JPH01218079A - Hall element and magnetic head - Google Patents

Hall element and magnetic head

Info

Publication number
JPH01218079A
JPH01218079A JP63043831A JP4383188A JPH01218079A JP H01218079 A JPH01218079 A JP H01218079A JP 63043831 A JP63043831 A JP 63043831A JP 4383188 A JP4383188 A JP 4383188A JP H01218079 A JPH01218079 A JP H01218079A
Authority
JP
Japan
Prior art keywords
layer
hall element
magnetic field
hall
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63043831A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsudaira
松平 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP63043831A priority Critical patent/JPH01218079A/en
Publication of JPH01218079A publication Critical patent/JPH01218079A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To fulfil two functions; electromagnetic conversion and waveform shaping simultaneously by using one Hall element, by causing two kinds of substances having different Fermi levels to be formed into a two-layer structure, thereby forming a potential gradient or barrier between the two layers. CONSTITUTION:A two-layer structure consisting of layers 10 and 12 having low and high Fermi levels is formed. If a current I flows in the layer 10 of low Fermi level, electrons move to the reverse direction. When a magnetic field B is impressed, the electrons are put aside by Lorentz's force. However, when the strength of the magnetic field B is less than the prescribed value, a potential V gradient or barrier obtained by the foregoing two-layer structure prevents electrons from moving from layer 10 to layer 12 and no electromotive force takes place. When its strength of the magnetic field B becomes more than the prescribed value, the electrons move from layer 10 to layer 12 and are stored in an electrode 20. Thus, electric polarization is formed between electrodes 18 and 20 and then, Hall electromotive force EH takes place.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、非線形特性を有するホール素子の構造および
これを使用する磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a Hall element having nonlinear characteristics and a magnetic head using the same.

[従来の技術] ホール素子は、代表的な磁気センサで、磁界を媒体とす
る変量の非接触検出に利用されている。
[Prior Art] A Hall element is a typical magnetic sensor and is used for non-contact detection of variables using a magnetic field as a medium.

第8図に、従来のホール素子構造を示す。素子100に
電流Iを流し磁界Bの中に置くと、素子100中の荷電
粒子(電子または正孔)は電流Iと磁界Bの両者に垂直
な方向にローレンツ力を受けて素子100の一方の側面
に寄せられる。これは一種の電気分極であって、電流■
と磁界Bに直角な方向に起電力(ホール起電力)が発生
する。
FIG. 8 shows a conventional Hall element structure. When a current I is applied to the element 100 and the element 100 is placed in a magnetic field B, charged particles (electrons or holes) in the element 100 are subjected to Lorentz force in a direction perpendicular to both the current I and the magnetic field B, and are forced into one side of the element 100. Pushed to the side. This is a type of electric polarization, and the current
An electromotive force (Hall electromotive force) is generated in a direction perpendicular to the magnetic field B.

このホール起電力EHは次式で表される。This Hall electromotive force EH is expressed by the following formula.

EH=KIBcosθ     ・・・・・・・・(1
)ここで、Kは比例定数(ホール係数)、θは素子面の
法線と磁界Bのなす角度である。
EH=KIBcosθ・・・・・・・・・(1
) Here, K is a proportionality constant (Hall coefficient), and θ is the angle between the normal to the element surface and the magnetic field B.

上式(1)により、磁界Bとホール起電力EHとの関係
は第9図に示すように線形特性となり、例えば第10図
(イ)に示すように正弦波状に変化する磁界Bに対して
は第10(ロ)に示すように正弦波状に変化するホール
起電力EHが得られる。
According to the above equation (1), the relationship between the magnetic field B and the Hall electromotive force EH has a linear characteristic as shown in Figure 9. For example, as shown in Figure 10 (a), for the magnetic field B changing sinusoidally, As shown in 10th (b), a Hall electromotive force EH that changes sinusoidally is obtained.

素子100の材料は、電気的に均一な物質であり、S 
i、I nSb、GaAs等がよく使われている。
The material of the element 100 is an electrically uniform substance, S
i, InSb, GaAs, etc. are often used.

[発明が解決しようとする課H] 上述のように、従来のホール素子は、第9図のような線
形特性をもつ磁界−電圧変換素子(磁気センサ)である
。このような素子は、磁界をそのまま忠実に検出するに
は都合のよいものである。
[Problem H to be Solved by the Invention] As described above, the conventional Hall element is a magnetic field-voltage conversion element (magnetic sensor) having linear characteristics as shown in FIG. Such an element is convenient for faithfully detecting the magnetic field as it is.

しかし、第6図に示すような非線形特性をもつホール素
子もあってよく、この非線形特性が都合のよい場合もあ
る。例えば、第7図(イ)に示すよように正弦波状に変
化する磁界をそのような非線形特性をもつホール素子で
検出すれば、その素子1個で第7図(0)に示すような
矩形波信号を生成することができる。従来のホール素子
を使ったときにその後段に設けていたコンパレータ等の
波形成形回路が要らなくなる。このような非線形特性を
もつホール素子の応用例としては、磁気ヘッドがある。
However, there may also be a Hall element having nonlinear characteristics as shown in FIG. 6, and this nonlinear characteristic may be convenient in some cases. For example, if a magnetic field that changes sinusoidally as shown in Figure 7 (a) is detected using a Hall element with such nonlinear characteristics, that single element can detect a rectangular shape as shown in Figure 7 (0). Wave signals can be generated. When using a conventional Hall element, there is no need for a waveform shaping circuit such as a comparator that is provided at the subsequent stage. A magnetic head is an example of an application of a Hall element having such nonlinear characteristics.

本発明は、かかる課題に鑑みてなされたもので非線形特
性をもつ新規なホール素子構造およびこれを使用する磁
気ヘッドを提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel Hall element structure having nonlinear characteristics and a magnetic head using the same.

[課題を解決するための手段] 上記目的を達成するために、本発明のホール素子は、フ
ェルミ準位の異なる二種類の物質の層を重ねた二層構造
を有し、電流を供給するための一対の電極をフェルミ準
位の低いほうの層の表面にそれぞれ接続し、ホール起電
力を検出するための一対の電極を両層の互いに対抗する
表面にそれぞれ接続してなる構成とした。
[Means for Solving the Problems] In order to achieve the above object, the Hall element of the present invention has a two-layer structure in which layers of two types of substances with different Fermi levels are stacked, and for supplying current. A pair of electrodes were connected to the surface of the layer with the lower Fermi level, and a pair of electrodes for detecting the Hall electromotive force were connected to the opposing surfaces of both layers.

二種類の物質としては、金属と半導体、例えばニッケル
シリサイドとクロムシリサイドが好適である。
The two types of substances are preferably metals and semiconductors, such as nickel silicide and chromium silicide.

さらに、本発明の磁気ヘッドは、上記構成のホール素子
を有するものである。
Furthermore, the magnetic head of the present invention has a Hall element having the above structure.

[作用] 第3図(イ)、(0)に示すようなフェルミ準位の異な
る(仕事関数の異なる)2つの物質A、Bを接合すると
、物質内のポテンシャルは第3図(ハ)に示すようなも
のとなる。また、第4図(イL((1)に示すように例
えばn型の半導体と金属とを接合すると、物質内のポテ
ンシャルは第4図(ハ)に示すようなものとなる。
[Effect] When two materials A and B with different Fermi levels (different work functions) as shown in Figure 3 (A) and (0) are joined, the potential inside the materials becomes as shown in Figure 3 (C). It will look like the one shown. Furthermore, when an n-type semiconductor and a metal are bonded, for example, as shown in FIG. 4(a), the potential within the material becomes as shown in FIG. 4(c).

しかして、本発明のホール素子における二層の物質内の
ポテンシャルは第3図(ハ)または第4図(ハ)に示す
ようなものとなる。
Therefore, the potential within the two-layer material in the Hall element of the present invention becomes as shown in FIG. 3 (c) or FIG. 4 (c).

第5図に示すように、フェルミ単位の低いほうの層10
に矢印方向の電流Iを流すと、荷電粒子としての電子は
反対方向(図では下方)に移動する。一方、磁界Bを矢
印の方向に印加すると、電子はローレンツ力によって横
へ寄せられる。
As shown in FIG. 5, the lower Fermi unit layer 10
When a current I flows in the direction of the arrow, electrons as charged particles move in the opposite direction (downward in the figure). On the other hand, when magnetic field B is applied in the direction of the arrow, electrons are pulled sideways by the Lorentz force.

しかし、フェルミ準位の低いほうの層10からフェルミ
準位の高いほうの層12へかけてポテンシャルVの勾配
または障壁があるため、磁界Bの強度が小さいうちは電
子が層12へ移ることができず、したがって電気分極は
形成されず、ホール起電力El(は発生しない。そして
、磁界Bの強度が大きくなっである値を越えると、電子
の幾つかはポテンシャルを乗り越えるかあるいはトンネ
ル効果によって層12へ移り、ここでもローレンツ力に
よって横へ寄せられて片側の電極20に溜りこれによっ
て電極18.20間に電気分極が形成されホール起電力
Ellが発生する。
However, because there is a gradient or barrier in the potential V from the layer 10 with a lower Fermi level to the layer 12 with a higher Fermi level, electrons cannot move to the layer 12 while the strength of the magnetic field B is small. Therefore, no electric polarization is formed, and no Hall electromotive force El is generated. Then, when the strength of the magnetic field B increases and exceeds a certain value, some of the electrons either overcome the potential or are removed from the layer by tunneling. Moving on to 12, it is also pulled to the side by the Lorentz force and accumulates in the electrode 20 on one side, thereby forming electric polarization between the electrodes 18 and 20 and generating a Hall electromotive force Ell.

このような作用により、磁界Bとホール起電力EHとの
関係は第6図に示すような非線形特性となる。フェルミ
準位の高いほうの層12の厚みをある値以下で変えるこ
とによりポテンシャルの勾配または障壁を制御すること
で、磁界のしきい値BOを変えることが可能である。
Due to this effect, the relationship between the magnetic field B and the Hall electromotive force EH has a nonlinear characteristic as shown in FIG. By controlling the potential gradient or barrier by changing the thickness of the layer 12 with a higher Fermi level below a certain value, it is possible to change the threshold value BO of the magnetic field.

このような非線形な磁界−ホール起電力特性もつホール
素子を備えた磁気ヘッドにおいては、磁気信号を電気信
号へ変換して波形成形を行う際にホール素子1つで磁電
変換と波形成形の2つの機能を同時に果たすので、特別
な(専用の)波形成形回路が不要である。
In a magnetic head equipped with a Hall element having such nonlinear magnetic field-Hall electromotive force characteristics, when converting a magnetic signal into an electric signal and performing waveform shaping, a single Hall element performs two functions: magnetoelectric conversion and waveform shaping. Since the functions are performed simultaneously, no special (dedicated) waveform shaping circuit is required.

[実施例] 第1図は本発明の一実施例によるホール素子の構造を示
す断面図、第2図はその平面図である。
[Example] FIG. 1 is a sectional view showing the structure of a Hall element according to an example of the present invention, and FIG. 2 is a plan view thereof.

これらの図において、10はニッケルシリサイドの層、
12はクロムシリサイドの層である。これろの層は重な
り合って二層構造をなしている。
In these figures, 10 is a layer of nickel silicide;
12 is a layer of chromium silicide. These layers overlap to form a two-layer structure.

ニッケルシリサイド層10の上面の両端部には電流を供
給するための一対の電極14.18がそれぞれ接続され
る。これら電極の端子14a、18aは定電流電源回路
(図示せず)の出力端子に電気的に接続される。素子の
中間部iこおいて、両層の互いに対抗する表面、すなわ
ち、ニッケルシリサイド層10の上面とクロムシリサイ
ド虐12の下面に、ホール起電力を取り出すための一対
の電極18.20がそれぞれ接続される。これら電極の
端子18a、20aは、例えばバッファ回路または増幅
回路の入力端子に電気的に接続される。
A pair of electrodes 14 and 18 for supplying current are connected to both ends of the upper surface of the nickel silicide layer 10, respectively. Terminals 14a and 18a of these electrodes are electrically connected to an output terminal of a constant current power supply circuit (not shown). In the intermediate part i of the element, a pair of electrodes 18 and 20 for extracting the Hall electromotive force are connected to the opposing surfaces of both layers, that is, the upper surface of the nickel silicide layer 10 and the lower surface of the chromium silicide layer 12. be done. Terminals 18a, 20a of these electrodes are electrically connected to, for example, an input terminal of a buffer circuit or an amplifier circuit.

22はガラス基板である。22 is a glass substrate.

このようなホール素子構造はつくるには、電極14.1
6,18.20についてはアルミニウムを堆積させて、
両シリサイド層10.12については蒸着法により薄膜
として形成してよい。その際、両層10.12間の界面
には不純な汚染物質が入らないようにするとよい。
To create such a Hall element structure, the electrode 14.1
6, 18.20 by depositing aluminum,
Both silicide layers 10 and 12 may be formed as thin films by vapor deposition. At this time, it is preferable to prevent impure contaminants from entering the interface between both layers 10 and 12.

このホール素子に印加される磁界Bの方向は、電流の流
れる方向(両層10,12の長手方向)とホール起電力
を取り出す方向(両層10,12の厚さ方向)とに直角
な方向となる。
The direction of the magnetic field B applied to this Hall element is perpendicular to the direction in which the current flows (the longitudinal direction of both layers 10 and 12) and the direction in which the Hall electromotive force is taken out (the thickness direction of both layers 10 and 12). becomes.

かかる構造のホール素子において、ニッケルシリサイド
層10とクロムシリサイド層14内のポテンシャルは、
第3図(ハ)のポテンシャルと大体似たものとなる。ま
た、第5図について上述した作用と同様な作用が行われ
、第6図に示すような非線形な磁界−ホール起電力特性
が得られる。したがって、磁界Bが第7図(イ)に示す
ように正弦波状に変化するときは、第7図(ロ)に示す
ような出力信号Ellが端子18a+20aに得られる
In the Hall element with such a structure, the potential within the nickel silicide layer 10 and the chromium silicide layer 14 is as follows:
The potential is roughly similar to the potential in Figure 3 (c). Further, the same effect as described above with respect to FIG. 5 is performed, and a nonlinear magnetic field-Hall electromotive force characteristic as shown in FIG. 6 is obtained. Therefore, when the magnetic field B changes sinusoidally as shown in FIG. 7(a), an output signal Ell as shown in FIG. 7(b) is obtained at the terminals 18a+20a.

したがって、このホール素子を磁気ヘッドに搭載してデ
ィジタル信号の再生を行わせれば、ホール素子1つで磁
電変換と波形成形の2つの機能を同時に果たすので、特
別な(専用の)波形成形回路が要らなくなる。
Therefore, if this Hall element is mounted on a magnetic head and used to reproduce digital signals, a single Hall element can simultaneously perform two functions: magnetoelectric conversion and waveform shaping, so a special (dedicated) waveform shaping circuit is required. No longer needed.

[発明の効果コ 以上のように、本発明のホール素子は、フェルミ準位の
異なる二種類の物質を二層構造として両層間にポテンシ
ャルの勾配または障壁をつくり、磁界の強さがある値を
越えたときからホール起電力を発生させることで、非線
形な磁界−ホール起電力特性を得ることができる。
[Effects of the Invention] As described above, the Hall element of the present invention has a two-layer structure of two types of materials with different Fermi levels, creating a potential gradient or barrier between the two layers, and increasing the magnetic field strength to a certain value. By generating the Hall electromotive force from the time when the magnetic field exceeds the threshold, a nonlinear magnetic field-Hall electromotive force characteristic can be obtained.

また、本発明の磁気ヘッドは、非線形な磁界−ホール起
電力特性をもつホール素子を有することにより、磁気信
号を電気信号へ変換する機能と波形成形を行う機能とを
ホール素子1つで同時に果たすので、特別な波形成形回
路を使用しなくて済むという利点がある。
Further, the magnetic head of the present invention has a Hall element having nonlinear magnetic field-Hall electromotive force characteristics, so that a single Hall element simultaneously performs the function of converting a magnetic signal into an electric signal and the function of shaping a waveform. Therefore, there is an advantage that there is no need to use a special waveform shaping circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例によるホール素子の構造を
示す断面図、 第2図は、実施例のホール素子の平面図、第3図は、フ
ェルミ準位の異なる二種類の物質を接合した場合の内部
のポテンシャルを示す図、第4図は、フェルミ準位の異
なるn型半導体と金属とを接合した場合の内部のポテン
シャルを示す図、 第5図は、本発明の作用を模式的に説明するための斜視
図、 第6図は、本発明によって得られる非線形特性を示す図
、 第7図は、本発明の応用例を示す信号波形図、第8図は
、従来のホール素子構造を示す略斜視図、 第9図は、第8図のホール素子によって得られる線形特
性を示す図、 第10図は、第8図のホール素子の機能を説明するため
の信号波形図である。 図面において、 10・・・・ニッケルシリサイド、 12・・・・クロムシリサイド、 14.16・・・・電流供給用電極、 14a、16a・・・・電極端子、 18.20・・・・ホール起電力取出用電極、18a+
 20a・・・・電極端子、 22・・・・ガラス基板。
FIG. 1 is a cross-sectional view showing the structure of a Hall element according to an embodiment of the present invention, FIG. 2 is a plan view of the Hall element according to the embodiment, and FIG. FIG. 4 is a diagram showing the internal potential when an n-type semiconductor with different Fermi levels and a metal are joined together. FIG. 5 is a diagram schematically showing the operation of the present invention. FIG. 6 is a diagram showing nonlinear characteristics obtained by the present invention; FIG. 7 is a signal waveform diagram showing an application example of the present invention; FIG. 8 is a conventional Hall element. FIG. 9 is a schematic perspective view showing the structure; FIG. 9 is a diagram showing linear characteristics obtained by the Hall element shown in FIG. 8; FIG. 10 is a signal waveform diagram for explaining the function of the Hall element shown in FIG. 8. . In the drawings, 10... Nickel silicide, 12... Chromium silicide, 14.16... Current supply electrode, 14a, 16a... Electrode terminal, 18.20... Hall origin. Power extraction electrode, 18a+
20a... Electrode terminal, 22... Glass substrate.

Claims (3)

【特許請求の範囲】[Claims] (1)、フェルミ準位の異なる二種類の物質の層を重ね
た二層構造を有し、電流を供給するための一対の電極を
フェルミ準位の低いほうの層の表面にそれぞれ接続し、
ホール起電力を取り出すための一対の電極を両層の互い
に対抗する表面にそれぞれ接続してなることを特徴とす
るホール素子。
(1) It has a two-layer structure in which layers of two types of substances with different Fermi levels are stacked, and a pair of electrodes for supplying current are connected to the surface of the layer with a lower Fermi level, respectively,
A Hall element characterized in that a pair of electrodes for extracting Hall electromotive force are respectively connected to mutually opposing surfaces of both layers.
(2)、前記二種類の物質は金属と半導体である請求項
1記載のホール素子。
(2) The Hall element according to claim 1, wherein the two types of substances are a metal and a semiconductor.
(3)、前記二種類の物質はニッケルシリサイドとクロ
ムシリサイドである請求項1記載のホール素子(4)、
請求項1記載のホール素子を有する磁気ヘッド。
(3) The Hall element (4) according to claim 1, wherein the two types of substances are nickel silicide and chromium silicide.
A magnetic head comprising the Hall element according to claim 1.
JP63043831A 1988-02-26 1988-02-26 Hall element and magnetic head Pending JPH01218079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043831A JPH01218079A (en) 1988-02-26 1988-02-26 Hall element and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043831A JPH01218079A (en) 1988-02-26 1988-02-26 Hall element and magnetic head

Publications (1)

Publication Number Publication Date
JPH01218079A true JPH01218079A (en) 1989-08-31

Family

ID=12674698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043831A Pending JPH01218079A (en) 1988-02-26 1988-02-26 Hall element and magnetic head

Country Status (1)

Country Link
JP (1) JPH01218079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040750A (en) * 2009-08-11 2011-02-24 Hitachi Global Storage Technologies Netherlands Bv Magnetic field sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011040750A (en) * 2009-08-11 2011-02-24 Hitachi Global Storage Technologies Netherlands Bv Magnetic field sensor

Similar Documents

Publication Publication Date Title
EP0953849A3 (en) Spin tunnel magneto-resistance effect type magnetic sensor and production method thereof
JP2001345498A (en) Magnetic sensor and manufacturing method thereof
US5729137A (en) Magnetic field sensors individualized field reducers
JPS6022726B2 (en) displacement detector
GB1457189A (en) Magneto-resistive pick-ups
WO2004114428A3 (en) Magnetoresistance effect element and manufacturing method therof
JPH01218079A (en) Hall element and magnetic head
EP1385151A3 (en) Magnetoresistive element having currrent-perpendicular-to-the-plane structure
JPH11101861A (en) Magneto-resistance effect type sensor
JPH0293373A (en) Current detector
JP6920114B2 (en) Current sensor
US3522390A (en) Magnetoresistive transducer having microscopic hall field shorting
JPH11261130A (en) Magnetic sensor
JPS6180074A (en) Magnetic sensor with terminal for detecting current
CN104459574B (en) A kind of preparation technology of magnetic sensing device
JP2776314B2 (en) Stacked film structure of integrated magnetic sensor
KR960025349A (en) Method for manufacturing magnetic head to form elements on substrate and substrate on which magnetic head is formed
JPS59154085A (en) Magneto-resistance effect element
US3610968A (en) Magnetoresistance circuits and elements
JPS5724017A (en) Magnetic resistance effect type magnetic head
JPS6112593Y2 (en)
JPH03205576A (en) Magnetic sensor
SU966797A1 (en) Magnetosensitive device
JP2721097B2 (en) Infrared detector
JPH11352144A (en) Acceleration sensor