して垂直に配置しているのでj−1過精度およ
び透水性がよ・い。月質と1〜で酸化アルミニウムを用
いているために面士圧性、面士溶剤性にすぐれている。
In other words, the diameter of the micropores is uniform and well arranged.
Since it is placed perpendicular to the surface, J-1 accuracy and water permeability are good. Since aluminum oxide is used in the first and second parts, it has excellent surface pressure and surface solvent properties.

さらに詳しく説明すると。Let me explain in more detail.

本発明のフィルターはアルミニウム又はアルミニウム合
金の陽極酸化処理方法によって製造するために、微細孔
は一定の間隔で規則的に形成でき、しかもその孔径の大
きさは電解処理条件を変えることにより容易に自由に変
えられ、孔径のばらつきは極めて小さい。そのために、
液体中の粒径の異なる微粒子を高精度で分離することか
り能となる。材質が酸化アルミニウムという無機質のた
めに、硬く2機械的に強いので。
Since the filter of the present invention is manufactured by anodizing aluminum or aluminum alloy, micropores can be formed regularly at regular intervals, and the size of the pores can be easily changed by changing the electrolytic treatment conditions. , and the variation in pore diameter is extremely small. for that,
This makes it possible to separate fine particles of different sizes in a liquid with high precision. Because the material is inorganic aluminum oxide, it is hard and mechanically strong.

f過中の加圧を高くでき、したがって、濾過能率を向」
−することがoT能であり、また種々の有機溶媒の1過
が可能であり、洗浄の際に有機溶剤を使用することがで
きるなどのすぐれた特徴がある。
The pressurization during filtration can be increased, thus increasing the filtration efficiency.
- It has excellent features such as being able to wash various organic solvents, and being able to use organic solvents during cleaning.

本発明のフィルターは次のようにして得られる。すなわ
ち、アルミニウム又はアルミニウム合金の基材を酸性又
はアルカリ性の電解液中で陽極処理し、基材の表面部分
に、皮膜表面に対して垂直に配列した微細孔を有する酸
化アルミニウム皮膜を生成し、同時に暴利と酸化アルミ
ニウム皮膜との間に活性層を生成した後に、基材と活性
層とを化学的方法で溶解して除去し。
The filter of the present invention can be obtained as follows. That is, an aluminum or aluminum alloy base material is anodized in an acidic or alkaline electrolyte to produce an aluminum oxide film on the surface of the base material that has micropores arranged perpendicular to the film surface, and at the same time After forming an active layer between the profiteer and the aluminum oxide film, the base material and the active layer are dissolved and removed by a chemical method.

皮膜表面に対して垂直に貫通した微細孔を有する酸化ア
ルミニウムよりなるフィルターが得られる。
A filter made of aluminum oxide having fine pores penetrating perpendicularly to the surface of the film is obtained.

アルミニウム又はアルミニウム合金の基イ2ilS!。Aluminum or aluminum alloy base 2ilS! .

普通市販されている材質の板材が1更用できるが。Although it is possible to use a board made of commonly available commercially available materials.

孔径の精度などの観点から比較的純IWのよい暴利が好
捷しく、アルミニウム以外の不純物はおよそ5%以内が
よい。基材の硬さは軟質でも硬質でもよく2才だ純度の
異々る材質より成る合せ板を用いることもできる。酸化
アルミニウム皮膜の微細孔の孔径は陽極酸化処理条件に
よって任意に変えることができるが、陽極酸化処理後、
酸性又はアルカリ性の溶液に浸漬又は′醒解処理、によ
って孔径をさらに大きくすることができる。才だ、陽極
処理後、水蒸気および加熱水溶液などで孔径をさらに小
さくすることができる。陽極処理に用いられる電解液は
硫酸、りん酸、クロム酸などの無機酸溶液、水酸化ナト
l)ラム、りん酸すトリウムなどのアルカリ溶液。
From the viewpoint of pore diameter accuracy, it is preferable to make a good profit from relatively pure IW, and the content of impurities other than aluminum is preferably about 5% or less. The hardness of the base material may be soft or hard, and laminated boards made of materials of different purity may also be used. The diameter of the micropores in the aluminum oxide film can be arbitrarily changed depending on the anodizing treatment conditions, but after the anodizing treatment,
The pore size can be further enlarged by immersion in an acidic or alkaline solution or by a decomposition treatment. However, after anodization, the pore size can be further reduced using steam or heated aqueous solution. The electrolyte used for anodization is an inorganic acid solution such as sulfuric acid, phosphoric acid, or chromic acid, or an alkaline solution such as sodium hydroxide, sodium phosphate, or sulfuric acid.

しゆう酸、スルホサリチル酸などの有機酸などを使用で
き、前記の酸の混酸およびアルカリの混酸なども1更用
できる。陽極処理に1更用する電源は直流、交流、交直
重畳、不完全整流、  PR。
Organic acids such as oxalic acid and sulfosalicylic acid can be used, and mixed acids of the above acids and mixed acids of alkalis can also be used. The power sources used for anodizing are DC, AC, AC/DC superimposition, incomplete rectification, and PR.

パルス、断続波形などを発生するものである。It generates pulses, intermittent waveforms, etc.

陽極酸化皮膜の厚さは電解液の種類、電解条件などによ
って任意に得ることができ、約200μm1での厚さが
得られる。皮膜の厚さは膜の強度と透水性の観点から決
められるべきであり。
The thickness of the anodic oxide film can be arbitrarily determined depending on the type of electrolytic solution, electrolytic conditions, etc., and a thickness of about 200 μm1 can be obtained. The thickness of the membrane should be determined from the viewpoints of membrane strength and water permeability.

皮膜の強度を得るためには少なくともl O1lrnが
心安であり、透水性を保つためにはできるだけ薄いほう
がよく、好捷しい膜厚は約20〜100/1?nの範囲
である。電解液よシ得られる酸化皮膜はγ−At2o3
の微結晶および非晶質であるが。
In order to obtain the strength of the film, it is safe to have at least 1 O1 lrn, and in order to maintain water permeability, it is better to be as thin as possible, and a preferable film thickness is about 20 to 100/1? n range. The oxide film obtained from the electrolyte is γ-At2o3
Although microcrystalline and amorphous.

皮膜をさらに溶融塩および炭酸ノーター溶液中で陽極電
解処理、又は熱線、炉内での加熱処理をすることにより
γ−At203皮膜および結晶性のγ−At203皮膜
を得ることができ、これらの処理を施こした皮膜は耐熱
性、耐PH性などの向上に役立つ。
A γ-At203 film and a crystalline γ-At203 film can be obtained by further subjecting the film to an anodic electrolytic treatment in a molten salt and a carbonate Notter solution, or a heat treatment using a hot wire or in a furnace. The applied film is useful for improving heat resistance, PH resistance, etc.

次に1本発明のフィルターの製造例を示す。Next, an example of manufacturing a filter of the present invention will be shown.

製造例1 純アルミニウムの円盤】(住友軽金属■製;記号108
0材、厚さo5喘、外径40卿φ)の片面に24胴φの
ゴム製の吸盤2を吸着して固定設置した後に、5%Na
OH浴(50c)に1分間浸漬して脱脂処理し、更に1
0%HNO3浴(室温)に30秒間浸漬してスマット除
去処理をした。
Production example 1 Pure aluminum disk] (manufactured by Sumitomo Light Metal ■; symbol 108
After adsorbing and fixing a rubber suction cup 2 with a diameter of 24 mm on one side of a piece of material (0 material, thickness: 05 mm, outer diameter: 40 mm), 5% Na
Immerse in an OH bath (50c) for 1 minute to degrease, and then soak for 1 minute.
Smut removal treatment was performed by immersing it in a 0% HNO3 bath (room temperature) for 30 seconds.

その後、  5%c2o、H2浴(30c)にe−漬(
、テW流電圧50V、−電流密度2A/dm2の条件で
70分間、陽極処理して陽極酸化皮膜3を生成した。
Then, e-soaked in a 5% C2O, H2 bath (30c).
The anodic oxide film 3 was produced by anodizing for 70 minutes under the conditions of , TeW current voltage of 50 V, and current density of 2 A/dm<2>.

陽極処理後、吸盤2を除去し、よく水洗した後。After anodizing, remove the suction cup 2 and wash thoroughly with water.

室温で乾燥し、臭素−メタノール(容量比1゜9)混合
溶液(室温)に約5時間浸漬して吸盤2でレヂスト処理
ていた部分4の純アルミニウム基材の本を溶解除去した
。次いで、リン酸−クロム酸混合溶液(リン酸5%、ク
ロム酸2チ)。
It was dried at room temperature and immersed in a bromine-methanol (volume ratio 1.9) mixed solution (room temperature) for about 5 hours to dissolve and remove the pure aluminum base book in section 4 which had been resist-treated with suction cup 2. Next, a phosphoric acid-chromic acid mixed solution (5% phosphoric acid, 2% chromic acid).

液温50Cに15分間浸漬し、純アルミニウム基拐が除
去された部分4の陽極酸化皮膜3の活性層5を溶解して
除去した(このとき、活性層5に隣接している陽極酸化
皮膜の表面をリン酸−クロム酸溶液に接触しないように
レヂスト処理した。)。その結果、最外径40団φ の
アルミニウム円盤1の中に24+III+Iφ、厚さ5
0/Amの酸化アルミニウム皮膜の表面に対して垂直に
貫通している微細孔6を有する構造のフィルターを得た
(第1図)。
The active layer 5 of the anodic oxide film 3 on the part 4 from which the pure aluminum base was removed was dissolved and removed by immersion in a liquid temperature of 50C for 15 minutes. The surface was resist-treated to prevent it from coming into contact with the phosphoric acid-chromic acid solution.) As a result, in the aluminum disk 1 with the outermost diameter of 40 groups φ, there are 24+III+Iφ and a thickness of 5
A filter having a structure having micropores 6 penetrating perpendicularly to the surface of a 0/Am aluminum oxide film was obtained (FIG. 1).

製造例2 前処理工程を製造例1と同じ方法1条件で行なった後に
5係C204H2浴(IOU)に浸漬して直流電圧80
V、電流密度3 A / dm20条件で50分間陽極
処理をした。その後の処理方法はリン酸−クロム酸混合
溶液に28分間浸漬した一以外は製造例1と同じ処理を
行なった。その結果、最外径40TMlφのアルミニウ
ム円盤lの中に24mmφ、厚さ50/Lmのアルミニ
ウム酸化皮膜の膜面に対して垂直に貫通している微細孔
を有する。製造例1と同様の構造のフィルターを得た。
Production Example 2 After performing the pretreatment process under the same method and conditions as Production Example 1, it was immersed in a 5-layer C204H2 bath (IOU) and a DC voltage of 80
V, anodization was performed for 50 min at a current density of 3 A/dm20. The subsequent treatment was the same as in Production Example 1, except that the sample was immersed in a phosphoric acid-chromic acid mixed solution for 28 minutes. As a result, an aluminum disk l having an outermost diameter of 40 TMlφ has micropores penetrating perpendicularly to the surface of the aluminum oxide film having a diameter of 24 mm and a thickness of 50/Lm. A filter having the same structure as Production Example 1 was obtained.

製造例3 前処理工程を製造例1と同じ方法1条件で行なった後に
アルミニウム円盤の試料を15’%H2S□。
Production Example 3 After performing the pretreatment process under the same method and conditions as Production Example 1, an aluminum disk sample was heated to 15'% H2S□.

浴(14C)に浸漬して直流電圧18V、電流密度2A
/dm”(7)条件で100分間、陽極酸化処理して陽
極酸化皮膜3を生成した。その後の処理方法はリン酸−
クロム酸混合溶液に5分間浸漬した以外は製造例1と同
じ処理を行なった。
Immersed in a bath (14C) with a DC voltage of 18V and a current density of 2A.
/dm'' (7) conditions for 100 minutes to produce an anodic oxide film 3.The subsequent treatment method was phosphoric acid-
The same treatment as in Production Example 1 was performed except that the sample was immersed in the chromic acid mixed solution for 5 minutes.

その結果、最外径40胴φのアルミニウム円盤の中に2
4mmφ、厚さ50/Amのアルミニウム酸化皮膜の表
面に対して垂直に貫通している微細孔を有する。製造例
1と同様の構造のフィルターを得た。
As a result, two
It has micropores penetrating perpendicularly to the surface of the aluminum oxide film having a diameter of 4 mm and a thickness of 50/Am. A filter having the same structure as Production Example 1 was obtained.

製造例4 純アルミニウムの円盤1(住友軽金属■製;記号108
0月、厚さ03鴫、外径70咽φ)の14面の40岨φ
の中に1m+nφの無数の点状の島となるようにエボキ
/系樹脂インキ7を用いてスクリーン印刷を行なった。
Production example 4 Pure aluminum disk 1 (manufactured by Sumitomo Light Metal ■; symbol 108
October, thickness 03mm, outer diameter 70mm), 14 sides of 40mm diameter
Screen printing was performed using ebony/based resin ink 7 so that there were countless dotted islands of 1 m+nφ in the area.

前処理工程を製造例1と同じ方法、条件で行なった後に
5%C204H2浴(30tlに浸漬して直流′電圧5
0V、電流密度2 A /′d m20条件で70分間
、陽極酸化処理をした。陽極処理後、レヂストインクを
MEKとプチルセロノルブ(混合比7:3)の混合液に
浸漬して剥離した後、臭素−メタノール混合溶液に約3
時間浸漬して40mmφ中の1mmφの無数の点状のア
ルミニウム暴利が露出している部分4のアルミニウム基
材のみを溶解して除去した。次いで製造例1と同じ方法
で前記処理により純アルミニウム基材が除去された部分
の陽極酸化皮膜の活性層5を溶解して除去した(この場
合、活性層に隣接している多孔性の陽極酸化皮膜の表面
をリン酸−クロム酸溶液に接触しないようにレヂスト処
理なした。)。その結果。
After performing the pretreatment process in the same manner and under the same conditions as in Production Example 1, it was immersed in a 5% C204H2 bath (30 tl),
Anodizing was performed for 70 minutes at 0 V and current density of 2 A/'d m20. After the anodization, the resist ink was immersed in a mixed solution of MEK and butylcelonorb (mixing ratio 7:3) to peel it off, and then soaked in a bromine-methanol mixed solution of approx.
After being immersed for a time, only the portion 4 of the aluminum base material in which countless dots of 1 mm in 40 mm in diameter were exposed was dissolved and removed. Next, in the same manner as in Production Example 1, the active layer 5 of the anodic oxide film in the area where the pure aluminum base material had been removed by the above treatment was dissolved and removed (in this case, the porous anodic oxide film adjacent to the active layer was removed). No resist treatment was applied to the surface of the film to prevent it from coming into contact with the phosphoric acid-chromic acid solution.) the result.

最外径70闘φのアルミニウム円盤の内側に40咽φの
中に1胴φの無数の点状の酸化アルミニウムの膜面に対
して垂直に貫通している微細孔を有する構造のフィルタ
ーを得た(第2図および第3図)。
A filter was obtained that had a structure in which inside an aluminum disk with an outermost diameter of 70 mm, micropores with a diameter of 40 mm penetrated perpendicularly to the surface of the aluminum oxide film in the form of countless dots of 1 mm diameter. (Figures 2 and 3).

次に1本発明のフィルターの性能をのべる。Next, the performance of the filter of the present invention will be described.

(1)  孔径の均−性 製造例Iないし製造例4で得られたフィルターの表面を
電子顕微鏡で観察して、(′にのことを確認した。製造
例1および製造例4で得られたフィルターは孔径が約2
00X(分布幅は約1ooX〜約3ooX )であった
。製造例2および製造例3で得られたフィルターはそれ
ぞれ孔径が約5ooX(分布幅は約400X〜約6oo
X)および約300K  (分イ5幅は約50人〜約2
00λ)であった。各フィルターは孔径が均一で孔が規
則的に配列し、かつ垂直であった。このような構造は金
属又は金属酸化物の焼結法で製造されたフィルター、お
よび高分子材料で製造されたフィルターなどでは給体に
得ることができない。
(1) Uniformity of pore size The surfaces of the filters obtained in Production Examples I to 4 were observed with an electron microscope, and it was confirmed that (') The filter has a pore size of approximately 2
00X (distribution width is about 1ooX to about 3ooX). The filters obtained in Production Example 2 and Production Example 3 each have a pore size of about 500X (distribution width is about 400X to about 600X).
X) and about 300K (minutes 5 width is about 50 people to about 2
00λ). Each filter had uniform pore size, regularly arranged pores, and vertical pores. Such a structure cannot be obtained in the feed body with filters manufactured by a sintering method of metals or metal oxides, filters manufactured with polymeric materials, and the like.

(2)  耐圧性 製造例1ないし製造例4で得られたフィルターを150
 K9/Crn2に加圧したが、損傷、破損はなかった
。本発明のフィルターは金属又は金属酸化物の焼結法で
製造したフィルターとほぼ同じ制圧性を南するが、高分
子H料で製造したフィルターの制圧性が70にり7口2
以下であるのに比べてずぐれた面J圧性を有する。
(2) Pressure resistance The filters obtained in Production Examples 1 to 4 were
Although K9/Crn2 was pressurized, there was no damage or breakage. The filter of the present invention has almost the same pressure suppression properties as filters manufactured by the sintering method of metals or metal oxides, but the pressure suppression properties of filters made with polymer H material are 70 compared to 7 points 2.
It has superior surface J pressure properties compared to the following.

(3)111I溶剤性など 製造例1ないし製造例4で得られたフィルターはアルコ
ール、炭化水素、エステル、ケトン、エーテル、含」蓋
素溶剤などに対してすぐれた耐溶剤性を示す。この耐溶
剤性は金属又は金属酸化物の焼結法で製造されたフィル
ターとほぼ同じであり、高分子イオ料で製造されたフィ
ルターが有機溶剤に侵されるのに比べてすぐれた面1溶
剤性を有する。また、動物油、植物油、鉱物油、可塑剤
、活性剤などに対してもu性がある。
(3) 111I solvent properties The filters obtained in Production Examples 1 to 4 exhibit excellent solvent resistance to alcohols, hydrocarbons, esters, ketones, ethers, hydrogen-containing solvents, and the like. This solvent resistance is almost the same as that of filters manufactured by the sintering method of metals or metal oxides, and has excellent one-sided solvent resistance compared to filters manufactured with polymeric ion materials, which are attacked by organic solvents. has. It also has anti-corrosion properties against animal oils, vegetable oils, mineral oils, plasticizers, activators, etc.

(4)jゴ過性 製造例1で得られたフィルター(孔径は約200久)の
透水速度は1過圧力05に9/L:m2のとき約015
m/!/mJ−Cm2でありf過圧力4 Kq/cm2
のとき約1.2 ml7w・α2でj5過圧力にほぼ正
比例した。また、濾過圧力4 Kg/1yn2のときσ
4過溶液中の約300Å以上の大きさの粒子はフィルタ
ーを通過しなかった。このことから明らかなように、特
に高いf過圧力下でフィルターの孔径は変化せずすぐれ
た1過性能な廂している。
(4) J Goggleability The water permeation rate of the filter obtained in Production Example 1 (pore size is approximately 200 mm) is approximately 015 at 1 overpressure 05 to 9/L:m2
m/! /mJ-Cm2 and f overpressure 4 Kq/cm2
At that time, it was approximately 1.2 ml7w・α2, which was almost directly proportional to the j5 overpressure. Also, when the filtration pressure is 4 Kg/1yn2, σ
Particles larger than about 300 Å in size in the 4-filter solution did not pass through the filter. As is clear from this, the pore diameter of the filter does not change even under particularly high f overpressure, and the filter maintains excellent one-pass performance.

本発明のフィルターは従来の有機高分子膜や焼結法で製
造された金属や金属酸化物膜をイ1するフィルターに比
べて、すぐれた性能を有し。
The filter of the present invention has superior performance compared to conventional organic polymer membranes or filters made of metal or metal oxide membranes manufactured by sintering methods.

限外1過や気体分離に顕著な効果がある。It has remarkable effects on ultraviolet filtration and gas separation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明のフィルターの異なる実施
例の模型的に示しだ一部断面図、第3図は第2図のフィ
ルターの縮小平面図である。 l・・・純アルミニウムの円盤、3・・陽極酸化皮膜、
5・・・活性層、6・・微細孔。
1 and 2 are partially sectional views schematically showing different embodiments of the filter of the present invention, and FIG. 3 is a reduced plan view of the filter of FIG. 2. l...Pure aluminum disk, 3...Anodized film,
5... Active layer, 6... Micropore.

Claims (1)

【特許請求の範囲】[Claims] 皮膜表面に対して垂直に貫通した孔径が約50〜1oo
oXの微細孔を酸化アルミニウム皮膜に設けたフィルタ
ー。
The diameter of the pores that penetrate perpendicularly to the film surface is approximately 50 to 100 mm.
A filter with oX micropores in the aluminum oxide film.
JP8539783A 1983-05-16 1983-05-16 Filter Pending JPS59213402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8539783A JPS59213402A (en) 1983-05-16 1983-05-16 Filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8539783A JPS59213402A (en) 1983-05-16 1983-05-16 Filter

Publications (1)

Publication Number Publication Date
JPS59213402A true JPS59213402A (en) 1984-12-03

Family

ID=13857635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8539783A Pending JPS59213402A (en) 1983-05-16 1983-05-16 Filter

Country Status (1)

Country Link
JP (1) JPS59213402A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187320A (en) * 1984-03-07 1985-09-24 Toyo Soda Mfg Co Ltd Gas separation using anodized aluminum film
US5753014A (en) * 1993-11-12 1998-05-19 Van Rijn; Cornelis Johannes Maria Membrane filter and a method of manufacturing the same as well as a membrane
US5782960A (en) * 1996-03-18 1998-07-21 Mitsubishi Jukogyo Kabushiki Kaisha Hydrogen separation member
JP2008239695A (en) * 2007-03-26 2008-10-09 Fujifilm Corp Method of purifying polymer using fine structure
JP2012081473A (en) * 2012-01-30 2012-04-26 Fujifilm Corp Method for manufacturing precision filter unit
CN104815566A (en) * 2015-04-28 2015-08-05 南京工业大学 Antibacterial dedusting membrane production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187320A (en) * 1984-03-07 1985-09-24 Toyo Soda Mfg Co Ltd Gas separation using anodized aluminum film
US5753014A (en) * 1993-11-12 1998-05-19 Van Rijn; Cornelis Johannes Maria Membrane filter and a method of manufacturing the same as well as a membrane
US5782960A (en) * 1996-03-18 1998-07-21 Mitsubishi Jukogyo Kabushiki Kaisha Hydrogen separation member
JP2008239695A (en) * 2007-03-26 2008-10-09 Fujifilm Corp Method of purifying polymer using fine structure
JP2012081473A (en) * 2012-01-30 2012-04-26 Fujifilm Corp Method for manufacturing precision filter unit
CN104815566A (en) * 2015-04-28 2015-08-05 南京工业大学 Antibacterial dedusting membrane production method

Similar Documents

Publication Publication Date Title
JP4647812B2 (en) Method for producing anodized porous alumina
CN100432301C (en) Process for preparing porous anode aluminium oxide mould of height ordered by mixed acid electrolyzing liquid
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
US20090050564A1 (en) Cross-flow filtration method and cross-flow filtration device
KR20120028674A (en) Method of fabricating anodic aluminium oxide
JP2008202112A (en) Microstructure and method of manufacturing the same
JP2006213992A (en) Anodically oxidized porous alumina and method for producing the same
JPH07112532B2 (en) Method for manufacturing filtration membrane
JPS59213402A (en) Filter
US4722771A (en) Process for manufacturing a partially permeable membrane
JP2009074133A (en) Microstructure
JP4222861B2 (en) Anodized porous alumina and method for producing the same
US4717455A (en) Process for manufacturing a microfilter
TWI627316B (en) A method for making a tubular anodic aluminum oxide with nanometer or sub-micron pores
JP5726466B2 (en) Catalyst carrier, catalyst body and method for producing them
JP3045329B2 (en) Method for producing hydrogen separation membrane
CN112831817B (en) Anatase type biological titanium material and preparation method thereof
JP2008238048A (en) Precision filter unit
JP2009068076A (en) Fine structure and method of manufacturing the same
JP2009166005A (en) Manufacturing method of hydrogen permeable membrane
JPS6171804A (en) Porous aluminum oxide membrane
WO2011099115A1 (en) Alumite membrane filter, and process for production of alumite membrane filter
CN100532317C (en) Process for preparing alumina ceramic foil materials with penetrative nanohole
Brown et al. Fabrication, structure and properties of nanostructured ceramic membranes
KR20120084042A (en) Asymmetric alumina membrane having monosized pores and manufacturing method thereof