JP3813759B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP3813759B2
JP3813759B2 JP10538299A JP10538299A JP3813759B2 JP 3813759 B2 JP3813759 B2 JP 3813759B2 JP 10538299 A JP10538299 A JP 10538299A JP 10538299 A JP10538299 A JP 10538299A JP 3813759 B2 JP3813759 B2 JP 3813759B2
Authority
JP
Japan
Prior art keywords
cover glass
imaging
optical member
optical system
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10538299A
Other languages
Japanese (ja)
Other versions
JP2000299806A (en
Inventor
信一 中村
純 広谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP10538299A priority Critical patent/JP3813759B2/en
Publication of JP2000299806A publication Critical patent/JP2000299806A/en
Application granted granted Critical
Publication of JP3813759B2 publication Critical patent/JP3813759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、撮像光学系と撮像素子とを備えた撮像装置に関し、特に電子内視鏡のような非常に小型の撮像装置に関する。
【0002】
【従来の技術】
一般に撮像装置においては、視野範囲以外から入射した不要周辺光を遮光する遮光手段として、遮光マスクを撮像素子の近傍に配置することが知られている。
撮像装置の一般的な構成を図8に示す。図8(a) に示すように、撮像装置1は撮像光学系2と撮像素子3とからなり、撮像光学系2は枠4に、撮像素子3は枠5内にそれぞれ収められている。図8(a) において、物体からの光6は撮像光学系2を介して撮像素子3の受光面7の出画エリア8に結像される。出画エリア8は実際にモニターに画像として出力される受光面7上の範囲であって、受光面7の最大範囲(有効撮像エリア)と同一のときに最大になる。また出画エリア8は、図示省略した制御手段による撮像素子3以降の信号処理によって電気的に範囲が調整されるようになっている。撮像素子3の出画エリア8は、図8(b) に示すように、方形形状が一般的であり、撮像光学系2は、直径が出画エリア8の対角線よりも大きい円形の結像範囲9に光を結像するように構成されている。このような光学構成の場合、特に出画エリア8の対辺方向(上下左右方向)の範囲10において不要周辺光16が最も多くなり、この不要周辺光16が受光面7の前方に配置されている同じく方形形状のカバーガラス11の側面12で反射するなどしてフレアーとして画像に悪影響を与える。そこで、不要周辺光16を遮光するために、通常は、出画エリア8の形状に孔形を合わせた遮光マスク13をカバーガラス11の近傍に配置している。
【0003】
一方、例えば枠の内径が2mmあるいは1.5mm程度以下の、非常に小型の撮像装置の場合、不要周辺光を遮光するために遮光マスクを設けるとすると、遮光マスクと撮像エリアとの間の位置調整に高い精度が要求され組み立てに手間がかかる。
そこで最近、撮像素子の近傍に特別な遮光マスクを配置することなく、不要周辺光を遮光する遮光手段が提案されている。例えば、特開平8−160339号公報に記載の撮像装置は、カバーガラスの側面で反射した不要周辺光が出画エリアに入らないように、カバーガラスの入射面の面積を大きくしたり、カバーガラスの厚みを薄くしたりしている。
【0004】
【発明が解決しようとする課題】
ところで、光が通過する面にゴミやキズがあると受光面に投影され好ましくない。投影されたゴミやキズの影は受光面に近いものほど濃くしかも輪郭がはっきりするようになり、観察画像の中で目障りな存在となる。これは光束径と関係があり、光束径が小さくなる面ほどゴミやキズが目立つようになる。図9に示すように、特にカバーガラス11の物体側の面14は受光面7に近く光束径φが小さいことに加えて、枠内に残留しているゴミが付着しやすい。したがって、カバーガラス11の厚さtをt’というように厚くし、カバーガラス11の物体側の面14の位置を受光面からある程度離して、光束径φをφ’というように大きくする必要がある。
近年、撮像装置の画質を向上させるために、撮像素子の画素数を多くする一方、撮像素子の外形の大きさを変えないために、画素ピッチは小さくなってきている。画素ピッチが小さくなると被写界深度が浅くなるため、同じ被写界深度を保つには撮像光学系のF値をより大きくする、すなわち絞り15を絞る必要がある。すると光束径は小さくなるので、カバーガラス11をさらに厚くする必要が生じてくる。
しかし、通常の撮像素子およびその受光面や出画エリアは方形形状をしており、カバーガラスの形状も方形形状が一般的である。その際、上記のゴミ・キズ対策のためにカバーガラス11をt’というように厚くすると厚みtのときには問題にならなかったカバーガラス11の側面12で反射した不要周辺光、特に対辺方向の不要周辺光16’が出画エリア8に入るようになるので好ましくない。
【0005】
そこで、本発明は、カバーガラスを厚くしなくても厚くしたのと同等な効果があり、かつ外径を大きくすることなく、遮光マスクを用いなくても不要周辺光が出画エリアに入らないようにすることが可能な撮像装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の撮像装置は、撮像光学系と撮像素子とを備えた撮像装置において、前記撮像素子のカバーガラスの物体側に、前記撮像素子の受光面の出画エリアの少なくとも1つの対辺方向において前記カバーガラスに比べて外寸が大きい光学部材を隣接配置したことを特徴とする。
【0007】
また、本発明の撮像装置は、好ましくは、上記光学部材の厚さを上記カバーガラスの厚さに対して同じかそれ以下にしたことを特徴とする。
【0008】
また、本発明の撮像装置は、好ましくは、上記光学部材の外径を上記カバーガラスの外接円の外径以下又は上記撮像素子の外接円の外径以下にしたことを特徴とする。
【0009】
また、本発明の撮像装置は、好ましくは、次の式(3) または式(4) を満たすことを特徴とする。
T ≧ 0.0002・n/(2・P・tan(1/2Fno))・・・(3)
T ≧ 0.001/P ・・・・・(4)
但し、Tは上記光学部材と上記カバーガラスのトータルの厚さ、nは上記光学部材の屈折率、Fnoは上記撮像光学系のFナンバー、Pは上記撮像素子の画素ピッチを示す。
【0010】
また、本発明の撮像装置は、好ましくは、次の式(5) で求められる数値が最小となる方向において次の式(6) を満たすことを特徴とする。
LAS − IH ・・・・・(5)
sinθ≦n(LAS−IH)/√(T2 +(LAS−IH)2 )・・・(6)
但し、LASは上記撮像光学系の光軸から上記光学部材の側面までの距離、IHは上記撮像光学系の光軸から出画エリアの角までの距離、θは出画エリアの角に向かう主光線の上記光学部材へ入射する光軸との角度、nは上記光学部材の屈折率、Tは上記光学部材と上記カバーガラスのトータルの長さを示す。
【0011】
また、本発明の撮像装置は、好ましくは、上記光学部材と上記カバーガラスとは接着されており、上記光学部材の中心が上記撮像素子の出画エリアの中心とほぼ一致しており、接着剤は紫外線硬化型または紫外線硬化と熱硬化との併用型であって、次の式(7) 、(8) を満たすことを特徴とする。
Ng < 1.6 ・・・・・(7)
|Ng−Nc| < 0.1 ・・・・・(8)
但し、Ngは上記光学部材または上記カバーガラスの屈折率、Ncは接着剤の屈折率を示す。
【0012】
【発明の実施の形態】
先ず、本発明の撮像装置の作用について、図1を用いて説明する。
図1は本発明による撮像装置の要部説明図であり、(a) は側面図、(b) は物体側からみた図である。
図1(a) において、不要周辺光16はカバーガラス11の側面12で反射後、受光面7側へ向かう。ここで、カバーガラス11の厚さをゴミが見えるのを防ぐために厚くすると、不要周辺光16は受光面7から一層離れた位置でカバーガラス11の側面12で反射して、出画エリア8に入りやすくなってしまう。本実施形態の撮像装置は、カバーガラス11の厚さを厚くしないで、カバーガラス11の対辺方向(上下左右方向)にカバーガラス11に比べて外寸が大きい、例えば図1(b) に示すような円形の光学部材17をカバーガラス11の物体側に隣接配置あるいは接合した構成となっている。このため、不要周辺光16’は撮像光学系の光軸18から一層離れて光学部材17の側面19で反射した後、カバーガラス11と接していない面部分22で遮られる。従って、本発明の撮像装置によれば、単にカバーガラスの厚さを厚くした場合に比べて、出画エリア8に不要周辺光が入らないようにすることができる。また、撮像装置の外径はもともと撮像素子の外接円20の外径より小さくすることはできないので、光学部材17の外径をカバーガラス11の外接円の外径以下あるいは撮像素子の外接円20の外径以下にすることが撮像装置の外径が大きくならないため好ましい。
【0013】
さらに、光学部材17とカバーガラス11とを接合する場合、その接合面21には、接合後にゴミやキズがつくことはないが、接合前に少なからずキズがついていることがある。キズが接着剤で埋まる場合はよいが、わずかに気泡が入って埋まらない場合、その気泡が画像に影となって写り好ましくない。本発明の撮像装置では、接合面21が撮像素子の受光面7から極力離れるようにすることにより、接合面21のキズの影響を軽減している。接合面21が撮像素子の受光面7から極力離れるようにするためには、光学部材17の厚さTAをカバーガラス11の厚さTBに対して同じかそれ以下にすると、接合面21の位置での光束が大きくなり、その結果キズによる影を薄くすることができるので好ましい。
【0014】
ここで、本発明の光学部材17とカバーガラス11との寸法の関係は、次のように表わすことができる。
出画エリアの少なくとも1つの対辺方向において、
LA > LB ・・・・・(1)
但し、LAは撮像光学系の光軸から光学部材17の一側面までの距離、LBは撮像光学系の光軸からカバーガラス11の一側面までの距離を示す。
TA ≦ TB ・・・・・(2)
但し、TAは光学部材17の厚さ、TBはカバーガラス11の厚さを示す。
【0015】
ここで、カバーガラス11の厚さTBは以下の条件を満たすのが好ましい。
カバーガラス11の物体側の面における光束径ΦB (mm)は、
ΦB ≧ 0.00008/P
を満たすことが好ましい。
但し、Pは撮像素子の画素ピッチ(mm)を示す。
よって、
TB ≧ 0.00008・nB /(2・P・tan(1/2Fno))
を満足することが好ましい。
但し、nB はカバーガラス11の屈折率、Fnoは撮像光学系のFナンバーを示す。
また、内視鏡用撮像装置の場合は、nB ,Fnoを考慮して、
TB ≧ 0.0004/P
を満足することが好ましい。
これを満足しないと、例えば接合面にキズがあった場合、画像にキズの影が写ってしまい、特に内視鏡では、画像から診断を行うため、このような影は非常に目障りになり、正確な診断に支障をきたすことになる。
より好ましくは、
TB ≧ 0.00016・nB /(2・P・tan(1/2Fno))
TB ≧ 0.0008/P
を満足することが好ましい。
【0016】
また、光学部材17の物体側の面における光束径Φ(mm)は、
Φ = 2・(T/n)・tan(1/2Fno)
と表わすことができる。
但し、Tは光学部材17とカバーガラス11のトータルの厚さ、nは光学部材17の屈折率を示す。
画素ピッチが小さくなると光束径とゴミの大きさが画素ピッチを小さくしない場合と同じ大きさであったとしても影が一層目立ちやすくなる。そこで、撮像素子の画素ピッチをP(mm)とすると、実際の使用上、次の式を満たすことが好ましい。
Φ ≧ 0.0002/P
よって、次の条件式(3) を満足することが好ましい。
T ≧ 0.0002・n/(2・P・tan(1/2Fno))・・・(3)
また、内視鏡用撮像装置の場合は、n,Fnoを考慮して、次の条件式(4) を満足することが好ましい。
T ≧ 0.001/P ・・・・・(4)
これを満足しないと、画像にゴミの影が映り、内視鏡では正確な診断を行うことが難しくなる。
より好ましくは、次の条件式(3'),(4')を満足することが好ましい。
T ≧ 0.0004・n/(2・P・tan(1/2Fno))・・・(3')
T ≧ 0.002/P ・・・・・(4')
【0017】
さらに、本発明の撮像装置は次の式(5) で求められる数値が最小となる方向Sにおいて式(6) を満たすことが好ましい。
LAS − IH ・・・・・(5)
但し、LASは撮像光学系の光軸から光学部材17の側面までの距離、IHは撮像光学系の光軸から出画エリア8の角までの距離を示す。
sinθ≦n(LAS−IH)/√(T2 +(LAS−IH)2 )・・・(6)
但し、θは出画エリア8の角に向かう光学部材17へ入射する主光線の光軸とのなす角度を示す。
式(6) は撮像光学系からの不要周辺光が光学部材17の側面で反射した後、出画エリア8に入らないようにするための条件式である。
【0018】
図1(b) のS方向に見た部分断面図を図2に示す。S方向は式(5) で求められる数値が最小となる方向であって、光学部材17の側面が最も出画エリア8に近くなるため、S方向では光学部材17の側面で反射した不要周辺光が最も出画エリア8に入りやすい。撮像光学系の射出瞳23から出射する主光線で考える。光線16は不要周辺光であって、光学部材17の側面19の最も物体に近い位置で反射し、出画エリア8の角25に到達している。この図2の状態が不要周辺光16が出画エリア8に入らないぎりぎりの状態であって、不要周辺光16の光学部材17への入射角がθ以下であれば出画エリア8内に到達しないため好ましい。そのためには少なくとも視野内の最周辺主光線24の入射角がθ以下であることが必須である。
【0019】
スネルの法則より、
sinθ = n・sinθ’
一方、
(LAS−IH)/√(T2 +(LAS−IH)2 )=sinθ’
と表わすことができる。
以上より、次の条件式(6) を満たすことが必須である。
sinθ≦n(LAS−IH)/√(T2 +(LAS−IH)2 )・・・(6)
【0020】
次に条件式(6) を満足する撮像光学系について述べる。
図3(a) に示すような、物体側から前群、明るさ絞り、正の後群で構成された撮像光学系において、正の後群の射出光線の角度θ”は、

Figure 0003813759
と表わすことができる。
但し、hは最周辺主光線の光線高、lは明るさ絞りから後群正レンズまでの距離、fP は後群の焦点距離を示す。
よって、 θ”=θ より、
sin(tan-1(h/l)−tan-1(h/fP ))≦条件式(6) の右辺 ・・・・・(A)
これを満たすようなレンズを後群におけばよい。
【0021】
また、後群の撮像素子直前のレンズが、図3(b) に示すような、像側に凸の平凸レンズの場合、
Figure 0003813759
と表わすことができる。
但し、θ1 は平凸レンズへの入射角、θ1 ’は屈折角、nL は平凸レンズの屈折率、Rは平凸レンズの曲率半径、h2 は平凸レンズから射出する光線高、θ2 は第2面への入射角、θ2 ’は第2面からの射出角を示す。
また、
L sinθ2 = sin(β−θ2 ’) より、
θ2 ’ = β − sin-1(nL sinθ2
よって、θ2 ’= θ より、
β−sin-1(nL sinθ2 )≦条件式(6) の右辺 ・・・・・(B)
これを満たすようにnL ,Rを決めればよい。
【0022】
また、後群の撮像素子直前のレンズが、図3(c) に示すような、物体側に凸の凸平レンズの場合、
L sinθ2 = sinθ2
θ2 = θ1 ’ − β
θ2 ’ = sin-1(nL sin(θ1 ’−β))
と表わすことができる。
但し、sin(θ1 +β) = nL sinθ1 ’ より、
θ1 ’ = sin-1(sin(θ1 +β)/nL
β = sin-1(h1 /R)
また、θ1 は凸平レンズへの入射角、θ1 ’は屈折角、nL は凸平レンズの屈折率、Rは凸平レンズの曲率半径、h1 は凸平レンズの入射光線高、θ2 は第2面への入射角、θ2 ’は第2面からの射出角を示す。
よって、θ2 ’= θ より、
sin-1(nL sin(θ1 ’−β))≦条件式(6) の右辺 ・・・・・(C)
これを満たすようにnL ,Rを決めればよい。
【0023】
以下、本発明について実施例を用いて説明する。
実施例1
図4は本発明の第1実施例を示し、(a) は断面図、(b) は(a) の要部を物体側からみた図である。
撮像装置1は内視鏡用の撮像装置であり、図4(a) に示すように、撮像光学系2とCCD44とからなる。撮像光学系2はレンズ枠38に、物体側から順に配置された第1レンズ31、レーザーカット干渉フィルター32、第2レンズ33、色補正吸収フィルター34、第3レンズ35の各光学部品と、間隔環41と、それぞれリン青銅板のフレア絞り40,43、および明るさ絞り42が収められて構成されている。CCD44のカバーガラス37の物体側には円形の光学部材36が、図4(b) に示すように、その中心が出画エリア8の中心と合うように位置合わせした状態で接合されている。CCD44は光学部材36との接合後、CCD枠39に対し図4(a) に示すように組み合わされている。即ち、側面に接着剤を付けた光学部材36を図の右側からCCD枠39内に挿入し、CCD枠39の像側の面45をカバーガラス37の四隅の物体側の面46に突き当たるようにして固定し、さらにカバーガラス37の側面からCCD枠39の像側の面45にかけて、例えばカーボンを含む黒色の接着剤47を盛り付けている。また、カバーガラス37の物体側の稜線部分にカケ48があるとフレアーの原因となるため、接着剤47でカケを埋めている。この場合カバーガラス37と接着剤の屈折率差を0.1以内にするとカバーガラス37と接着剤との境界での反射を抑えられるため好ましい。なお前述のように、接着剤はカーボン(スス)等を混ぜた黒色のものであれば、フレアーを吸収できるので良い。一方、カケはあまり大きいものは接着剤で埋める際に気泡が入ったりしてうまく埋められない。したがって、カバーガラス37はカケが生じていたとしてもその大きさが100μm以下、好ましくは50μm以下であることが好ましい。
【0024】
本実施例の撮像装置では、撮像光学系及び光学部材は、
LA=0.65、LB=0.6、TA=0.4、TB=0.4、IH=0.5、LAS=0.65、P=0.004
になっている。
また、以下にレンズデータを示す。
Figure 0003813759
Figure 0003813759
ここで、r1 ,r2 ・・・・・・はレンズ各面の曲率半径、d1 ,d2 ・・・・・・は各レンズの肉厚または空気間隔、n1 ,n2 ・・・・・・は各レンズの屈折率、ν1 ,ν2 ・・・・・・は各レンズのアッペ数である。また、曲率半径、肉厚、空気間隔、LA、LB、TA、TB、IH、LAS、P、物体距離の単位はmmである。
【0025】
実施例2
図5は本発明の第2実施例を示し、(a) は断面図、(b) は(a) の要部を物体側からみた図である。
本実施例では光学部材51は同形の光学部材49と光学部材50とを互いに接合してなり、カバーガラス37に接合されている。光学部材49,50は共に赤外吸収ガラスであるが、材質、分光特性は互いに異なる。
本実施例の撮像装置では、撮像素子及び光学部材は、
LA=1.5、LB=1、TA=1.6、TB=0.4、IH=1.2、
LAS=1.2、P=0,002
になっている。
また、レンズデータは下記の通りである。
Figure 0003813759
ここで、r1 ,r2 ・・・・・・はレンズ各面の曲率半径、d1 ,d2 ・・・・・・は各レンズの肉厚または空気間隔、n1 ,n2 ・・・・・・は各レンズの屈折率、ν1 ,ν2 ・・・・・・は各レンズのアッペ数である。また、曲率半径、肉厚、空気間隔、LA、LB、TA、TB、IH、LAS、P、物体距離の単位はmmである。
【0026】
実施例3
図6は本発明の第3実施例を示す断面図である。
本実施例では光学部材49はカバーガラス37に接合されておらず、隙間52が空いている。隙間52の周辺は、後からゴミが入ることはないように接着剤53で封止されている。また、光学部材49は赤外吸収ガラスで、その両面には内視鏡処置用のレーザー光をカットするための干渉膜が蒸着されている。なお、隙間は真空でも、空気、接着剤、透明ゲル状材料などで埋められいても良い。
【0027】
その他、本発明の撮像装置は、図7(a) に示すように、光学部材36は物体側の面に曲率を持つものであっても良いし、さらに図7(b1)〜(b4)に示すように、光学部材36の外形は多角形であっても良い。ここで、図7(b1)の光学部材36の外径形状は八角形で、図7(b2)〜(b4)の光学部材36の外径形状は、円の一部をカットした形状である。図7(b2)は、カバーガラスの一つの辺に合わせてカットしたもの、図7(b3)は、カバーガラスの対向する二つの辺に合わせてカットしたもの、図7(b4)は、カバーガラスの各辺に合わせてカットしたものである。
また、光学部材とカバーガラスとを同じガラスで構成しても良いし、屈折率などが異なる違うガラスで構成しても良い。ただし屈折率はできるだけ小さい方が、同じ厚みで空気換算長を大きくすることができるので、撮像装置の小型化には有効である。例えば次の式(7) を満たすことが好ましい。
Ng < 1.6 ・・・・・(7)
但し、Ngは光学部材またはカバーガラスの屈折率を示す。
さらに、光学部材とカバーガラスとを接合する接着剤の屈折率は、これらの部材と同程度であることが好ましく、例えば次の式(8) を満たすことが好ましい。
|Ng−Nc| < 0.1 ・・・・・(8)
但し、Ncは接着剤の屈折率を示す。
また、接合に用いる接着剤は紫外線により硬化させるタイプ、または紫外線による硬化と熱による硬化とを併用するタイプのものを用いるのが耐性上好ましい。これらのタイプの接着剤によれば、光学部材の中心を出画エリアの中心に合わせて接合する場合、接合位置を調整した後に紫外線で迅速に硬化させて位置を固定できるので、調整後のずれが生じないという点で都合が良い。
【0028】
以上説明したように、本発明による撮像装置は特許請求の範囲に記載した特徴のほか、以下の(1) 〜(11)に示すような特徴も備えている。
【0029】
(1) 撮像光学系と撮像素子とからなり、撮像素子の近傍に孔形が方形の遮光マスクが無く、撮像素子のカバーガラスの物体側に、受光面の出画エリアの少なくとも1つの対辺方向でカバーガラスよりも外寸の大きい光学部材を隣接配置したことを特徴とする撮像装置。
【0030】
(2) 撮像光学系と撮像素子とからなり、撮像素子のカバーガラスの物体側に光学部材が隣接配置されていて、少なくとも出画エリアの1 つの対辺方向で式(1) を満たすことを特徴とする撮像装置。
LA > LB ・・・・・(1)
但し、LAは撮像光学系の光軸から光学部材の側面までの距離、LBは撮像光学系の光軸からカバーガラス側面までの距離を示す。
【0031】
(3) 上記光学部材とカバーガラスとが接合されていることを特徴とする上記(1) または(2) に記載の撮像装置。
【0032】
(4) 次の式(2) を満たすことを特徴とする上記(1) ないし(3) のいずれかに記載の撮像装置。
TA ≦ TB ・・・・・(2)
但し、TAは光学部材の厚さ、TBはカバーガラスの厚さである。
【0033】
(5) 上記光学部材の外径がカバーガラスの外接円の外径以下あるいは撮像素子の外接円の外径以下であることを特徴とする上記(1) ないし(4) のいずれかに記載の撮像装置。
【0034】
(6) 次の式(3) または式(4) を満たすことを特徴とする上記(1) ないし(4) のいずれかに記載の撮像装置。
T ≧ 0.0002・n/(2・P・tan(1/2Fno))・・・(3)
T ≧ 0.001/P ・・・・・(4)
但し、Tは光学部材とカバーガラスのトータルの厚さ、nは光学部材の屈折率、Fnoは撮像光学系のFナンバー、Pは撮像素子の画素ピッチを示す。
【0035】
(7) 次の式(3')または式(4')を満たすことを特徴とする上記(1) ないし(4) のいずれかに記載の撮像装置。
T ≧ 0.0004・n/(2・P・tan(1/2Fno))・・・(3')
T ≧ 0.002/P ・・・・・(4')
但し、Tは光学部材とカバーガラスのトータルの厚さ、nは光学部材の屈折率、Fnoは撮像光学系のFナンバー、Pは撮像素子の画素ピッチを示す。
【0036】
(8) 次の式(5) で求められる数値が最小となる方向において次の式(6) を満たすことを特徴とする上記(6) または(7) に記載の撮像装置。
LAS − IH ・・・・・(5)
sinθ≦n(LAS−IH)/√(T2 +(LAS−IH)2 )・・・(6)但し、LASは撮像光学系の光軸から光学部材の側面までの距離、IHは撮像光学系の光軸から出画エリアの角までの距離、θは出画エリアの角に向かう主光線の光学部材へ入射する光軸との角度、nは光学部材の屈折率、Tは光学部材とカバーガラスのトータルの長さを示す。
【0037】
(9) 次の条件式(7) 、(8) を満たすことを特徴とする上記(1) ないし(4) のいずれかに記載の撮像装置。
Ng < 1.6 ・・・・・(7)
|Ng−Nc| < 0.1 ・・・・・(8)
但し、Ngは光学部材またはカバーガラスの屈折率、Ncは接着剤の屈折率を示す。
【0038】
(10)光学部材の中心が出画エリアの中心とほぼ一致しており、光学部材とカバーガラスとの接着に紫外線硬化型、または紫外線硬化と熱硬化との併用型の接着剤が併用されていることを特徴とする上記(9) に記載の撮像装置。
【0039】
(11)カバーガラスのカケの大きさが100μm以下あるいは50μm以下であることを特徴とする上記(9) に記載の撮像装置。
【0040】
【発明の効果】
以上説明したように、本発明によれば、カバーガラスの厚みを厚くしても、外径を大きくすることなく、不要周辺光が出画エリアに入らない撮像装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による撮像装置の作用を説明するための要部説明図であり、(a) は側面図、(b) は物体側からみた図である。
【図2】図1(b) の矢印S方向に見た部分断面図である。
【図3】本発明の撮像光学系における条件を説明するための図であり、(a) は一般の撮像光学系において、本発明の撮像光学系を満たすための条件を説明するための図、(b) は後群の撮像素子直前のレンズが平凸レンズである場合において本発明の撮像光学系を満たすための条件を説明するための図、(c) は後群の撮像素子直前のレンズが凸平レンズである場合において本発明の撮像光学系を満たすための条件を説明するための図である。
【図4】本発明の第1実施例を示し、(a) は断面図、(b) は(a) の要部を物体側からみた図である。
【図5】本発明の第2実施例を示し、(a) は断面図、(b) は(a) の要部を物体側からみた図である。
【図6】本発明の第3実施例を示す断面図である。
【図7】 (a) は本発明の第4実施例を示す要部断面図、(b1)は本発明の第5実施例を物体側からみた光学部材の形状を示す図、(b2)〜(b4)は光学部材の他の形状を示す図である。
【図8】従来の撮像装置を示し、(a) は断面図、(b) は(a) の要部を物体側からみた図である。
【図9】従来の撮像装置を示す断面図である。
【符号の説明】
11 カバーガラス
12 カバーガラスの側面
13 遮光マスク
14 カバーガラスの物体側の面
15 絞り
16 不要周辺光
17 光学部材
18 撮像光学系の光軸
19 光学部材の側面
20 撮像素子の外接円
21 接合面
22 受光面側の面のカバーガラスと接していない部分
23 撮像光学系の射出瞳
24 視野内の最周辺主光線
25 出画エリアの角
31 第1レンズ
32 レーザーカット干渉フィルター
33 第2レンズ
34 色補正吸収フィルター
35 第3レンズ
36 光学部材
37 カバーガラス
38 レンズ枠
39 CCD枠
41 間隔環
40,43 フレア絞り
42 明るさ絞り
44 CCD
45 CCD枠の像側の面
46 四隅の物体側の面
47 接着剤
48 カケ
49,50,51 光学部材
52 隙間
53 接着剤[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an image pickup apparatus including an image pickup optical system and an image pickup element, and more particularly to a very small image pickup apparatus such as an electronic endoscope.
[0002]
[Prior art]
In general, in an imaging apparatus, it is known that a light shielding mask is disposed in the vicinity of an imaging device as a light shielding unit that shields unnecessary ambient light incident from outside the visual field range.
A general configuration of the imaging apparatus is shown in FIG. As shown in FIG. 8A, the image pickup apparatus 1 includes an image pickup optical system 2 and an image pickup element 3. The image pickup optical system 2 is housed in a frame 4 and the image pickup element 3 is housed in a frame 5, respectively. In FIG. 8A, the light 6 from the object is imaged on the image output area 8 of the light receiving surface 7 of the image pickup device 3 via the image pickup optical system 2. The image output area 8 is a range on the light receiving surface 7 that is actually output as an image on the monitor, and is maximized when it is the same as the maximum range (effective imaging area) of the light receiving surface 7. In addition, the range of the image output area 8 is electrically adjusted by signal processing after the image sensor 3 by a control unit (not shown). As shown in FIG. 8B, the image output area 8 of the image pickup device 3 is generally rectangular, and the image pickup optical system 2 has a circular image formation range in which the diameter is larger than the diagonal line of the image output area 8. 9 is configured to image light. In the case of such an optical configuration, the amount of unnecessary ambient light 16 is greatest, particularly in the range 10 in the opposite side direction (up / down / left / right direction) of the image display area 8, and this unnecessary ambient light 16 is disposed in front of the light receiving surface 7. Similarly, it is reflected by the side surface 12 of the cover glass 11 having a square shape and adversely affects the image as flare. Therefore, in order to shield the unnecessary ambient light 16, a light shielding mask 13 in which a hole shape is matched with the shape of the image output area 8 is usually disposed in the vicinity of the cover glass 11.
[0003]
On the other hand, for example, in the case of a very small imaging device having an inner diameter of about 2 mm or 1.5 mm or less, if a light shielding mask is provided to shield unnecessary ambient light, the position between the light shielding mask and the imaging area High accuracy is required for adjustment, and it takes time to assemble.
Therefore, recently, a light shielding means for shielding unnecessary ambient light without arranging a special light shielding mask in the vicinity of the image sensor has been proposed. For example, the image pickup apparatus described in Japanese Patent Application Laid-Open No. 8-160339 increases the area of the incident surface of the cover glass so that unnecessary ambient light reflected by the side surface of the cover glass does not enter the image output area, The thickness is reduced.
[0004]
[Problems to be solved by the invention]
By the way, if there is dust or scratches on the surface through which light passes, it is projected on the light receiving surface, which is not preferable. The projected dust and scratch shadows become darker and closer to the light receiving surface, and the outline becomes clearer. This is related to the beam diameter, and dust and scratches become more conspicuous as the beam diameter decreases. As shown in FIG. 9, in particular, the object-side surface 14 of the cover glass 11 is close to the light receiving surface 7 and has a small luminous flux diameter φ, and dust remaining in the frame tends to adhere. Therefore, it is necessary to increase the thickness t of the cover glass 11 to t ′, to move the object-side surface 14 of the cover glass 11 away from the light receiving surface to some extent, and to increase the beam diameter φ to φ ′. is there.
In recent years, in order to improve the image quality of an image pickup apparatus, the number of pixels of the image pickup element is increased, while the pixel pitch is reduced in order not to change the size of the outer shape of the image pickup element. Since the depth of field decreases as the pixel pitch decreases, it is necessary to increase the F value of the imaging optical system, that is, to reduce the aperture 15 in order to maintain the same depth of field. Then, since the beam diameter becomes small, it becomes necessary to make the cover glass 11 thicker.
However, a normal image sensor and its light receiving surface and image output area have a square shape, and a cover glass generally has a square shape. At this time, if the cover glass 11 is made thick as t ′ to prevent the above-mentioned dust and scratches, unnecessary ambient light reflected on the side surface 12 of the cover glass 11 that was not a problem when the thickness is t, particularly unnecessary in the opposite direction. Since the ambient light 16 ′ enters the output area 8, it is not preferable.
[0005]
Therefore, the present invention has the same effect as increasing the thickness of the cover glass without increasing the thickness, and does not increase the outer diameter, and unnecessary ambient light does not enter the image output area without using a shading mask. An object of the present invention is to provide an imaging device that can be configured as described above.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, an image pickup apparatus according to the present invention is an image pickup apparatus including an image pickup optical system and an image pickup element, wherein an image output area of a light receiving surface of the image pickup element is on the object side of a cover glass of the image pickup element. An optical member having an outer dimension larger than that of the cover glass is disposed adjacent to at least one opposite side direction.
[0007]
In the imaging apparatus of the present invention, it is preferable that the thickness of the optical member is equal to or less than the thickness of the cover glass.
[0008]
In the imaging apparatus of the present invention, preferably, the outer diameter of the optical member is set to be equal to or smaller than the outer diameter of the circumscribed circle of the cover glass or smaller than the outer diameter of the circumscribed circle of the imaging element.
[0009]
In addition, the image pickup apparatus of the present invention preferably satisfies the following expression (3) or expression (4).
T ≧ 0.0002 · n / (2 · P · tan (1 / 2Fno)) (3)
T ≧ 0.001 / P (4)
Where T is the total thickness of the optical member and the cover glass, n is the refractive index of the optical member, Fno is the F number of the imaging optical system, and P is the pixel pitch of the imaging element.
[0010]
The imaging apparatus of the present invention is preferably characterized in that the following equation (6) is satisfied in a direction in which the numerical value obtained by the following equation (5) is minimized.
LAS-IH (5)
sin θ ≦ n (LAS−IH) / √ (T2+ (LAS-IH)2(6)
Where LAS is the distance from the optical axis of the imaging optical system to the side surface of the optical member, IH is the distance from the optical axis of the imaging optical system to the corner of the output area, and θ is the main direction toward the corner of the output area. The angle between the light beam and the optical axis incident on the optical member, n is the refractive index of the optical member, and T is the total length of the optical member and the cover glass.
[0011]
In the imaging apparatus of the present invention, preferably, the optical member and the cover glass are bonded, and the center of the optical member substantially coincides with the center of the image output area of the imaging element. Is an ultraviolet curing type or a combined type of ultraviolet curing and heat curing, and is characterized by satisfying the following formulas (7) and (8).
Ng <1.6 (7)
| Ng-Nc | <0.1 (8)
However, Ng shows the refractive index of the said optical member or the said cover glass, and Nc shows the refractive index of an adhesive agent.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
First, the operation of the imaging apparatus of the present invention will be described with reference to FIG.
1A and 1B are explanatory views of a main part of an imaging apparatus according to the present invention, in which FIG. 1A is a side view and FIG.
In FIG. 1A, unnecessary ambient light 16 is reflected by the side surface 12 of the cover glass 11 and then travels toward the light receiving surface 7 side. Here, if the cover glass 11 is thickened to prevent dust from being seen, unnecessary ambient light 16 is reflected by the side surface 12 of the cover glass 11 at a position further away from the light receiving surface 7, and enters the image output area 8. It becomes easy to enter. The imaging apparatus of the present embodiment has a larger outer dimension than the cover glass 11 in the opposite side direction (vertical and horizontal directions) of the cover glass 11 without increasing the thickness of the cover glass 11, for example, as shown in FIG. Such a circular optical member 17 is disposed adjacent to or bonded to the object side of the cover glass 11. For this reason, unnecessary ambient light 16 ′ is further separated from the optical axis 18 of the imaging optical system and reflected by the side surface 19 of the optical member 17, and then blocked by the surface portion 22 not in contact with the cover glass 11. Therefore, according to the imaging apparatus of the present invention, it is possible to prevent unnecessary ambient light from entering the image output area 8 as compared with the case where the cover glass is simply thickened. Further, since the outer diameter of the imaging device cannot originally be made smaller than the outer diameter of the circumscribed circle 20 of the imaging element, the outer diameter of the optical member 17 is equal to or smaller than the outer diameter of the circumscribed circle of the cover glass 11 or the circumscribed circle 20 of the imaging element. It is preferable that the outer diameter of the image pickup apparatus is not larger than the outer diameter.
[0013]
Furthermore, when the optical member 17 and the cover glass 11 are bonded, the bonding surface 21 is not scratched or dusted after bonding, but may be damaged slightly before bonding. It is good when the scratch is filled with an adhesive, but when the bubble is slightly filled and does not fill, the bubble appears as a shadow in the image, which is not preferable. In the imaging apparatus of the present invention, the influence of the scratch on the joint surface 21 is reduced by making the joint surface 21 as far as possible from the light receiving surface 7 of the image sensor. In order to make the bonding surface 21 as far as possible from the light receiving surface 7 of the image pickup device, the thickness TA of the optical member 17 is made equal to or less than the thickness TB of the cover glass 11, and the position of the bonding surface 21. This is preferable because the light flux at the surface becomes large and, as a result, the shadow caused by the scratch can be reduced.
[0014]
Here, the dimensional relationship between the optical member 17 and the cover glass 11 of the present invention can be expressed as follows.
In at least one opposite direction of the output area,
LA> LB (1)
However, LA represents the distance from the optical axis of the imaging optical system to one side surface of the optical member 17, and LB represents the distance from the optical axis of the imaging optical system to one side surface of the cover glass 11.
TA ≤ TB (2)
However, TA indicates the thickness of the optical member 17, and TB indicates the thickness of the cover glass 11.
[0015]
Here, the thickness TB of the cover glass 11 preferably satisfies the following conditions.
The beam diameter Φ on the object side surface of the cover glass 11B(Mm) is
ΦB≧ 0.00008 / P
It is preferable to satisfy.
However, P shows the pixel pitch (mm) of an image pick-up element.
Therefore,
TB ≧ 0.00008 · nB/ (2 ・ P ・ tan (1 / 2Fno))
Is preferably satisfied.
However, nBRepresents the refractive index of the cover glass 11, and Fno represents the F number of the imaging optical system.
In the case of an endoscope imaging device, nBConsidering Fno
TB ≧ 0.0004 / P
Is preferably satisfied.
If this is not satisfied, for example, if there is a scratch on the joint surface, a shadow of the scratch will appear in the image, and in particular with an endoscope, diagnosis is made from the image, so such a shadow becomes very annoying, This will interfere with accurate diagnosis.
More preferably,
TB ≧ 0.00016 · nB/ (2 ・ P ・ tan (1 / 2Fno))
TB ≧ 0.0008 / P
Is preferably satisfied.
[0016]
In addition, the beam diameter Φ (mm) on the object side surface of the optical member 17 is
Φ = 2 · (T / n) · tan (1 / 2Fno)
Can be expressed as
However, T represents the total thickness of the optical member 17 and the cover glass 11, and n represents the refractive index of the optical member 17.
When the pixel pitch is reduced, the shadow becomes more noticeable even if the beam diameter and the size of dust are the same as when the pixel pitch is not reduced. Therefore, when the pixel pitch of the image sensor is P (mm), it is preferable to satisfy the following expression in actual use.
Φ ≧ 0.0002 / P
Therefore, it is preferable that the following conditional expression (3) is satisfied.
T ≧ 0.0002 · n / (2 · P · tan (1 / 2Fno)) (3)
In the case of an endoscope imaging apparatus, it is preferable that the following conditional expression (4) is satisfied in consideration of n and Fno.
T ≧ 0.001 / P (4)
If this is not satisfied, dust shadows appear in the image, making it difficult for the endoscope to make an accurate diagnosis.
More preferably, the following conditional expressions (3 ′) and (4 ′) are preferably satisfied.
T ≧ 0.0004 · n / (2 · P · tan (1 / 2Fno)) (3 ′)
T ≧ 0.002 / P (4 ')
[0017]
Furthermore, it is preferable that the imaging apparatus of the present invention satisfies the formula (6) in the direction S in which the numerical value obtained by the following formula (5) is minimized.
LAS-IH (5)
However, LAS indicates the distance from the optical axis of the imaging optical system to the side surface of the optical member 17, and IH indicates the distance from the optical axis of the imaging optical system to the corner of the image output area 8.
sin θ ≦ n (LAS−IH) / √ (T2+ (LAS-IH)2(6)
However, (theta) shows the angle made with the optical axis of the chief ray which injects into the optical member 17 which goes to the corner of the image display area 8. FIG.
Expression (6) is a conditional expression for preventing unnecessary ambient light from the imaging optical system from entering the image output area 8 after being reflected by the side surface of the optical member 17.
[0018]
FIG. 2 shows a partial cross-sectional view in the S direction of FIG. The S direction is the direction in which the numerical value obtained by the equation (5) is the smallest, and the side surface of the optical member 17 is closest to the image output area 8, so the unnecessary ambient light reflected by the side surface of the optical member 17 in the S direction. Is most likely to enter the image area 8. Consider the principal ray emitted from the exit pupil 23 of the imaging optical system. The light beam 16 is unnecessary ambient light and is reflected at a position closest to the object on the side surface 19 of the optical member 17 and reaches the corner 25 of the image output area 8. The state shown in FIG. 2 is a state in which unnecessary ambient light 16 does not enter the image output area 8 and reaches the image output area 8 if the incident angle of the unnecessary ambient light 16 on the optical member 17 is equal to or smaller than θ. This is preferable. For this purpose, it is essential that at least the incident angle of the most peripheral principal ray 24 in the field of view is θ or less.
[0019]
From Snell's law,
sin θ = n · sin θ ′
on the other hand,
(LAS-IH) / √ (T2+ (LAS-IH)2) = Sin θ ′
Can be expressed as
From the above, it is essential to satisfy the following conditional expression (6).
sin θ ≦ n (LAS−IH) / √ (T2+ (LAS-IH)2(6)
[0020]
Next, an imaging optical system that satisfies conditional expression (6) will be described.
As shown in FIG. 3A, in the imaging optical system configured from the object side to the front group, the aperture stop, and the positive rear group, the angle θ ″ of the exit light beam of the positive rear group is
Figure 0003813759
Can be expressed as
Where h is the height of the most peripheral principal ray, l is the distance from the aperture stop to the rear group positive lens, fPIndicates the focal length of the rear group.
Therefore, θ ”= θ
sin (tan-1(H / l) -tan-1(H / fP)) ≤ Right side of conditional expression (6) (A)
A lens that satisfies this requirement may be placed in the rear group.
[0021]
In addition, when the lens in front of the image pickup element in the rear group is a plano-convex lens convex toward the image side as shown in FIG.
Figure 0003813759
Can be expressed as
Where θ1Is the angle of incidence on the plano-convex lens, θ1'Is the refraction angle, nLIs the refractive index of the plano-convex lens, R is the radius of curvature of the plano-convex lens, h2Is the height of light emitted from the plano-convex lens, θ2Is the angle of incidence on the second surface, θ2'Indicates the exit angle from the second surface.
Also,
nLsinθ2= Sin (β−θ2') Than,
θ2′ = Β−sin-1(NLsinθ2)
Therefore, θ2From ‘= θ,
β-sin-1(NLsinθ2) ≤ Right side of conditional expression (6) (B)
N to satisfy thisL, R can be determined.
[0022]
Further, when the lens in front of the image pickup element in the rear group is a convex flat lens convex toward the object side as shown in FIG.
nLsinθ2  = Sinθ2
θ2    = Θ1′ − Β
θ2‘= Sin-1(NLsin (θ1'-Β))
Can be expressed as
However, sin (θ1+ Β) = nLsinθ1' Than,
θ1‘= Sin-1(Sin (θ1+ Β) / nL)
β = sin-1(H1/ R)
And θ1Is the angle of incidence on the convex flat lens, θ1'Is the refraction angle, nLIs the refractive index of the convex flat lens, R is the radius of curvature of the convex flat lens, h1Is the incident light height of the convex flat lens, θ2Is the angle of incidence on the second surface, θ2'Indicates the exit angle from the second surface.
Therefore, θ2From ‘= θ,
sin-1(NLsin (θ1′ −β)) ≦ right side of conditional expression (6) (C)
N to satisfy thisL, R can be determined.
[0023]
Hereinafter, the present invention will be described using examples.
Example 1
4A and 4B show a first embodiment of the present invention, in which FIG. 4A is a cross-sectional view, and FIG. 4B is a view of the main part of FIG.
The imaging apparatus 1 is an imaging apparatus for an endoscope, and includes an imaging optical system 2 and a CCD 44 as shown in FIG. The imaging optical system 2 is spaced from the optical components of the first lens 31, the laser cut interference filter 32, the second lens 33, the color correction absorption filter 34, and the third lens 35 arranged in this order from the object side on the lens frame 38. The ring 41 is composed of a phosphor bronze plate flare stop 40, 43 and a brightness stop 42, respectively. A circular optical member 36 is bonded to the object side of the cover glass 37 of the CCD 44 in a state in which the center is aligned with the center of the image output area 8 as shown in FIG. After joining the optical member 36, the CCD 44 is combined with the CCD frame 39 as shown in FIG. That is, the optical member 36 with an adhesive on the side surface is inserted into the CCD frame 39 from the right side of the figure so that the image side surface 45 of the CCD frame 39 abuts against the object side surfaces 46 at the four corners of the cover glass 37. Further, for example, a black adhesive 47 containing carbon is placed from the side surface of the cover glass 37 to the image side surface 45 of the CCD frame 39. Further, if there is a chip 48 on the ridge line portion on the object side of the cover glass 37, flare is caused, so the chip 47 is filled with an adhesive 47. In this case, it is preferable to make the difference in refractive index between the cover glass 37 and the adhesive within 0.1 because reflection at the boundary between the cover glass 37 and the adhesive can be suppressed. As described above, if the adhesive is black with carbon (soot) mixed therein, flare can be absorbed. On the other hand, if the chip is too large, bubbles may enter when it is filled with adhesive, and it will not fill well. Therefore, the cover glass 37 has a size of 100 μm or less, preferably 50 μm or less, even if chipping occurs.
[0024]
In the imaging apparatus of the present embodiment, the imaging optical system and the optical member are
LA = 0.65, LB = 0.6, TA = 0.4, TB = 0.4, IH = 0.5, LAS = 0.65, P = 0.004
It has become.
Lens data is shown below.
Figure 0003813759
Figure 0003813759
Where r1, R2,・ ・ ・ ・ ・ ・Is the radius of curvature of each lens surface, d1, D2,・ ・ ・ ・ ・ ・Is the thickness or air spacing of each lens, n1, N2,・ ・ ・ ・ ・ ・Is the refractive index of each lens, ν1, Ν2,・ ・ ・ ・ ・ ・Is the Appe number of each lens. The unit of the radius of curvature, the thickness, the air gap, LA, LB, TA, TB, IH, LAS, P, and the object distance is mm.
[0025]
Example 2
5A and 5B show a second embodiment of the present invention, in which FIG. 5A is a cross-sectional view, and FIG. 5B is a view of the main part of FIG.
In this embodiment, the optical member 51 is formed by joining the optical member 49 and the optical member 50 having the same shape, and is joined to the cover glass 37. The optical members 49 and 50 are both infrared absorbing glass, but the materials and spectral characteristics are different from each other.
In the imaging apparatus of the present embodiment, the imaging element and the optical member are
LA = 1.5, LB = 1, TA = 1.6, TB = 0.4, IH = 1.2,
LAS = 1.2, P = 0,002
It has become.
The lens data is as follows.
Figure 0003813759
Where r1, R2,・ ・ ・ ・ ・ ・Is the radius of curvature of each lens surface, d1, D2,・ ・ ・ ・ ・ ・Is the thickness or air spacing of each lens, n1, N2,・ ・ ・ ・ ・ ・Is the refractive index of each lens, ν1, Ν2,・ ・ ・ ・ ・ ・Is the Appe number of each lens. The unit of the radius of curvature, the thickness, the air gap, LA, LB, TA, TB, IH, LAS, P, and the object distance is mm.
[0026]
Example 3
FIG. 6 is a sectional view showing a third embodiment of the present invention.
In this embodiment, the optical member 49 is not bonded to the cover glass 37 and the gap 52 is vacant. The periphery of the gap 52 is sealed with an adhesive 53 so that dust does not enter later. The optical member 49 is an infrared absorbing glass, and an interference film for cutting a laser beam for endoscopic treatment is deposited on both surfaces thereof. The gap may be filled with air, an adhesive, a transparent gel material or the like even in a vacuum.
[0027]
In addition, in the image pickup apparatus of the present invention, as shown in FIG. 7 (a), the optical member 36 may have a curvature on the object side surface, and further in FIGS. As shown, the outer shape of the optical member 36 may be a polygon. Here, the outer diameter shape of the optical member 36 in FIG. 7 (b1) is an octagon, and the outer diameter shape of the optical member 36 in FIGS. 7 (b2) to (b4) is a shape obtained by cutting a part of a circle. . Fig. 7 (b2) is cut along one side of the cover glass, Fig. 7 (b3) is cut along two opposite sides of the cover glass, and Fig. 7 (b4) is the cover. It is cut according to each side of the glass.
The optical member and the cover glass may be made of the same glass, or may be made of different glasses having different refractive indexes. However, when the refractive index is as small as possible, the air equivalent length can be increased with the same thickness, which is effective for downsizing of the imaging apparatus. For example, it is preferable to satisfy the following formula (7).
Ng <1.6 (7)
However, Ng shows the refractive index of an optical member or a cover glass.
Furthermore, the refractive index of the adhesive that joins the optical member and the cover glass is preferably approximately the same as those of these members, and for example, preferably satisfies the following formula (8).
| Ng-Nc | <0.1 (8)
However, Nc shows the refractive index of an adhesive agent.
In addition, it is preferable in terms of durability that the adhesive used for bonding is of a type that is cured by ultraviolet rays, or a type that is a combination of curing by ultraviolet rays and curing by heat. According to these types of adhesives, when the center of the optical member is aligned with the center of the image output area, the position can be quickly cured with ultraviolet light after the bonding position has been adjusted, and the position can be fixed. This is convenient in that it does not occur.
[0028]
As described above, the imaging apparatus according to the present invention has the following features (1) to (11) in addition to the features described in the claims.
[0029]
(1) Consisting of an imaging optical system and an imaging device, there is no light shielding mask with a square hole in the vicinity of the imaging device, and at least one opposite direction of the output area of the light receiving surface on the object side of the cover glass of the imaging device And an optical member having an outer dimension larger than that of the cover glass is disposed adjacently.
[0030]
(2) It is composed of an imaging optical system and an imaging device, and an optical member is disposed adjacent to the object side of the cover glass of the imaging device, and satisfies formula (1) at least in the opposite direction of the image output area. An imaging device.
LA> LB (1)
However, LA represents the distance from the optical axis of the imaging optical system to the side surface of the optical member, and LB represents the distance from the optical axis of the imaging optical system to the side surface of the cover glass.
[0031]
(3) The imaging device according to (1) or (2), wherein the optical member and a cover glass are bonded.
[0032]
(4) The imaging apparatus according to any one of (1) to (3), wherein the following expression (2) is satisfied.
TA ≤ TB (2)
However, TA is the thickness of the optical member, and TB is the thickness of the cover glass.
[0033]
(5) The outer diameter of the optical member is less than or equal to the outer diameter of the circumscribed circle of the cover glass or less than or equal to the outer diameter of the circumscribed circle of the image sensor, according to any one of (1) to (4), Imaging device.
[0034]
(6) The imaging apparatus according to any one of (1) to (4), wherein the following expression (3) or expression (4) is satisfied.
T ≧ 0.0002 · n / (2 · P · tan (1 / 2Fno)) (3)
T ≧ 0.001 / P (4)
Where T is the total thickness of the optical member and the cover glass, n is the refractive index of the optical member, Fno is the F number of the imaging optical system, and P is the pixel pitch of the imaging element.
[0035]
(7) The imaging apparatus according to any one of (1) to (4), wherein the following expression (3 ′) or expression (4 ′) is satisfied.
T ≧ 0.0004 · n / (2 · P · tan (1 / 2Fno)) (3 ′)
T ≧ 0.002 / P (4 ')
Where T is the total thickness of the optical member and the cover glass, n is the refractive index of the optical member, Fno is the F number of the imaging optical system, and P is the pixel pitch of the imaging element.
[0036]
(8) The imaging device according to (6) or (7), wherein the following expression (6) is satisfied in a direction in which the numerical value obtained by the following expression (5) is minimized.
LAS-IH (5)
sin θ ≦ n (LAS−IH) / √ (T2+ (LAS-IH)2(6) where LAS is the distance from the optical axis of the imaging optical system to the side of the optical member, IH is the distance from the optical axis of the imaging optical system to the corner of the output area, and θ is the output area. The angle of the principal ray toward the corner with the optical axis incident on the optical member, n is the refractive index of the optical member, and T is the total length of the optical member and the cover glass.
[0037]
(9) The imaging device according to any one of (1) to (4), wherein the following conditional expressions (7) and (8) are satisfied.
Ng <1.6 (7)
| Ng-Nc | <0.1 (8)
However, Ng shows the refractive index of an optical member or a cover glass, Nc shows the refractive index of an adhesive agent.
[0038]
(10) The center of the optical member is almost coincident with the center of the image area, and an ultraviolet curing type adhesive or a combination of ultraviolet curing and heat curing is used together for bonding the optical member and the cover glass. The imaging apparatus according to (9) above, wherein
[0039]
(11) The imaging device according to (9), wherein the cover glass has a chip size of 100 μm or less or 50 μm or less.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an imaging device in which unnecessary ambient light does not enter the image output area without increasing the outer diameter even when the cover glass is thickened.
[Brief description of the drawings]
1A and 1B are explanatory views of a main part for explaining the operation of an imaging apparatus according to the present invention, in which FIG. 1A is a side view and FIG.
FIG. 2 is a partial cross-sectional view seen in the direction of arrow S in FIG.
FIG. 3 is a diagram for explaining conditions in the imaging optical system of the present invention, and (a) is a diagram for explaining conditions for satisfying the imaging optical system of the present invention in a general imaging optical system; (b) is a diagram for explaining the conditions for satisfying the imaging optical system of the present invention when the lens in front of the rear group image sensor is a plano-convex lens, and (c) is the lens in front of the rear group image sensor. It is a figure for demonstrating the conditions for satisfy | filling the imaging optical system of this invention in the case of a convex flat lens.
4A and 4B show a first embodiment of the present invention, in which FIG. 4A is a cross-sectional view, and FIG. 4B is a view of the main part of FIG.
5A and 5B show a second embodiment of the present invention, in which FIG. 5A is a cross-sectional view, and FIG. 5B is a view of the main part of FIG.
FIG. 6 is a sectional view showing a third embodiment of the present invention.
7A is a cross-sectional view of an essential part showing a fourth embodiment of the present invention, FIG. 7B is a diagram showing the shape of an optical member viewed from the object side, and FIG. (b4) is a diagram showing another shape of the optical member.
8A and 8B show a conventional imaging apparatus, in which FIG. 8A is a cross-sectional view, and FIG.
FIG. 9 is a cross-sectional view showing a conventional imaging device.
[Explanation of symbols]
11 Cover glass
12 Side of cover glass
13 Shading mask
14 Object side surface of cover glass
15 Aperture
16 Unnecessary ambient light
17 Optical members
18 Optical axis of imaging optical system
19 Side of optical member
20 circumscribed circle of image sensor
21 Joint surface
22 The part of the light receiving surface that is not in contact with the cover glass
23 Exit pupil of imaging optical system
24 Nearest chief ray in the field of view
25 Corner of screen area
31 First lens
32 Laser cut interference filter
33 Second lens
34 color correction absorption filter
35 Third lens
36 Optical members
37 Cover glass
38 Lens frame
39 CCD frame
41 Spacing ring
40, 43 Flare stop
42 Brightness stop
44 CCD
45 Image side surface of CCD frame
46 Object side surfaces at the four corners
47 Adhesive
48 chips
49, 50, 51 Optical members
52 Clearance
53 Adhesive

Claims (2)

撮像光学系と撮像素子とを備えた撮像装置において、前記撮像素子のカバーガラスの物体側に、前記撮像素子の受光面の出画エリアの少なくとも1つの対辺方向において前記カバーガラスに比べて外寸が大きい光学部材を隣接配置し、次の式 (3) または式 (4) を満たすことを特徴とする撮像装置。
0.0002・n/(2・P・ tan (1/2F no ))・・・ (3)
0.001/P ・・・・・ (4)
但し、Tは前記光学部材と前記カバーガラスのトータルの厚さ、nは前記光学部材の屈折率、F no は前記撮像光学系のFナンバー、Pは前記撮像素子の画素ピッチを示す。
In an imaging apparatus including an imaging optical system and an imaging element, an outer dimension of the imaging device on the object side of the cover glass of the imaging element is larger than that of the cover glass in the at least one opposite side direction of the output area of the light receiving surface of the imaging element. An image pickup apparatus characterized in that an optical member having a large size is disposed adjacently and satisfies the following formula (3) or formula (4) .
T 0.0002 ・ n / (2 ・ P ・ tan (1 / 2F no )) ・ ・ ・ (3)
T 0.001 / P ..... (4)
Where T is the total thickness of the optical member and the cover glass, n is the refractive index of the optical member, F no is the F number of the imaging optical system, and P is the pixel pitch of the imaging element.
次の式(5) で求められる数値が最小となる方向において次の式(6) を満たすことを特徴とする請求項に記載の撮像装置。
LAS − IH ・・・・・(5)
sinθ≦n(LAS−IH)/√(T2 +(LAS−IH)2 )・・・(6)
但し、LASは前記撮像光学系の光軸から前記光学部材の側面までの距離、IHは前記撮像光学系の光軸から出画エリアの角までの距離、θは出画エリアの角に向かう主光線の前記光学部材へ入射する光軸との角度、nは前記光学部材の屈折率、Tは前記光学部材と前記カバーガラスのトータルの長さを示す。
The imaging apparatus according to claim 1 , wherein the following expression (6) is satisfied in a direction in which a numerical value obtained by the following expression (5) is minimized.
LAS-IH (5)
sin θ ≦ n (LAS−IH) / √ (T 2 + (LAS−IH) 2 ) (6)
Where LAS is the distance from the optical axis of the imaging optical system to the side surface of the optical member, IH is the distance from the optical axis of the imaging optical system to the corner of the output area, and θ is the main direction toward the corner of the output area. The angle between the light beam and the optical axis incident on the optical member, n is the refractive index of the optical member, and T is the total length of the optical member and the cover glass.
JP10538299A 1999-04-13 1999-04-13 Imaging device Expired - Fee Related JP3813759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10538299A JP3813759B2 (en) 1999-04-13 1999-04-13 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10538299A JP3813759B2 (en) 1999-04-13 1999-04-13 Imaging device

Publications (2)

Publication Number Publication Date
JP2000299806A JP2000299806A (en) 2000-10-24
JP3813759B2 true JP3813759B2 (en) 2006-08-23

Family

ID=14406134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10538299A Expired - Fee Related JP3813759B2 (en) 1999-04-13 1999-04-13 Imaging device

Country Status (1)

Country Link
JP (1) JP3813759B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905462B1 (en) * 1999-09-08 2005-06-14 Olympus Corporation Endoscope image pickup optical system
JP2008160321A (en) * 2006-12-21 2008-07-10 Casio Comput Co Ltd Lens sensor assembly, sensor attaching structure, and manufacturing method of lens sensor assembly
JP2013229675A (en) * 2012-04-24 2013-11-07 Sony Corp Image pickup unit and image pickup device
JP5933393B2 (en) * 2012-08-20 2016-06-08 オリンパス株式会社 Optical unit and endoscope
JP2015020930A (en) * 2013-07-19 2015-02-02 日本電気硝子株式会社 Cover glass of medical treatment apparatus
JP6465416B2 (en) * 2017-07-19 2019-02-06 日本電気硝子株式会社 Endoscope

Also Published As

Publication number Publication date
JP2000299806A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
US5969869A (en) Prism
JP4054094B2 (en) Electronic endoscope
US20040252384A1 (en) Panoramic imaging system
US6181470B1 (en) Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same
CN1373858A (en) Image pickup optical system for endoscope
JP3948439B2 (en) Contact image sensor and image reading apparatus using the same
US6537208B1 (en) Optical imaging system with movable solid-state imaging device for focus control
JPH05110960A (en) Solid-state image pickup device
US6963448B1 (en) Optical low-pass filter, and image sensing unit and apparatus using the same
JP3813759B2 (en) Imaging device
CN1114315C (en) Projection-type display device
US7679061B2 (en) Radiographic image sensing system
EP1179742B1 (en) Image pickup lens
US6058273A (en) Real-image type viewfinder
US6906872B2 (en) Lens module for a thin scanning device
US7616884B2 (en) Viewfinder for single lens reflex camera
JP2885316B2 (en) Color imaging device
JPS6332528A (en) Transmission type screen
JP2001147404A (en) Optical low-pass filter, image pickup unit having the same and image pickup device
CN213213622U (en) Imaging device and terminal
JP2000131507A (en) Lens array plate, light valve device, projection type display device, and viewfinder device
JP4366107B2 (en) Optical device
JP3689430B2 (en) TRANSMISSION SCREEN, MANUFACTURING METHOD THEREOF, AND REAR PROJECTION IMAGE DISPLAY DEVICE USING THE SAME
JP3128125B2 (en) Imaging optical system
JPS5962267A (en) Contact type reader

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031007

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees