JPH0121786B2 - - Google Patents

Info

Publication number
JPH0121786B2
JPH0121786B2 JP57057773A JP5777382A JPH0121786B2 JP H0121786 B2 JPH0121786 B2 JP H0121786B2 JP 57057773 A JP57057773 A JP 57057773A JP 5777382 A JP5777382 A JP 5777382A JP H0121786 B2 JPH0121786 B2 JP H0121786B2
Authority
JP
Japan
Prior art keywords
foil
oil
rolling
pits
pit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57057773A
Other languages
Japanese (ja)
Other versions
JPS58174539A (en
Inventor
Shoji Umibe
Masayoshi Kasagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5777382A priority Critical patent/JPS58174539A/en
Publication of JPS58174539A publication Critical patent/JPS58174539A/en
Publication of JPH0121786B2 publication Critical patent/JPH0121786B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリエチレン(PE)等の合成樹脂
フイルムと貼合したときに優れた接着強度を示す
貼合せ用Al箔に関するものである。 Al箔は包装用、建材用、電気製品用等の複合
積層材として広く用いられているが、PEの様な
合成樹脂フイルム(以下代表的にPEフイルムと
いう)と貼合したものでは両者の接着強度が乏し
い為に、Al―PEフイルム間で剥離が生じ問題に
なることがある。これは、Al箔と貼合されるフ
イルムが通気性や、透水性を有している為、保存
時に水分やガスが貼合面へ侵入して接着剤自体あ
るいは接着界面を劣化させる為と考えられる。 この様な剥離現象を防止する方法としては、
Al箔にクロム酸や有機酸処理、あるいはベーマ
イト処理等の化成処理を施して接着力を高める方
法やAl箔にエンボス加工等の機械的処理を施
して表面積を拡大し接着力を高める方法、等が知
られている。しかしこれらの方法ではいずれも特
別の処理ラインが必要である他、の方法では廃
液処理も考慮しなければならないので、設備及び
操作は一段と煩雑になる。 本発明者等は上記の様な事情に着目し、Al箔
に対して簡単な方法で接着性改善処理を施すこと
ができる様な技術を確立すべく研究を進めてき
た。そして圧延工程で生じる不都合な現象とされ
ているオイルピツトを、むしろ粗面化付与手段と
して積極的に利用すれば、圧延と同時に表面の粗
面化が可能であり、接着性を高め得るのではない
かという着想を得た。 本発明はこの様な着想を実現すべく更に研究の
結果完成されたものであつて、その構成は、表面
に総面積率15%以上のオイルピツトを有するか、
あるいは平均幅5μm以下のオイルピツトを総面積
の5%以上有し、これらオイルピツトによる表面
積拡大効果及び投錨効果によつて接着性を高めた
ところに要旨が存在する。 以下実験経過を追つて本発明の構成及び作用効
果を詳細に説明する。 まずオイルピツトとは、周知の通りロール圧延
工程で使用される潤滑剤に起因するもので、圧延
ロールと圧延材表面の間に形成される油膜が圧延
荷重によつて圧延材表面にくい込んで形成される
言わば圧延傷とも言うべきもので、オイルピツト
の形態及び面積率(圧延面の総面積に対するオイ
ルピツト形成面の比率)は、圧延ロール荷重、圧
延油の粘度、圧延速度等により支配される。例え
ば圧延速度を高めるとオイルピツトの面積率は増
大し、また高粘度の圧延油を使用すると大きなオ
イルピツトが形成されることが確認されている。
いずれにしてもオイルピツトは本来好ましくない
ものとされており、圧延に当つてはオイルピツト
を如何に少なくするかということが大きな課題の
1つとなつている。しかしながら予備実験の結果
では、積極的にオイルピツトを形成させたもので
は、PEフイルム等と貼合したときの接着強度を
効果的に高め得るということが確認された。 例えば参考写真1は寸法及び面積率の異なるオ
イルピツトを有するAl原箔〔原箔(A)のオイルピ
ツトの平均幅は10μm、総面積率は15%、原箔(B)
のオイルピツトの平均幅は15μm、総面積率は25
%〕、及び該原箔をPEと熱融着方式で接着した後
塩酸でAl箔を溶解除去した後のPE接着面の走査
型電子顕微鏡観察結果(500倍)を示したもので
ある。この写真からも明らかな様に、PEは熱融
着工程でAl原箔のオイルピツトに食い込み、両
者は噛み合つた状態で接合していると考えられ
る。また参考写真2は、上記Al原箔(A)にPEを熱
融着した後、Al原箔を強制剥離した後のAl原箔
側の表面拡大状況(走査型電子顕微鏡:3500倍)
を示したものである。この写真からも明らかな様
に、Al箔表面にはPEの凝集破壊部分が相当数観
察されると共に、オイルピツトの内部からも凝集
破壊が生じている。 この様にオイルピツトは、単なる表面拡大効果
だけでなく、投錨効果との相互作用によつて接着
力向上に寄与するものと判断される。 そこでAl箔表面におけるオイルピツトの分布
状態と接着性の関係を明確にすべく研究を行なつ
た。Al箔表面に形成されるオイルピツトは、圧
延条件によつて、幅1μm以下のものから40μm程
度のものまであり、また微細なピツトが多数分散
しているものや粗大なピツトが多数分散されてい
るもの等種々雑多であり、且つ総数も様々である
が、Al箔単位面積(104μm2)当りのピツト数平
均は10〜25個、ピツトの総面積率平均は5〜30%
のものが殆んどである。ここで本発明者等は大き
いオイルピツトが表面積拡大効果に強く影響する
と考え、大きいオイルピツトが多く分布している
Al箔を抽出し、オイルピツト平均幅が約14〜
16μmでピツト総面積率の異なるAl箔をとり揃
え、ピツト総面積率(%)と接着力(Kg/イン
チ)の関係を調べた。尚接着力は、変性PE(三菱
化成株式会社製、商品名:ノバテツクAPH―1)
を熱融着法(220℃)で各Al箔に接着した後、
180度方向にピーリングしたときの剥離強度によ
つて求めた。結果を第1図に示す。 第1図からも明らかな様に、ピツト総面積率が
高くなる程剥離強度は高くなるが、特に総面積率
が15%の点を変曲点としてその前・後で剥離強度
は急変している。ところでAl箔/フイルム貼合
物の剥離促進試験法として温水浸漬試験や沸水浸
漬試験等が知られており、これら促進試験の前・
後における強度差が小さいもの程接着力は優れて
いると判定されているが、第1図の試験片の沸水
浸漬試験(24時間浸漬)では、浸漬前の強度が
5.5Kg/インチ以上のものでは浸漬前・後の強度
に殆んど差がないのに対し、浸漬前の強度が5.5
Kg/インチ未満のものでは浸漬後の強度が相当低
下することが確認された。従つて要求接着強度を
満足する為には浸漬試験前の強度が5.5/インチ
以上を示すものでなければならず、その為には
Al箔のピツト総面積率15%以上にする必要があ
る。 次にオイルピツトの投錨効果の影響を確認する
為、ピツト総面積率が14〜16%のAl箔をとり揃
え、オイルピツトの平均幅と接着力との関係(接
着力の測定法は第1図の場合と同様)を調べた。
結果を第2図に示す。 第2図からも明らかな様に、ほぼ同じピツト総
面積率を有するものであつても、オイルピツトの
平均幅が小さいもの程剥離強度は高くなつてお
り、この結果からすると、ピツト平均幅が小さい
程投錨効果が増大し剥離強度を高めているという
ことが明白に理解できる。そして剥離強度が5.5
Kg/インチ以上という要請に答える為にはピツト
平均幅を15μm以下にすることが望まれる。 上記の結果よりオイルピツトの平均幅が小さい
もの程接着力が高まるという事実が明らかになつ
たので、オイルピツト幅の小さい(平均幅5〜
6μm)Al箔を対象とした場合のピツト総面積率
と接着力との関係を前記と同様にして調べた。 結果は第3図に示した通りであり、ピツト総面
積率が増大する程剥離強度が高くなる傾向自体は
第1図(ピツト平均幅14〜16μm)の場合と同じ
であるが、剥離強度の上昇率は本例の場合の方が
相当大きく、投錨作用による接着力向上効果が如
実に現われている。即ちオイルピツトの平均幅が
5μm程度以下のものであれば、ピツト総面積率が
5%程度でも前記要求強度(5.5Kg/インチ)を
十分に満足することができる。 この様に本発明ではAl箔の圧延工程で形成さ
れるオイルピツトを接着力の向上に積極的に利用
し、殊にオイルピツトによる表面積拡大効果と投
錨効果の相互作用によつて接着力の強化を図つて
いるが、この様な目的に沿うオイルピツトは、前
述の如く圧延条件(速度及び圧力等)や圧延油の
種類(粘度等)等を選定することによつて容易に
得ることができる。また前記では貼合される相手
方の材料としてPEを選択して説明したが、勿論
これに限定される訳ではなく、他の合成樹脂フイ
ルム等にも同様に適用することができ、貼合方法
も熱融着法に限らずドライラミネート法や接着剤
貼合法を採用することもできる。 本発明は概略以上の様に構成されており、圧延
工程で形成されるオイルピツトの総面積率及び平
均幅を調整するだけで、接着性の優れた貼合用
Al箔を提供し得ることになつた。従つて圧延後
の化学的あるいは機械的な接着力向上処理が全く
不要となり、貼合用Al箔の生産設備及び操作を
簡略化し得ると共に、生産性を高め得ることにな
つた。 次に本発明の実施例を示す。 実施例 1 予め0.4mmtに調整したAl箔を用い、粘度が
1.8cps/40℃又は1.9cps/40℃の圧延油を用い
て、圧延速度800m/分、圧延油温度約55℃で0.2
mmtまで冷間圧延した後、脱脂、焼鈍して供試Al
箔(1)及び(2)を得た。 得られた各供試Al箔(1)、(2)に、第4図の方法
で変性PE(住友化学株式会社製、商品名:ボンド
フアーストB)を熱融着(温度120℃)した後、
180度ピーリングによつて剥離強度を測定した。
尚第4図中1は変性PE、2は供試Al箔、3はAl
板(0.5mm)、4は鉄板、5はテフロン板、6は加
熱プレスを夫々示す。供試Al箔のピツト総面積
率及びピツト幅分布並びに剥離強度を第1表に示
す。
The present invention relates to an Al foil for lamination that exhibits excellent adhesive strength when laminated with a synthetic resin film such as polyethylene (PE). Al foil is widely used as a composite laminated material for packaging, building materials, electrical products, etc., but when laminated with a synthetic resin film such as PE (hereinafter typically referred to as PE film), the bond between the two Due to the lack of strength, peeling may occur between the Al and PE films, which can cause problems. This is thought to be because the film bonded to the Al foil has air permeability and water permeability, so moisture and gas enter the bonded surface during storage and deteriorate the adhesive itself or the bonding interface. It will be done. To prevent this kind of peeling phenomenon,
Methods of increasing adhesive strength by subjecting Al foil to chemical conversion treatments such as chromic acid or organic acid treatment, or boehmite treatment, and methods of enlarging the surface area and increasing adhesive strength by subjecting Al foil to mechanical treatment such as embossing, etc. It has been known. However, all of these methods require special treatment lines, and in the method (2), waste liquid treatment must also be taken into consideration, making the equipment and operations even more complicated. The present inventors have focused on the above-mentioned circumstances and have been conducting research to establish a technology that can perform adhesion improvement treatment on Al foil using a simple method. Moreover, if oil pits, which are considered to be an inconvenient phenomenon that occur during the rolling process, are actively used as a means of roughening the surface, it is possible to roughen the surface at the same time as rolling, and improve adhesion. I got an idea. The present invention was completed as a result of further research to realize such an idea, and its structure includes oil pits with a total area ratio of 15% or more on the surface,
Alternatively, the gist lies in that oil pits with an average width of 5 μm or less account for 5% or more of the total area, and the adhesiveness is improved by the surface area expansion effect and anchoring effect of these oil pits. The configuration and effects of the present invention will be explained in detail below along with the progress of experiments. First of all, oil pits are caused by the lubricant used in the roll rolling process, and are formed when the oil film that forms between the rolling roll and the surface of the rolled material sinks into the surface of the rolled material due to the rolling load. The form and area ratio of the oil pits (the ratio of the oil pit forming surface to the total area of the rolling surface) are controlled by the rolling roll load, the viscosity of the rolling oil, the rolling speed, etc. For example, it has been confirmed that when the rolling speed is increased, the area ratio of oil pits increases, and when a high viscosity rolling oil is used, large oil pits are formed.
In any case, oil pits are inherently undesirable, and one of the major issues in rolling is how to reduce the number of oil pits. However, the results of preliminary experiments have confirmed that the adhesive strength when bonded to PE film etc. can be effectively increased by actively forming oil pits. For example, reference photo 1 shows Al raw foil with oil pits of different sizes and area ratios [the average width of the oil pits in raw foil (A) is 10 μm, and the total area ratio is 15%; in raw foil (B)
The average width of the oil pit is 15μm, and the total area ratio is 25
%], and the results of scanning electron microscopy (500x magnification) of the bonded surface of PE after bonding the raw foil to PE using a heat-sealing method and then dissolving and removing the Al foil with hydrochloric acid. As is clear from this photo, it is thought that the PE penetrates into the oil pit of the aluminum foil during the heat fusion process, and the two are joined in an interlocking state. Reference photo 2 is an enlarged view of the surface of the Al foil after heat-sealing PE to the Al foil (A) and forcibly peeling off the Al foil (scanning electron microscope: 3500x).
This is what is shown. As is clear from this photo, a considerable number of cohesive failure areas of PE are observed on the surface of the Al foil, and cohesive failure also occurs from inside the oil pit. In this way, it is judged that the oil pits contribute not only to a mere surface enlarging effect, but also to an interaction with the anchoring effect, which contributes to the improvement of adhesive strength. Therefore, we conducted research to clarify the relationship between the distribution of oil pits on the Al foil surface and adhesiveness. The oil pits formed on the Al foil surface vary in width from less than 1 μm to around 40 μm depending on the rolling conditions, and some have many fine pits and many coarse pits dispersed. There are various types of pits, and the total number varies, but the average number of pits per unit area of Al foil (10 4 μm 2 ) is 10 to 25, and the average total area ratio of pits is 5 to 30%.
Most of them are. Here, the inventors believe that large oil pits have a strong influence on the surface area expansion effect, and therefore, large oil pits are widely distributed.
Extract the Al foil, and the average width of the oil pit is about 14~
We prepared Al foils of 16 μm and different total pit area ratios, and investigated the relationship between the total pit area ratio (%) and adhesive strength (Kg/inch). The adhesive strength is modified PE (manufactured by Mitsubishi Kasei Corporation, product name: Novatec APH-1).
After adhering to each Al foil by heat fusion method (220℃),
It was determined by the peel strength when peeled in a 180 degree direction. The results are shown in Figure 1. As is clear from Figure 1, the higher the total pit area ratio, the higher the peel strength, but in particular, the peel strength suddenly changes before and after the point where the total area ratio is 15%, which is an inflection point. There is. By the way, warm water immersion tests and boiling water immersion tests are known as peel acceleration testing methods for Al foil/film laminates.
It has been determined that the smaller the difference in strength after immersion, the better the adhesive strength, but in the boiling water immersion test (24 hour immersion) of the specimen shown in Figure 1, the strength before immersion was
For items over 5.5Kg/inch, there is almost no difference in the strength before and after immersion, whereas the strength before immersion is 5.5Kg/inch or more.
It was confirmed that the strength after immersion was considerably reduced if it was less than Kg/inch. Therefore, in order to satisfy the required adhesive strength, the strength before the immersion test must be 5.5/inch or more.
The total pit area ratio of Al foil must be 15% or more. Next, in order to confirm the influence of the anchoring effect of oil pits, we prepared Al foils with a total pit area ratio of 14 to 16%, and measured the relationship between the average width of oil pits and adhesive strength (the method for measuring adhesive strength is shown in Figure 1). (as in the case) was investigated.
The results are shown in Figure 2. As is clear from Figure 2, even if the oil pits have approximately the same total area ratio, the smaller the average width of the oil pits, the higher the peel strength. It can be clearly seen that the anchoring effect increases and the peel strength increases. And peel strength is 5.5
In order to meet the requirement of Kg/inch or more, it is desirable to reduce the average pit width to 15 μm or less. From the above results, it became clear that the smaller the average width of the oil pit, the higher the adhesive strength.
The relationship between the total pit area ratio and the adhesive force was investigated in the same manner as above when using 6 μm) Al foil as the target. The results are shown in Figure 3, and the tendency for the peel strength to increase as the total pit area ratio increases is the same as in Figure 1 (average pit width 14 to 16 μm), but the peel strength The rate of increase was considerably greater in this example, clearly demonstrating the effect of improving adhesive strength due to the anchoring action. In other words, the average width of the oil pit is
If it is about 5 μm or less, the required strength (5.5 kg/inch) can be fully satisfied even if the total pit area ratio is about 5%. As described above, in the present invention, the oil pits formed in the rolling process of the Al foil are actively used to improve the adhesive strength, and in particular, the adhesive strength is strengthened by the interaction between the surface area expansion effect of the oil pits and the anchoring effect. However, an oil pit that meets this purpose can be easily obtained by selecting the rolling conditions (speed, pressure, etc.), the type of rolling oil (viscosity, etc.), etc., as described above. In addition, in the above explanation, PE was selected as the material of the other party to be bonded, but of course the material is not limited to this, and the bonding method can also be applied to other synthetic resin films. In addition to the heat fusion method, a dry lamination method or an adhesive bonding method can also be used. The present invention is roughly constructed as described above, and by simply adjusting the total area ratio and average width of the oil pits formed in the rolling process, the present invention can be used for lamination with excellent adhesiveness.
We are now able to provide Al foil. Therefore, chemical or mechanical adhesion enhancement treatment after rolling is completely unnecessary, making it possible to simplify the production equipment and operation of Al foil for lamination, and to increase productivity. Next, examples of the present invention will be shown. Example 1 Using Al foil adjusted to 0.4 mm t in advance, the viscosity was
0.2 using rolling oil of 1.8cps/40℃ or 1.9cps/40℃, rolling speed 800m/min, rolling oil temperature approximately 55℃
After cold rolling to mm t , the sample Al was degreased and annealed.
Foils (1) and (2) were obtained. Modified PE (manufactured by Sumitomo Chemical Co., Ltd., trade name: Bond First B) was thermally fused (temperature 120°C) to each of the obtained test Al foils (1) and (2) using the method shown in Figure 4. rear,
Peel strength was measured by 180 degree peeling.
In Figure 4, 1 is modified PE, 2 is the test Al foil, and 3 is Al.
A plate (0.5 mm), 4 is an iron plate, 5 is a Teflon plate, and 6 is a heated press. Table 1 shows the total pit area ratio, pit width distribution, and peel strength of the sample Al foils.

【表】 * オイルピツト分布の総面積率に対する平
均5μm幅分布のオイルピツト面積率の割合
で示す。
実施例 2 予め0.4mmtに調整したAl箔を、圧延油粘度
1.9cps/40℃、圧延油温度55℃一定とし、圧延速
度を200,500,800及び1100m/分に変えて夫々
0.2mmtに冷間加工した後、脱脂、焼鈍して供試Al
箔(3)、(4)、(5)及び(6)を得た。 得られた各供試Al箔の表面拡大状況は参考写
真3(走査電子顕微鏡写真)に示す通りであり、
圧延速度が大きくなるにつれてオイルピツト数は
増加し、総面積率が高くなつている。 この供試Al箔を用い、実施例1と同様にして
変性ポリエチレン(住友化学株式会社製、商品
名:ボンドフアースト7B樹脂)又はアイオノマ
ー樹脂(三井ポリケミカル社製、商品名:ハイミ
ラン1652)と熱融着した後、180度ピーリング剥
離強度を測定した。 結果を第2表に示す。
[Table] * Shown as the ratio of the oil pit area ratio of the average 5μm width distribution to the total area ratio of the oil pit distribution.
Example 2 Al foil adjusted to 0.4 mm t in advance was coated with rolling oil viscosity.
1.9cps/40℃, rolling oil temperature constant at 55℃, rolling speed changed to 200, 500, 800 and 1100m/min.
After cold working to 0.2 mm t , the sample Al was degreased and annealed.
Foils (3), (4), (5) and (6) were obtained. The surface enlargement of each test Al foil obtained is as shown in Reference Photo 3 (scanning electron micrograph).
As the rolling speed increases, the number of oil pits increases and the total area ratio increases. Using this test Al foil, modified polyethylene (manufactured by Sumitomo Chemical Co., Ltd., trade name: BOND FAST 7B resin) or ionomer resin (manufactured by Mitsui Polychemical Co., Ltd., trade name: Himilan 1652) was applied in the same manner as in Example 1. After heat-sealing, 180 degree peeling strength was measured. The results are shown in Table 2.

【表】 実施例 3 実施例2で得た供試Al箔にエポキシ系接着剤
(主剤:EPS807、硬化剤:KH90、何れも大日本
インキ株式会社製)を約5g/m2の厚さに塗布し
た後、これにナイロン12(ダイセル化学株式会社
製、商品名:ダイアミド#4100、厚さ30μm)を
接着し、Al箔―接着剤間の剥離強度を180度ピー
リングで測定した。結果を第3表に示す。
[Table] Example 3 Epoxy adhesive (base resin: EPS807, curing agent: KH90, both manufactured by Dainippon Ink Co., Ltd.) was applied to the test Al foil obtained in Example 2 to a thickness of approximately 5 g/ m2 . After coating, nylon 12 (manufactured by Daicel Chemical Co., Ltd., trade name: Diamid #4100, thickness 30 μm) was adhered to this, and the peel strength between the Al foil and the adhesive was measured by 180 degree peeling. The results are shown in Table 3.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1,3図はオイルピツトの総面積率と剥離強
度の関係を示すグラフ、第2図はオイルピツト分
布の平均幅と剥離強度の関係を示すグラフ、第4
図は実験例で採用した熱融着法を示す説明図であ
る。 1…PE、2…供試Al箔。
Figures 1 and 3 are graphs showing the relationship between the total area ratio of oil pits and peel strength, Figure 2 is a graph showing the relationship between the average width of oil pit distribution and peel strength, and Figure 4 is a graph showing the relationship between the average width of oil pit distribution and peel strength.
The figure is an explanatory diagram showing the thermal fusion method employed in the experimental example. 1...PE, 2...Test Al foil.

Claims (1)

【特許請求の範囲】[Claims] 1 表面に総面積率15%以上のオイルピツトを有
するか、或いは平均幅5μm以下のオイルピツトを
総面積の5%以上有することを特徴とする貼合せ
用Al箔。
1. Al foil for lamination, characterized in that it has oil pits with a total area ratio of 15% or more on the surface, or oil pits with an average width of 5 μm or less in 5% or more of the total area.
JP5777382A 1982-04-06 1982-04-06 Al foil for lamination Granted JPS58174539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5777382A JPS58174539A (en) 1982-04-06 1982-04-06 Al foil for lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5777382A JPS58174539A (en) 1982-04-06 1982-04-06 Al foil for lamination

Publications (2)

Publication Number Publication Date
JPS58174539A JPS58174539A (en) 1983-10-13
JPH0121786B2 true JPH0121786B2 (en) 1989-04-24

Family

ID=13065183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5777382A Granted JPS58174539A (en) 1982-04-06 1982-04-06 Al foil for lamination

Country Status (1)

Country Link
JP (1) JPS58174539A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086114A (en) * 1975-05-27 1978-04-25 International Business Machines Corporation Aluminum surface treatment to enhance adhesion in a given direction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086114A (en) * 1975-05-27 1978-04-25 International Business Machines Corporation Aluminum surface treatment to enhance adhesion in a given direction

Also Published As

Publication number Publication date
JPS58174539A (en) 1983-10-13

Similar Documents

Publication Publication Date Title
US4629657A (en) Biaxially oriented polypropylene film construction for special lamination
JPH085159B2 (en) Laminated steel sheet having a two-layer coating structure and method for producing the same
JP2003217529A (en) Laminated material for secondary cell
JP6555454B1 (en) Battery packaging material, manufacturing method thereof, battery and aluminum alloy foil
JP5576154B2 (en) Aluminum material / foamed resin layer composite and method for producing the same
JPH0121786B2 (en)
JPS5938890B2 (en) metal laminated steel plate
JPS5839448A (en) Colored metallic plate coated with transparent thermoplastic resin film
JP2857669B2 (en) Polyamide resin-metal laminate
JP4405301B2 (en) Polyester resin film coated metal plate with excellent galling resistance
JP3218927B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3218923B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3218925B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3413679B2 (en) Polyester composite film for metal lamination
JP3147719B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JPH0655702A (en) Liquid receptacle base material having regenerative usage ability
JP3218926B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP3147718B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
KR19990073446A (en) The method for the manufacture of electrolytic capacitor case
JP2022056851A (en) Polyester film
JP3147715B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JP4714974B2 (en) Film laminated steel sheet
JP3147717B2 (en) Surface-treated steel sheet for painted or film-laminated two-piece can with excellent work adhesion and work corrosion resistance, and method for producing the same
JPS587345A (en) Manufacture of metallic foil lined laminate
JPH0449040A (en) Manufacture of coated metal sheet