JPH01218286A - Color image pickup device - Google Patents

Color image pickup device

Info

Publication number
JPH01218286A
JPH01218286A JP63043661A JP4366188A JPH01218286A JP H01218286 A JPH01218286 A JP H01218286A JP 63043661 A JP63043661 A JP 63043661A JP 4366188 A JP4366188 A JP 4366188A JP H01218286 A JPH01218286 A JP H01218286A
Authority
JP
Japan
Prior art keywords
color
picture element
solid
light
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63043661A
Other languages
Japanese (ja)
Other versions
JP2885316B2 (en
Inventor
Kimihiko Nishioka
公彦 西岡
Hiroyuki Fukuda
弘之 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63043661A priority Critical patent/JP2885316B2/en
Publication of JPH01218286A publication Critical patent/JPH01218286A/en
Application granted granted Critical
Publication of JP2885316B2 publication Critical patent/JP2885316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent color shading by eliminating light beams made incident on a photodetection section of each picture element through a color coding filter color element corresponding to an adjacent picture element to each picture element of a solid-state image pickup element. CONSTITUTION:A convex lens 8 of an image forming lens system 3 is arranged near a mosaic filter 2 and the convex lens 8 is bonded to a glass plate 5 of a solid-state image pickup element 1. When lower light beams at the outside of an axis of a maximum image height is made incident on a photodetection section of a picture element, the relation of a reflective index of an adhesive agent layer 6 and an F number of an image forming lens 3 is decided so as to allow the light beams to pass through a point closest to the picture element of the color element of the mosaic filter 2 corresponding to the picture element adjacent to the side close to the optical axis of the image forming lens system 32 with respect to the picture element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モザイクフィルター、ストライブフィルター
等の色符号化フィルターを有する固体撮像素子を用いた
電子内視鏡、TVカメラ、ファイバースコープや硬性鏡
などに装着するTVカメラ。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to electronic endoscopes, TV cameras, fiberscopes, and rigid imaging devices using solid-state image sensors having color-encoded filters such as mosaic filters and stripe filters. A TV camera attached to a mirror, etc.

電子カメラ等のカラー撮像装置に関する。The present invention relates to color imaging devices such as electronic cameras.

〔従来の技術〕[Conventional technology]

この種従来のカラー撮像装置の一つは、第23図に示し
た如く、固体撮像素子1の撮像面にモザイクフィルター
2を設け、該撮像面に結像レンズ系3により物体像を結
像するようにして成るものであった。そして、固体撮像
素子1は、その要部拡大断面図である第24rXJに示
した如く、撮像面4に夫々が独立した受光部4bを有す
る複数の絵素4aが二次元に配列され、表面にモザイク
フィルター2を蒸着(干渉フィルターの場合)又は塗布
(吸収フィルターの場合)して成るガラス板5を該モザ
イクフィルター2の各色要素2aが各絵素4aに対応す
るようにして透明な接着剤層6を介して撮像面4に接合
して成るものであった。
As shown in FIG. 23, one of this type of conventional color imaging devices includes a mosaic filter 2 provided on the imaging surface of a solid-state imaging device 1, and an object image formed on the imaging surface by an imaging lens system 3. This is how it was done. As shown in No. 24rXJ, which is an enlarged sectional view of the main part, the solid-state image sensor 1 has a plurality of picture elements 4a arranged two-dimensionally on the imaging surface 4, each having an independent light-receiving section 4b. A glass plate 5 on which a mosaic filter 2 is deposited (in the case of an interference filter) or coated (in the case of an absorption filter) is coated with a transparent adhesive layer such that each color element 2a of the mosaic filter 2 corresponds to each picture element 4a. It was connected to the imaging surface 4 via a cylindrical tube 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、近年固体撮像素子1の絵素数の増加に伴い絵
素の小型化が進んだために、第23図に示した如く結像
レンズ系3を通った軸外主光線7が固体撮像素子1の撮
像面4に垂直に入射しない場合は、第24図に示した如
く、固体撮像素子1の各絵素4aに対し結像レンズ系3
の光軸に近い側に隣接する絵素4aに対応する色要素2
aを通り該各絵素4aの受光部4bに入射してしまい、
正しい色が再現されなくなってしまうという問題があっ
た。これを色シェーデイングという、尚、7aは軸外下
側光線である。
However, in recent years, as the number of picture elements of the solid-state image sensor 1 has increased and the size of the picture elements has progressed, the off-axis principal ray 7 passing through the imaging lens system 3 has become smaller than the solid-state image sensor 1, as shown in FIG. When the incident light is not perpendicular to the imaging surface 4, the imaging lens system 3
Color element 2 corresponding to the picture element 4a adjacent to the side closer to the optical axis of
a and enters the light receiving section 4b of each picture element 4a,
There was a problem that correct colors were not reproduced. This is called color shading, and 7a is the off-axis lower ray.

本発明は、上記問題点に鑑み、色シェーディイングを確
実に防止するようにしたカラー撮像装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a color imaging device that reliably prevents color shading.

〔課題を解決するための手段及び作用〕本発明によるカ
ラー描像装置は、結像レンズ系と、夫々が独立した受光
部を有する複数の絵素を二次元に配列して成る固体撮像
素子と、該固体撮像素子の前記受光部の前方に微小間隔
を隔てて配置された前記各絵素に対応する色要素を有す
る色符号化フィルターとを備えたカラー撮像装置におい
て、前記結像レンズ系のうち前記色符号化フィルターに
近いレンズを前記色符号化フィルターの近傍に配置し、
且つ次の条件を満足するようにしたことを特徴としてい
る。
[Means and effects for solving the problems] A color imaging device according to the present invention includes an imaging lens system, a solid-state imaging device formed by two-dimensionally arranging a plurality of picture elements each having an independent light receiving section, A color encoding filter having a color element corresponding to each picture element and arranged in front of the light receiving section of the solid-state image sensor at a minute interval, the color encoding filter having color elements corresponding to each of the picture elements; disposing a lens close to the color encoding filter in the vicinity of the color encoding filter;
Moreover, it is characterized by satisfying the following conditions.

〜 IS− θ、≦θ+−〇。~ IS- θ, ≦θ+−〇.

但し、θ、は前記固体撮像素子の各絵素の受光部に夫々
入射する光線の入射角、θは前記各絵素に対し前記結像
レンズ系の光軸に近い側に隣接する絵素に対応する色要
素の前記各絵素に最も近い点を通って前記各絵素の受光
部に入射する現実の又は仮想の光線の入射角、θ、はn
、を色要素と受光面との間の媒質の屈折率、Fを前記結
像レンズ系のFナンバーとする時 n+     2F である。
However, θ is the incident angle of the light beam that enters the light receiving portion of each picture element of the solid-state image sensor, and θ is the incident angle of the light ray that enters the light receiving part of each picture element of the solid-state image sensor, and θ is the incident angle of the light ray that enters the light receiving part of each picture element of the solid-state image sensor, and θ is the incident angle of the light ray that enters the light receiving part of each picture element of the solid-state image sensor, and θ is the incident angle of the light ray that enters the light receiving part of each picture element of the solid-state image sensor, The incident angle, θ, of a real or virtual light ray that passes through the point closest to each picture element of the corresponding color element and enters the light receiving part of each picture element is n
, is the refractive index of the medium between the color element and the light-receiving surface, and F is the F number of the imaging lens system, then n+ 2F.

尚、上記仮想の光線とは、受光部間に位置する遮光部分
(突部)の大きさや光線の入射角の設定の仕方によって
はある絵素に対応する色要素を通って隣りの絵素の受光
部に入射する光線が存在しない場合があるので、このよ
うな場合に入射すると仮想した光線を云う。
Note that the above-mentioned virtual light rays may pass through the color element corresponding to a certain pixel and enter the neighboring pixel, depending on the size of the light-blocking part (protrusion) located between the light-receiving areas and how the incident angle of the light ray is set. Since there are cases where there is no light ray that enters the light receiving section, it is referred to as a hypothetical light ray that is incident on such a case.

以上の条件を満足することにより、固体撮像素子の各絵
素に隣接する絵素に対応する色符号化フィルターの色要
素を通って該各絵素の受光部に入射する光線がなくなり
、色シェーデイングが防止されるが、具体的には結像レ
ンズ系のうちの一つのレンズを固体撮像素子の近傍に配
置し、該レンズのパワーを上記条件を満足するように選
択することにより行われる。
By satisfying the above conditions, there will be no light rays that pass through the color elements of the color encoding filter corresponding to the pixels adjacent to each pixel of the solid-state image sensor and enter the light receiving portion of each pixel, resulting in color shading. Specifically, deing is prevented by arranging one lens of the imaging lens system near the solid-state image sensor and selecting the power of the lens so as to satisfy the above conditions.

〔実施例〕〔Example〕

以下、図示した実施例に基づき上記従来例と同一の部材
には同一符号を付して本発明の詳細な説明する。
Hereinafter, the present invention will be described in detail based on the illustrated embodiment, with the same reference numerals assigned to the same members as in the above-mentioned conventional example.

第1図は第1実施例を示しており、これは結像レンズ系
3のうちの凸レンズ8をモザイクフィルター2の近傍に
配設したもの、具体的には固体撮像素子lのガラス板5
に凸レンズ8を接合したものである。
FIG. 1 shows a first embodiment in which a convex lens 8 of an imaging lens system 3 is disposed near a mosaic filter 2, specifically a glass plate 5 of a solid-state image sensor l.
A convex lens 8 is bonded to the lens.

第2図は第2実施例を示しており、これは水晶から成る
光学的ローパスフィルター9.赤外光カットフィルター
10.凸レンズ8を一つの支持枠11で支持して成るブ
ロックを固体撮像素子1に固着して一体化したものであ
る。
FIG. 2 shows a second embodiment, which is an optical low-pass filter 9. made of quartz crystal. Infrared light cut filter 10. A block consisting of a convex lens 8 supported by one support frame 11 is fixed to and integrated with the solid-state image sensor 1.

第3図は第3実施例を示しており、これは凸レンズ8を
固体撮像素子1とプリズム12との間に配置したもので
あり、凸レンズ8は固体撮像素子1又はプリズム12に
接着剤で接合しても良いし、機械的に固定しても良い。
FIG. 3 shows a third embodiment, in which a convex lens 8 is arranged between a solid-state image sensor 1 and a prism 12, and the convex lens 8 is bonded to the solid-state image sensor 1 or the prism 12 with an adhesive. It may be fixed mechanically or it may be fixed mechanically.

第4図は第4実施例を示しており、これは凸レンズ8の
代わりに不均質媒質レンズから成る正レンズ13を光学
的ローパスフィルター9と赤外光カットフィルター10
との間に挟んで接合したものを固体撮像素子1の近傍に
配設したものである。
FIG. 4 shows a fourth embodiment, in which a positive lens 13 made of a heterogeneous medium lens is used instead of a convex lens 8, an optical low-pass filter 9 and an infrared light cut filter 10.
The solid-state image sensing device 1 is arranged in the vicinity of the solid-state image sensing device 1.

本実施例は不均質媒質レンズから成る正レンズ1′3を
用いているので機構的に簡単になると共に、正レンズ1
3を光学的ローパスフィルター9及び赤外光カットフィ
ルター10と接合してサンドイッチ構造にしているので
湿度に弱い正レンズ13を保護できるという利点がある
In this embodiment, since the positive lens 1'3 made of a non-uniform medium lens is used, it is mechanically simple and the positive lens 1'3 is made of a non-uniform medium lens.
3 is joined with the optical low-pass filter 9 and the infrared light cut filter 10 to form a sandwich structure, which has the advantage that the positive lens 13, which is sensitive to humidity, can be protected.

第5図は第5実施例を示しており、平凸レンズを二枚向
かい合わせて成る結像レンズ系3の凸レンズ8に赤外光
カットフィルターlO及び光学的ローパスフィルター9
を接合したものを固体撮像素子lに固着したものである
FIG. 5 shows a fifth embodiment, in which an infrared cut filter lO and an optical low-pass filter 9 are attached to a convex lens 8 of an imaging lens system 3 consisting of two plano-convex lenses facing each other.
The solid-state image sensing device 1 is made by bonding the two together and fixing it to the solid-state image sensor l.

第6@は第6実施例を示しており、これは凸レンズと凹
レンズの接合レンズである凸レンズ8を光学的ローパス
フィルター9を介して固体撮像素子lの前面に接合した
ものであり、凹レンズのアツベ数を凸レンズのアツベ数
より小さくすることにより倍率の色収差を補正できると
いう利点がある。
No. 6 @ shows the sixth embodiment, in which a convex lens 8, which is a cemented lens of a convex lens and a concave lens, is bonded to the front surface of a solid-state image sensor l via an optical low-pass filter 9. By making the number smaller than the Abbe number of the convex lens, there is an advantage that chromatic aberration of magnification can be corrected.

尚、結像レンズ系3の入射面から固体撮像素子lに至る
までの光路中の主光線が光軸にほぼ平行になる部分に干
渉膜でできたフィルター(例えば、赤外光カットフィル
ター、YAGレーザ−カットフィルター)を置けば、画
面の場所ごとの干渉フィルターの分光特性の変化が少な
く、全画面同じ色再現の画像が得られるので、有利であ
る。そして、干渉フィルターの特性から、主光線の傾角
は20°以下、できれば15°以下とすることが望まし
い、又、干渉フィルターは空気接触面に設けても良いし
、レンズ或は固体撮像素子カバーグラスの接合面に設け
ても良い、又、干渉フィルターは吸収型フィルターに比
べ薄いので、内視鏡のようにコンパクト化が要求される
ものに用いた場合特に有利である′。
Note that a filter made of an interference film (for example, an infrared cut filter, a YAG Placing a laser cut filter is advantageous because there is little change in the spectral characteristics of the interference filter depending on the location on the screen, and an image with the same color reproduction on the entire screen can be obtained. From the characteristics of the interference filter, it is desirable that the inclination angle of the principal ray be 20 degrees or less, preferably 15 degrees or less.Also, the interference filter may be provided on the air contact surface, or it may be placed on the lens or solid-state image sensor cover glass. Also, since interference filters are thinner than absorption filters, they are particularly advantageous when used in devices that require compactness, such as endoscopes.

次に、固体撮像素子1の近傍に配設した凸レンズ8又は
正レンズ13が満たすべき条件について説明する。
Next, conditions to be satisfied by the convex lens 8 or the positive lens 13 disposed near the solid-state image sensor 1 will be explained.

第7図はモザイクフィルター付固体撮像素子の要部断面
図である。
FIG. 7 is a sectional view of a main part of a solid-state image sensor with a mosaic filter.

色シェーデイングが生じないためには、最大像高の軸外
下側光線7a(ガラス板5への入射角は“・)がある絵
!4°の受光部4bに入射する艷その光線7aが該絵素
4aに対し結像レンズ系の光軸に近い側(第7図下側)
に隣接する他の絵素4aに対応するモザイクフィルター
2の色要素2aの上記絵素4aに最も近い点即ち上端の
点A以上を通過すれば良い、即ち、軸外下側光線7aの
〜 接着剤層6中の傾き角θ、が上記点Aを通って絵〜 素4aに入射する光線の接着剤層6中の傾き角θ以下で
あれば良い、尚、ここでこれらの光線は子午面内にある
ものとする。
In order to prevent color shading from occurring, it is necessary that the off-axis lower ray 7a with the maximum image height (the angle of incidence on the glass plate 5 is The side closer to the optical axis of the imaging lens system with respect to the picture element 4a (lower side in Figure 7)
It is sufficient to pass through the point closest to the picture element 4a of the color element 2a of the mosaic filter 2 corresponding to another picture element 4a adjacent to the above, that is, the point A at the upper end or higher. It is sufficient that the inclination angle θ in the adhesive layer 6 is less than or equal to the inclination angle θ in the adhesive layer 6 of the light rays passing through the above point A and entering the element 4a. It shall be within.

次に角度θを式で表わすと次のようになる。Next, the angle θ is expressed as follows.

d、+−d。d, +-d.

t 但し、n、及びdlは夫々接着剤層6の屈折率及び厚さ
、nよ及びdlは夫々モザイクフィルタ=2の屈折率及
び厚さ、Pは絵素4aのピッチ、Cは受光部4bの幅で
ある。尚、図面中n@+d*は夫々ガラス板5の屈折率
及び厚さである。
t However, n and dl are the refractive index and thickness of the adhesive layer 6, respectively, n and dl are the refractive index and thickness of the mosaic filter=2, P is the pitch of the picture element 4a, and C is the light receiving part 4b. The width is In the drawing, n@+d* is the refractive index and thickness of the glass plate 5, respectively.

又、第8図に示した如く、モザイクフィルター2の各色
要素2a、  2a間にクロム薄膜などから成る幅Δの
遮光部2bが形成されている場合には、θ−(n+  
>n、) I d、+−d。
Further, as shown in FIG. 8, when a light shielding part 2b of width Δ made of a chromium thin film or the like is formed between each color element 2a of the mosaic filter 2, θ-(n+
>n,) I d, +-d.

n= となる。n= becomes.

従って、軸外下側光線7aの接着剤層6中の傾き角θ、
が上記式で与えられる角度θ以下であれば色シェーデイ
ングを防止できる。即ち、θ、≦θ         
・・・・・・・・−・ 111であれば良い。
Therefore, the tilt angle θ of the off-axis lower ray 7a in the adhesive layer 6,
is less than or equal to the angle θ given by the above equation, color shading can be prevented. That is, θ, ≦θ
・・・・・・・・・−・ 111 is fine.

実用的には多少は隣接の色要素を通った光線が絵素へ混
入射しても良いので、 /’%−N  t、、、。
Practically speaking, it is possible for some light rays that have passed through adjacent color elements to enter the picture element, so /'%-N t,,,.

θ、 ≦ θ + −θ、         ・−・・
・・−・・・  (2)であれば良い、但し、θ^は結
像レンズ系3のFナンバーをFで表わす時、 fl+     2F である、即ち、θ^は結像レンズ系3を通った光の接着
剤J16中の開き角であって、その〃まで即ち絵素へ入
射する正当な光線の量が優勢である限り軸外下側光線7
aの接着剤層6中の傾き角θ3が大きくなっても良いと
いうことである。
θ, ≦ θ + −θ, ・−・・
...-(2) is sufficient, however, θ^ is fl+2F when the F number of the imaging lens system 3 is expressed as F, that is, θ^ is the value that passes through the imaging lens system 3. The opening angle in the adhesive J16 of the light, that is, as long as the amount of legitimate rays incident on the picture element is predominant, the off-axis lower ray 7
This means that the inclination angle θ3 in the adhesive layer 6 of a may be large.

従9て、式(1)又は(2)を満足するように結像レン
ズ系3の条件具体的には凸レンズ8又は正レンズ13の
パワーを選定すれば、色シェーデイングのない撮像が行
える。
Therefore, if the conditions of the imaging lens system 3, specifically the power of the convex lens 8 or the positive lens 13, are selected so as to satisfy equation (1) or (2), imaging without color shading can be performed.

次に凸レンズ8の形状をどのようにきめれば良いかにつ
いて説明する。
Next, how to determine the shape of the convex lens 8 will be explained.

要部拡大図である第9図において軸外下側光線7aの凸
レンズ8中の傾き角θ、Lは、θIL−δ−β    
   −・−・・−・・−・ (4)となる、但し、 sin  (β+θ、) δ−5in −’ ()   ・・・・−曲 (5)で
あって、θs、hは夫々軸外下側光線7aの0レンズ8
へ入射する直前の傾き角及び光線高、nt、Rは夫々凸
レンズ8の屈折率及び曲率半径である。
In FIG. 9, which is an enlarged view of the main part, the inclination angle θ, L of the off-axis lower ray 7a in the convex lens 8 is θIL−δ−β
−・−・・−・・−・ (4) However, sin (β+θ,) δ−5in −′ () ・・・・− Song (5), where θs and h are respectively off-axis 0 lens 8 of lower ray 7a
The inclination angle and height of the ray just before it enters, nt, and R are the refractive index and radius of curvature of the convex lens 8, respectively.

一方、傾き角0口とθSとの関係は、 nL であるから、 となる、従って、この式(8)と上記式Tl)とにより
、となり、この式(9)を満たすようにnL+Hの値を
選択すれば良い。
On the other hand, since the relationship between the tilt angle 0 and θS is nL, it becomes as follows.Therefore, from this equation (8) and the above equation Tl), the value of nL+H is determined so as to satisfy this equation (9). All you have to do is choose.

尚、凸レンズ8の厚さが薄ければ、光線高りは最大像高
りとほぼ等しい即ちhbhである。
Note that if the thickness of the convex lens 8 is thin, the height of the light beam is approximately equal to the maximum image height, that is, hbh.

又、全体図である第1θ図において、凸レンズ8より前
方のレンズ群14の射出瞳の該レンズ群14の最終レン
ズより計った位置をE、レンズ群14の最終レンズと凸
レンズ8との間隔をd、とすると、 ・・・−・・・・・・ α・ と表わすこともできる。但し、第10図においてEの値
は負になる。従って、E、d、、hの値を与えることに
より、上記式+9)、QlよりnL、Hの値を決定する
ことができる。
In addition, in Figure 1θ which is an overall view, the position of the exit pupil of the lens group 14 in front of the convex lens 8 measured from the last lens of the lens group 14 is E, and the distance between the last lens of the lens group 14 and the convex lens 8 is E. If d, it can also be expressed as ...−...α・. However, in FIG. 10, the value of E is negative. Therefore, by giving the values of E, d, , h, the values of nL and H can be determined from the above equation +9) and Ql.

更に、凸レンズ8の模式図である第11図にお゛ いて
、凸レンズ8の出射光線の角度θ3Aは、凸レンズ8の
焦点距離をf、とすると、近似的には、となる、そして
、 θ sa”nt   θ 、            
          −・・・・・・リ−(転)である
から、これらの弐au、asと式(11により、nt となる、従って、弐〇簿を満足する焦点路#11r L
の凸レンズ8を固体撮像素子1の前に配置すれば良い。
Furthermore, in FIG. 11, which is a schematic diagram of the convex lens 8, the angle θ3A of the outgoing ray of the convex lens 8 is approximately as follows, where f is the focal length of the convex lens 8, and θ sa ”nt θ,
-......Li- (turn), so from these two au, as and equation (11), it becomes nt. Therefore, the focal path #11r L that satisfies the second book
The convex lens 8 may be placed in front of the solid-state image sensor 1.

これまで固体撮像素子lの子午面方向(垂直方向又はX
方向)の間隔について論じてきたのは、現在では固体撮
像素子1の絵素のピッチが第12図に示した如く垂直方
向(X方向)の方が細かいからであるが、水平方向(X
方向)でも絵素が細かい場合、或いはX方向の像高に対
してX方向の像高が極端に高い場合には、水平方向につ
いて垂直方向と同様の条件を満たさなければならない。
Until now, the solid-state image sensor l has been used in the meridian direction (vertical direction or
The reason why we have been discussing the spacing in the horizontal direction (
If the picture elements are fine even in the horizontal direction, or if the image height in the X direction is extremely high compared to the image height in the X direction, the same conditions as in the vertical direction must be satisfied in the horizontal direction.

即ち、水平方向、垂直方向の何れについても上記式(j
l又は(2)の条件を満足することが必要である。
That is, the above formula (j
It is necessary to satisfy condition 1 or (2).

但し、第13図に示した如゛<、モザイクフィルターの
色が一方向について変わらない場合即ちスドライブフィ
ルターの場合は、それと直角の方向について式(11又
は(2)の条件が満たされれば良い。
However, as shown in Fig. 13, if the color of the mosaic filter does not change in one direction, that is, in the case of a striped filter, it is sufficient that the condition of equation (11 or (2)) is satisfied in the direction perpendicular to the mosaic filter. .

斜め方向のスライプフィルターの場合も同様である。The same applies to the case of a diagonal slide filter.

次に、ゴミが像と一緒に固体撮像素子1の撮像面4に写
らないようにする条件について述べる。
Next, conditions for preventing dust from being captured on the imaging surface 4 of the solid-state imaging device 1 along with the image will be described.

第9図に示した如く、固体撮像素子1の前面に凸レンズ
8を接合すると、凸レンズ8の前面(球面)上のゴミが
固体撮像素子1の撮像面4に写って黒い斑点像として現
われ、観察の邪魔となる。
As shown in FIG. 9, when a convex lens 8 is bonded to the front surface of the solid-state image sensor 1, dust on the front surface (spherical surface) of the convex lens 8 is reflected on the imaging surface 4 of the solid-state image sensor 1, appearing as a black spot image, and is observed. It gets in the way.

そこで、これを避けるために凸レンズ8の厚さがある程
度厚いことが必要であり、凸レンズ8の厚さ及びFナン
バーを夫々dL+  L+固体壜像素「 子1のガラス板5の前面から撮像面4までの空気換算光
路長をdo、ゴミの直径の上限をφとすると、 dL −+ d c ≧lOφ・F L    −−−−−−
−Q41L であれば、ゴミは目立たない。
Therefore, in order to avoid this, it is necessary that the thickness of the convex lens 8 is thick to some extent, and the thickness of the convex lens 8 and the F number are respectively dL + L + solid bottle image element "From the front of the glass plate 5 of the lens 1 to the imaging surface 4. If the air-equivalent optical path length of is do and the upper limit of the diameter of dust is φ, then dL −+ d c ≧lOφ・F L −−−−−−
- With Q41L, dust is not noticeable.

実用上多少ゴミが見えても良い場合は、次式〇Ijの条
件まで緩和しても良い。
If it is acceptable for some dust to be seen for practical purposes, the conditions may be relaxed to the following formula 〇Ij.

dL □+d、≧3φ・F L     −・・・−・ α9
t 従って、式+l+又は(2)と式α〜又は09を満たす
ように、R1”L +  ’Lを選択すれば、色シェー
デイングがなく且つゴミも目立たないカラー撮像装置が
得られる。
dL □+d, ≧3φ・F L −・・・−・ α9
t Therefore, if R1''L + 'L is selected so as to satisfy the expression +l+ or (2) and the expression α~ or 09, a color imaging device without color shading and with less noticeable dust can be obtained.

例えば、d (−0,4am 、  F L = 5 
、φ=50/Jmであれば、nL=t、sの時、弐〇9
よりd、≧0゜525 IIIとなる。即ち、dLはお
よそQ、 5 n以上であることが望ましい。
For example, d (-0,4am, F L = 5
, if φ=50/Jm, when nL=t, s, 2〇9
Therefore, d, ≧0°525 III. That is, it is desirable that dL be approximately Q, 5 n or more.

又、第6図に示されているように、凸レンズ8が光学的
ローパスフィルター9を介して固体撮像素子1の前面に
接合されている場合は、凸レンズ8の前面から固体撮像
素子lの撮像面4までの空気換算長dAが、 dA≧10φFt       ・・・・・・−・−α
edA≧3φFL        ・・・・・−・・・
・ 0ηのいずれかを満たせば良い、尚、d、はおよそ
0゜5°鰭以上であることが望ましい。
In addition, as shown in FIG. 6, when the convex lens 8 is bonded to the front surface of the solid-state image sensor 1 via the optical low-pass filter 9, the imaging surface of the solid-state image sensor l is connected from the front surface of the convex lens 8. The air conversion length dA up to 4 is dA≧10φFt ・・・・・・−・−α
edA≧3φFL ・・・・・・・−・
- It is sufficient to satisfy either 0η, and it is desirable that d be approximately 0°5° or more.

更に、色シェーデイングが一層生じにくいカラー描像装
置を得るためには、第14図に示した如く、水平方向に
長い絞り15を結像レンズ系3中に設けると良い、但し
、この場合は、第12図に示した如く、モザイクフィル
ターへの斜め入射による隣りの絵素の受光部への光の混
入射が垂直方向において起こり易いものとする。
Furthermore, in order to obtain a color imaging device in which color shading is less likely to occur, it is preferable to provide a horizontally long aperture 15 in the imaging lens system 3, as shown in FIG. 14. However, in this case, As shown in FIG. 12, it is assumed that light entering the mosaic filter obliquely and entering the light receiving portion of an adjacent picture element is likely to occur in the vertical direction.

このようにすれば、円形絞りの場合に比べて固体撮像素
子の撮像面へ入射する光束の垂直方向の開き角が小さく
なるので、色シェーデイングが一層生じにくくなる。但
し、この場合条件式(11又は(2)は、長方形の絞り
の下端を通る光線について当てはめることになる。ここ
で、垂直方向のマージナル光線の出射角の正弦をNA’
とすれば、F′=□       ・−・・・−・ α
鴫2NA゛ で決まるF′を式(2)のFの代わりに用いれば良い。
In this way, the vertical aperture angle of the light flux incident on the imaging surface of the solid-state imaging device becomes smaller than in the case of a circular aperture, so that color shading is less likely to occur. However, in this case, conditional expression (11 or (2)) is applied to the ray passing through the lower end of the rectangular aperture.Here, the sine of the exit angle of the marginal ray in the vertical direction is NA'
Then, F′=□ ・−・・・−・ α
F' determined by 2NA' may be used instead of F in equation (2).

尚、水平方向について光の混入射が生じ易い場合も同様
である。
Incidentally, the same applies to the case where mixed incidence of light tends to occur in the horizontal direction.

ところで、第14図において結像レンズ系3の明るさを
変えないためには、円形絞りの半径をr。
By the way, in order to not change the brightness of the imaging lens system 3 in FIG. 14, the radius of the circular aperture is set to r.

長方形の絞り15の縦辺、横辺の長さを夫々a、。The lengths of the vertical and horizontal sides of the rectangular aperture 15 are a, respectively.

a ’ml とすると、 tt 1  = a lIa 、         −
−Qlでなければならない、一方、色シェーデイングを
減らすには、 a、≦2r          −・・・・・・・・−
(2)でなければならない、従って式Qlと(2)によ
り、π a 。
If a 'ml, tt 1 = a lIa, -
−Ql, while to reduce color shading, a, ≦2r −・・・・・・・・・・−
(2), so by equation Ql and (2), π a .

a、≧□         ・−・・−・・−(社)で
なければならない。
a, ≧□ ・−・・−・・−(company).

実際には絞り位置の誤差などがあるので、all ≧a
、             而°゛゛゛  (社)の
方が良い。
In reality, there are errors in the aperture position, so all ≧a
, However°゛゛゛ (sha) is better.

絞り15の形状は、長方形に限らず、第15図乃至20
図に示した形でも良い、第15図は水平方向に長い平行
四辺形の絞り、第16図はやはり水平方向に長い長円形
又は楕円形の絞り、第17図は円形開口を水平方向に2
個並設した絞り、第18図は正方形の絞り、第19図、
第20図は正方形の開口を夫々2個、3個水平方向に並
設した絞りである。絞り開口が長方形等の様に全体とし
て水平方向に長い形状の場合には次のような利点がある
。その一つは、内視鏡の場合固定焦点のものが多く、ピ
ンボケ時に点像強度部の形状が絞り形状と相似になるた
め、水平方向のMTFが低下し、その結果水平方向走査
で色差信号を得るカラー化方式の固体撮像素子を用いた
単板カラーカメラで問題となり易いモアレが発生しにく
くなることである。
The shape of the diaphragm 15 is not limited to a rectangle;
The shapes shown in the figures may also be used. Figure 15 shows a horizontally long parallelogram aperture, Figure 16 shows an oval or elliptical aperture which is also horizontally long, and Figure 17 shows a circular aperture with two horizontally extending apertures.
Apertures arranged side by side, Fig. 18 shows a square aperture, Fig. 19,
FIG. 20 shows a diaphragm in which two and three square apertures are arranged in parallel in the horizontal direction. When the diaphragm aperture has a generally long shape in the horizontal direction, such as a rectangle, there are the following advantages. One of these is that many endoscopes have a fixed focus, and when the point image is out of focus, the shape of the point image intensity section becomes similar to the aperture shape, which reduces the horizontal MTF, and as a result, the color difference signal in horizontal scanning. This means that moiré, which tends to be a problem with single-chip color cameras that use color solid-state image sensors, is less likely to occur.

もう一つは、第11図に示した如く、固体撮像素子の水
平方向の絵素のピッチが大きい場合、被写界深度を定め
る錯乱円の形が円ではなく水平方向に長い長方形である
ことが望ましいが、これが第14図乃至第17図、第1
9図及び第20図で示した絞り15でほぼ実現できるこ
とである。
Another problem is that, as shown in Figure 11, when the horizontal pixel pitch of a solid-state image sensor is large, the shape of the circle of confusion that determines the depth of field is not a circle but a horizontally long rectangle. 14 to 17, and 1.
This can almost be achieved with the aperture 15 shown in FIGS. 9 and 20.

尚、第14図乃至第20図で示した絞り15の効果は、
凸レンズ8のない結像光学系、凸レンズ8のないテレセ
ンドリンクな結像光学系、テレセンドリンクでない結像
光学系と組合せても得られることは云うまでもない。
The effect of the aperture 15 shown in FIGS. 14 to 20 is as follows.
It goes without saying that the present invention can also be obtained by combining an imaging optical system without a convex lens 8, a telecentering optical system without a convex lens 8, or an imaging optical system that is not a telecentering link.

尚、これまで軸外下側光線の入射角について述べてきた
が、軸外上側光線についても同様な条件を満たす必要が
あること゛は云うまでも無い。
Although the incident angle of the lower off-axis ray has been described above, it goes without saying that the same condition must be satisfied for the upper off-axis ray.

又、凸レンズ8又は13がなくても、対物レンズ自体が
上記式(1)又は(2)の条件を満たせば、色シェーデ
イングのないカラー橋像!装置が得られることは云うま
でも無い、又、本発明は、電子内視鏡に限らず、通常の
TVカメラやファイバースコープ、硬性鏡などに装着す
るTVカメラ、電子カメラ等に適用できることは云うま
でもない。
Furthermore, even without the convex lens 8 or 13, if the objective lens itself satisfies the conditions of formula (1) or (2) above, a color bridge image without color shading can be obtained! It goes without saying that a device can be obtained, and it goes without saying that the present invention is applicable not only to electronic endoscopes but also to ordinary TV cameras, fiberscopes, TV cameras attached to rigid endoscopes, electronic cameras, etc. Not even.

次に数値例を以下に示す、第21図はその構成を示して
おり、16はYAGレーザ−カットフィルターである。
Next, a numerical example is shown below. FIG. 21 shows the structure thereof, and 16 is a YAG laser cut filter.

fl健 r、wo。fl Ken r, wo.

d+ =0.3040  rl+ −1,883M+ 
−40,78「8寓0.6122 d 、 −0,3040 r s = 1.5921 ds  ”0.3040   nt  −1,7291
61’m  −54,68r、  −0,5933 da  ”0.4863   ns  −1,5927
0Fs  −35,29r’s  =−13,3733 d% −0,0608 r、−■ (絞り) di  −0,1216 r、  −3,8365 dy  =0.4863   ns  −1,8061
ν4 −40.95r a  =−1,1410 d 、  −0,0912 r *  =5.2243 d 9 −0.6079   n s  −1,516
33ν%  −64,15r 1゜= −0,7270 d +e”0.3040   n &  −1,846
66W h  −23,78r + + = −2,9
909 d r+ −0,1520 r目3″ d+*=0.4255   nt  −1,51633
k’q  −64,15r 、、m  1 d 13−0.3040   ns  =1.5407
2    $1=  =47.20r+a 場 曽 d lm−0,1824n *  = 1.51633
   1’ *  −64,15r Is 嗜 (至) d+s−0,5635 rrh−2,5312 d+i−0,6079n+e=1.54869    
ν+*=45.55rat 鴫 ψ d+t−0,2432nst−1,51633j’z−
64,15flyzclD f−I      F15.0 物体路#−9,1 R−2,531 nL=1.5487 ft=4.613 d、−0,5635 E  −−1,951(実主光線に対して)h−0,9
66 θ3=25゜ P −1lOAIm c    =7  μ m d 1 = 7 μ m n+=1.5 F    =5 Δ  = 0 nz=7.5 d t =2  μ m θ  −9° 46 ′ θ、 = 7 ° 14 ′ 第22図は上記数値例の収差曲線図である。
d+ =0.3040 rl+ -1,883M+
-40,78 "8 fables 0.6122 d, -0,3040 rs = 1.5921 ds" 0.3040 nt -1,7291
61'm -54,68r, -0,5933 da"0.4863 ns -1,5927
0Fs -35,29r's =-13,3733 d% -0,0608 r, -■ (Aperture) di -0,1216 r, -3,8365 dy =0.4863 ns -1,8061
ν4 -40.95ra = -1,1410 d, -0,0912 r* =5.2243 d9 -0.6079 ns -1,516
33ν% -64,15r 1゜= -0,7270 d +e"0.3040 n & -1,846
66W h -23,78r + + = -2,9
909 d r+ -0,1520 rth 3″ d+*=0.4255 nt -1,51633
k'q -64,15r,, m 1 d 13-0.3040 ns =1.5407
2 $1= =47.20r+a Field Sod lm-0,1824n *=1.51633
1' * -64,15r Is d+s-0,5635 rrh-2,5312 d+i-0,6079n+e=1.54869
ν+*=45.55rat ψ d+t-0,2432nst-1,51633j'z-
64,15flyzclD f-I F15.0 Object path #-9,1 R-2,531 nL=1.5487 ft=4.613 d, -0,5635 E --1,951 (with respect to the real principal ray )h-0,9
66 θ3=25°P −1lOAIm c =7 μm d1 = 7 μm n+=1.5 F =5 Δ=0 nz=7.5 d t =2 μm θ −9° 46 ′ θ, = 7° 14' FIG. 22 is an aberration curve diagram of the above numerical example.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明によるカラー逼像装置は、色シェー
ディングが確実に防止されるという実用上重要な利点を
有している。
As mentioned above, the color imaging device according to the present invention has an important practical advantage in that color shading is reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるカラー壜像装置の第1実施例の構
成を示す図、第2図乃至第6図は夫々第2乃至第6実施
例の構成を示す図、第7図乃至第11図は何れも色シェ
ーディングを防止するために固体撮像素子の近傍に配設
した凸レンズが満たすべき条件についての説明図、第1
2図及び第13図は夫々固体撮像素子の絵素と色符号化
フィルターの配列例を示す図、第14図乃至第20図は
何れも絞りの例を示す図、第21図及び第22図は数値
例の構成を示す図及び収差曲線図、第23図及び第24
図は夫々従来例の構成例を示す図及び要部拡大断面図で
ある。 l・・・・固体撮像素子、2・・・・モザイクフィルタ
ー、2a・・・・色要素、2b・・・・遮光部、3・・
・・結像レンズ系、4・・・・撮像面、4a・・・・絵
素、4b・・・・受光部、5・・・・ガラス板、6・・
・・接着剤層、7・・・・軸外主光線、7a・・・・軸
外下側光線、8・・・・凸レンズ、9・・・・光学的ロ
ーパスフィルター、10・・・・赤外光カットフィルタ
ー、11・・・・支持枠、12・・・・プリズム、13
・・・・正レンズ、141F3図 1−4図 オフ図 オ8図 第11図 才12図 IP13図 1−14図     115図 116図     1−17図 =−一− Q。 Cq 第23図 1−24図
FIG. 1 is a diagram showing the configuration of a first embodiment of a color bottle image device according to the present invention, FIGS. 2 to 6 are diagrams showing the configuration of second to sixth embodiments, respectively, and FIGS. 7 to 11 The first figure is an explanatory diagram of the conditions that a convex lens placed near the solid-state image sensor should satisfy in order to prevent color shading.
2 and 13 are diagrams showing examples of arrangement of picture elements and color encoding filters of a solid-state image sensor, respectively, FIGS. 14 to 20 are diagrams showing examples of apertures, and FIGS. 21 and 22. Figures 23 and 24 are diagrams showing the configuration of numerical examples and aberration curve diagrams.
The figures are a diagram showing a configuration example of a conventional example and an enlarged sectional view of a main part, respectively. l... Solid-state image sensor, 2... Mosaic filter, 2a... Color element, 2b... Light shielding part, 3...
...Imaging lens system, 4...Imaging surface, 4a...Picture element, 4b...Light receiving section, 5...Glass plate, 6...
... Adhesive layer, 7 ... Off-axis chief ray, 7a ... Off-axis lower ray, 8 ... Convex lens, 9 ... Optical low-pass filter, 10 ... Red External light cut filter, 11... Support frame, 12... Prism, 13
...Positive lens, 141F3 Fig. 1-4 Off-view Fig. 8 Fig. 11 Fig. 12 Fig. IP 13 Fig. 1-14 Fig. 115 Fig. 116 Fig. 1-17 = -1- Q. Cq Figure 23 Figures 1-24

Claims (1)

【特許請求の範囲】 結像レンズ系と、夫々が独立した受光部を有する複数の
絵素を二次元に配列して成る固体撮像素子と、該固体撮
像素子の前記受光部の前方に微小間隔を隔てて配置され
た前記各絵素に対応する色要素を有する色符号化フィル
ターとを備えたカラー撮像装置において、前記結像レン
ズ系のうち前記色符号化フィルターに近いレンズを前記
色符号化フィルターの近傍に配置し、且つ次の条件を満
足するようにしたことを特徴とするカラー撮像装置。 ▲数式、化学式、表等があります▼ 但し、■は前記固体撮像素子の各絵素の受光部に夫々入
射する光線の入射角、■は前記各絵素に対し前記結像レ
ンズ系の光軸に近い側に隣接する絵素に対応する色要素
の前記各絵素に最も近い点を通って前記各絵素の受光部
に入射する現実の又は仮想の光線の入射角、■はn_1
を色要素と受光面との間の媒質の屈折率、Fを前記結像
レンズ系のFナンバーとする時 ▲数式、化学式、表等があります▼で与えられる角度 である。
[Scope of Claims] An imaging lens system, a solid-state imaging device formed by two-dimensionally arranging a plurality of picture elements each having an independent light-receiving portion, and a solid-state imaging device having a microscopic interval in front of the light-receiving portion of the solid-state imaging device. and a color encoding filter having a color element corresponding to each picture element arranged apart from each other, wherein a lens close to the color encoding filter in the imaging lens system is color encoded. A color imaging device characterized by being arranged near a filter and satisfying the following conditions. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, ■ is the incident angle of the light beam that enters the light receiving part of each picture element of the solid-state image sensor, and ■ is the optical axis of the imaging lens system for each picture element. The incident angle of a real or virtual light ray that enters the light-receiving part of each picture element through the point closest to each picture element of the color element corresponding to the picture element adjacent to the side closest to , ■ is n_1
When is the refractive index of the medium between the color element and the light-receiving surface, and F is the F number of the imaging lens system, it is the angle given by ▲There are mathematical formulas, chemical formulas, tables, etc.▼.
JP63043661A 1988-02-26 1988-02-26 Color imaging device Expired - Fee Related JP2885316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043661A JP2885316B2 (en) 1988-02-26 1988-02-26 Color imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043661A JP2885316B2 (en) 1988-02-26 1988-02-26 Color imaging device

Publications (2)

Publication Number Publication Date
JPH01218286A true JPH01218286A (en) 1989-08-31
JP2885316B2 JP2885316B2 (en) 1999-04-19

Family

ID=12670036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043661A Expired - Fee Related JP2885316B2 (en) 1988-02-26 1988-02-26 Color imaging device

Country Status (1)

Country Link
JP (1) JP2885316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476851B1 (en) 1996-12-27 2002-11-05 Olympus Optical Co., Ltd. Electronic endoscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320988A (en) * 1986-07-15 1988-01-28 Matsushita Electric Ind Co Ltd Color image pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320988A (en) * 1986-07-15 1988-01-28 Matsushita Electric Ind Co Ltd Color image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6476851B1 (en) 1996-12-27 2002-11-05 Olympus Optical Co., Ltd. Electronic endoscope

Also Published As

Publication number Publication date
JP2885316B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
USRE43842E1 (en) Panoramic imaging system
JPH1084104A (en) Image sensor
US6256155B1 (en) Objective optical system
JP7259411B2 (en) PROJECTION OPTICAL SYSTEM, PROJECTION TYPE IMAGE DISPLAY DEVICE, AND IMAGING DEVICE
US6963448B1 (en) Optical low-pass filter, and image sensing unit and apparatus using the same
JP2020140155A (en) Projection optical system, projection image display device, and image capturing device
US5134526A (en) Focus detecting optical system including eccentrically disposed aperture stops
JP2002202455A (en) Photographing optical system and photographing device
JP2006084886A (en) Lens device
JP2005338341A (en) Wide-angle lens apparatus, camera, and projector
JP2007225642A (en) Imaging lens using infrared absorption glass
JP2002277741A (en) Reflection and refraction type macro projection optical system
JPH05346556A (en) Solid image pickup element
JP3511392B2 (en) Imaging lens with three balls
JP2020140154A (en) Projection optical system, projection image display device, image capturing device, and method of manufacturing optical element
US6783246B2 (en) Ghost image prevention element for imaging optical system
JPH01218286A (en) Color image pickup device
US20020001146A1 (en) Image pickup optical system
US11892612B2 (en) Multichannel close-up imaging device
JP3813759B2 (en) Imaging device
CN113302535A (en) Image capturing apparatus
JP4366107B2 (en) Optical device
JP2004361725A (en) Solid type catadioptric optical system
JP3736266B2 (en) Focus detection device
JPH05188297A (en) Switching type reflection and refraction optical system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees