JPH01217294A - Fuel rod spacer - Google Patents

Fuel rod spacer

Info

Publication number
JPH01217294A
JPH01217294A JP63041861A JP4186188A JPH01217294A JP H01217294 A JPH01217294 A JP H01217294A JP 63041861 A JP63041861 A JP 63041861A JP 4186188 A JP4186188 A JP 4186188A JP H01217294 A JPH01217294 A JP H01217294A
Authority
JP
Japan
Prior art keywords
spacer
fuel
lattice
fuel rod
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63041861A
Other languages
Japanese (ja)
Other versions
JP2656287B2 (en
Inventor
Akihiko Hoshiide
星出 明彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63041861A priority Critical patent/JP2656287B2/en
Publication of JPH01217294A publication Critical patent/JPH01217294A/en
Application granted granted Critical
Publication of JP2656287B2 publication Critical patent/JP2656287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce pressure loss of coolant flow and improve the limit output of an fuel assembly by setting a conical projection in a lattice frame of a fuel rod spacer. CONSTITUTION:A lattice partition space 4 in which a fuel rod is inserted by a side frame 2 and a lattice frame 3 is formed to be a fuel spacer 1. Conical projections 5 extending upward and downward of a fuel spacer 1 are set on the crossing part of the lattice frame 3. The conical projections 5 form the peaks on the lines extending upward and downward of the crossing parts of the lattice frame 3 and is formed so as to make rills of the center part between the crossing parts. Elastic supporting fittings 6 supporting a fuel frame are jointed so as to sandwich the lattice frame 3 by both upper and lower ends thereof and slender streamline fixed projections 7 are set on the center of the lattice frame 2 and the side frame 2. Thus, since a sudden change of flow passage cross section in the neighborhood of the spacer is eliminated, pressure loss is reduced and liquid film breakage on the surface of the fuel rod is eliminated, the limit output of an fuel assembly can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子炉用燃料集合体において多数の燃料棒を
離間支持するために使われている燃料棒スペーサに関し
、さらに詳しくは限界出力の向上と冷却材流の圧力損失
低減を目的とした上記燃料棒スペーサに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel rod spacer used to space and support a large number of fuel rods in a nuclear reactor fuel assembly; More specifically, the present invention relates to the above-mentioned fuel rod spacer for the purpose of increasing critical output and reducing pressure loss of coolant flow.

(従来の技術) 第6図は従来の沸騰水型原子炉の燃料集合体を説明する
断面図である。この図に示すように、燃料集合体10は
、燃料チャンネル11内に両端部をそれぞれ上部タイブ
レー1〜12および下部タイブレート13に支持された
複数本の燃料棒14(ウォータロッドを含む)を正方格
子状に配列し、燃料棒14の湾曲や振動を防止するため
に上部タイプレート12および下部タイプレート13の
間に軸方向に複数個の燃料棒スペーサ15を設けて燃料
棒を離間支持する構造となっている。
(Prior Art) FIG. 6 is a sectional view illustrating a fuel assembly of a conventional boiling water reactor. As shown in this figure, the fuel assembly 10 includes a plurality of fuel rods 14 (including water rods) arranged in a square lattice in a fuel channel 11 with both ends supported by upper tie plates 1 to 12 and lower tie plates 13, respectively. In order to prevent bending and vibration of the fuel rods 14, a plurality of fuel rod spacers 15 are provided in the axial direction between the upper tie plate 12 and the lower tie plate 13 to support the fuel rods at a distance. It has become.

上記燃料棒スペーサの構成を第7図〜第10図に説明す
る。
The structure of the fuel rod spacer will be explained with reference to FIGS. 7 to 10.

第7図および第8図はそれぞれある燃料棒スペーサの平
面図および正面図である。このスペーサ20は側枠21
内にほぼ円筒状のシェル22を多数連設したもので、各
シェル22内に燃料棒14が挿通され、隣接する4個の
シェル22の側壁で囲まれたほぼ四角筒状の空間には冷
却材が流れる冷却44通路23か形成されている。各シ
ェル22には弾性支持具24と固定突起25が設(ブら
れており、これらによって燃利棒14がシェル22の側
壁から若干離間して弾力的に支持されている。側枠21
の外側には燃料棒スペーサ20を燃料ヂャンネル内に支
持する台形状の口126が固着されている。これらスペ
ーサの各構成材料は、弾性支持具24に弾条性のあるイ
ンコネル材を使用している他は、熱中性子吸収の少ない
ジルカロイ材て′ある。
FIGS. 7 and 8 are a plan view and a front view, respectively, of a fuel rod spacer. This spacer 20 is attached to the side frame 21
A fuel rod 14 is inserted into each shell 22, and a cooling space is provided in a substantially rectangular cylindrical space surrounded by the side walls of four adjacent shells 22. A cooling 44 passage 23 through which the material flows is formed. Each shell 22 is provided with an elastic support 24 and a fixing protrusion 25, by which the fuel rod 14 is elastically supported at a slight distance from the side wall of the shell 22.
A trapezoidal port 126 is secured to the outside of the fuel rod spacer 20 to support the fuel rod spacer 20 within the fuel channel. The constituent materials of these spacers are Zircaloy, which has low thermal neutron absorption, except that the elastic support member 24 is made of elastic Inconel material.

第9図および第10図は別の燃料棒スペーサの平面図お
よび一部切除した正面図である。このスペーサ30は、
側枠31内に格子枠32を設りて格子区画空間33を形
成し、格子枠32には固定突起34と弾性支持具35と
が具備されて、これらにより前記格子区画空間33に挿
通された燃料棒14を離間支持する構造である。36は
スペーサ30を燃料ネヤンネル内に支持するためのロブ
である。
9 and 10 are a plan view and a partially cutaway front view of another fuel rod spacer. This spacer 30 is
A lattice frame 32 is provided in the side frame 31 to form a lattice compartment space 33, and the lattice frame 32 is provided with fixing protrusions 34 and elastic supports 35, which allow the grid frame 32 to be inserted into the lattice compartment space 33. This structure supports the fuel rods 14 at a distance. 36 is a lobe for supporting the spacer 30 within the fuel channel.

(発明が解決しようとする課題) ところで今日、原子カプラントの自動制御化や日間負荷
追従運転の導入等、運転融通性を拡大することが望まれ
ている。この要望に沿い、例えば沸騰水型原子炉では炉
心の熱水力特性をより改善するため、炉心の安全性の改
善、熱的余裕の拡大、炉心圧力損失の低減等の開発か進
められている。
(Problems to be Solved by the Invention) Nowadays, it is desired to expand operational flexibility, such as automatic control of nuclear couplants and introduction of daily load following operation. In line with this demand, for example, in boiling water reactors, in order to further improve the thermal-hydraulic characteristics of the reactor core, development is underway to improve the safety of the reactor core, expand the thermal margin, and reduce core pressure loss. .

ここで、炉心圧力損失に着目すると、その内訳は炉心下
方から上方に向けて、オリフィス圧損、下部タイプレー
ト圧損、スペーサ圧損、位置圧損、上部タイプレート圧
損となり、さらに、摩擦圧損および加速圧損が加わる。
Here, if we focus on the core pressure loss, its breakdown is from the bottom to the top of the core: orifice pressure loss, lower tie plate pressure loss, spacer pressure loss, position pressure loss, upper tie plate pressure loss, and friction pressure loss and acceleration pressure loss are added. .

これらの圧損のうち、燃料棒スペーサ部分で生ずる圧損
すなわちスペーサ圧損は約2割に相当する。
Of these pressure losses, the pressure loss occurring at the fuel rod spacer portion, that is, the spacer pressure loss, accounts for approximately 20%.

したがって、スペーサ圧損を低減することは炉心圧損を
大巾に低減することとなる。
Therefore, reducing the spacer pressure loss greatly reduces the core pressure loss.

ところか、従来の燃料スペーサでは各シェルあるいは格
子区画空間の軸方向長さが同じであるため、第11図に
示すように燃料集合体軸方向に沿って形成された冷却材
流路の面積Aは、スペーザ端て約20%急減および急増
し、そのため流路の拡大および縮少による圧力損失が発
生する。また、スペーサに設けられた燃料棒支持用の突
起かスペーサ内の冷却材流れを乱すため、圧力損失をさ
らに増加させている。ざらに前記格子枠には、弾性支持
具を設置するための隣接する格子空間に連通ずる開口が
あり、これによりスペーサ内で横方向の流れが生ずるの
でスペーサの圧力損失を増加させている。
However, in conventional fuel spacers, the axial length of each shell or lattice compartment space is the same, so the area A of the coolant flow path formed along the axial direction of the fuel assembly as shown in FIG. The pressure decreases and increases rapidly by about 20% at the end of the spacer, which causes pressure loss due to expansion and contraction of the flow path. Furthermore, the protrusions provided on the spacer for supporting the fuel rods disturb the flow of coolant within the spacer, further increasing pressure loss. In general, the lattice frames have openings that communicate with adjacent lattice spaces for installing elastic supports, which create lateral flows within the spacer, thereby increasing pressure losses in the spacer.

一方、沸騰水型原子炉の通常運転では、冷却材は蒸気−
水の二相流状態で集合体内を流れており、軸方向の2/
3〜3/4の距離では燃料棒表面を液が膜状に、また燃
料棒間の空間を蒸気が液滴を伴いながら流れる流動様式
である。このため、蒸気−水工相流状態でも燃料棒は安
定して液で冷却されることになる。しかしながら、第1
2図(b)に示すように、流れの障害物となるスペーサ
部分では、蒸気流が格子枠32に衝突した部分で急激に
方向を変えあるいは渦を生ずるために、液膜37を薄膜
化させる作用があり、スペーサの上流側で液膜の消失あ
るいは剥離によると考えられる急激な被覆管の温度上昇
が発生する。なお、第12図(a)は前記第9図に示す
格子タイプスペーサの部分拡大図であり、第12図(b
)はそのA−A線に沿う縦断面図であって、冷却材流れ
の状態を示している。
On the other hand, in normal operation of a boiling water reactor, the coolant is steam -
Water flows through the assembly in a two-phase flow state, with 2/2 of the axial direction
At a distance of 3 to 3/4, the flow pattern is such that liquid flows in the form of a film on the surface of the fuel rods, and vapor flows in the space between the fuel rods with droplets. Therefore, even in a steam-hydraulic phase flow state, the fuel rods are stably cooled with liquid. However, the first
As shown in FIG. 2(b), in the spacer part that becomes an obstacle to the flow, the liquid film 37 is thinned because the vapor flow suddenly changes direction or generates a vortex at the part where it collides with the lattice frame 32. This causes a sudden temperature rise in the cladding tube, which is thought to be due to disappearance or separation of the liquid film on the upstream side of the spacer. 12(a) is a partially enlarged view of the lattice type spacer shown in FIG. 9, and FIG. 12(b) is a partially enlarged view of the lattice type spacer shown in FIG.
) is a longitudinal sectional view taken along the line A-A, showing the state of coolant flow.

このような被覆管の湿度上昇は燃料の健全性に悪影響を
及ぼすので、炉心設計ではこの温度上昇に到る最大出力
を限界出力と呼び、燃料集合体の出力限界値となる。
Such an increase in humidity in the cladding tube has a negative effect on the health of the fuel, so in core design, the maximum output that reaches this temperature increase is called the limit output, and it becomes the output limit value of the fuel assembly.

以上述べたように、燃料スペーサは燃料集合体の圧力損
失および限界出力に大きな影響を与えるので、この点で
の改良が望まれる。
As described above, since the fuel spacer has a large effect on the pressure loss and critical output of the fuel assembly, improvements in this respect are desired.

本発明は上記問題に対処してなされたもので、冷却材流
の圧力損失を減少させ、かつ燃料集合体の限界出力を向
上させることができる燃料棒スペーサを提供することを
目的とするものである。
The present invention has been made in response to the above problems, and an object of the present invention is to provide a fuel rod spacer that can reduce the pressure loss of the coolant flow and improve the critical output of the fuel assembly. be.

[発明の構成] (課題を解決するための手段) すなわち本発明は、側枠および格子枠によって格子区画
空間を形成し、前記格子枠に設けた突起および弾性支持
具によって前記格子区画空間に燃料棒を離間支持してな
る燃料棒スペーサにおいて、前記格子枠に冷却材の上流
側および下流側に向かって断面積が次第に減少する山形
の突起を設けたことを特徴とする燃料棒スペーサに関す
る。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention forms a lattice compartment space by side frames and a lattice frame, and supplies fuel to the lattice compartment space by projections and elastic supports provided on the lattice frame. The present invention relates to a fuel rod spacer in which rods are supported at a distance, wherein the lattice frame is provided with chevron-shaped protrusions whose cross-sectional area gradually decreases toward the upstream and downstream sides of the coolant.

(作 用) 本発明の燃料棒スペーサは格子枠に冷却材の上流側およ
び下流側に向かって断面積が次第に減少する山形の突起
を設けたので、スペーサ近傍における軸方向流路断面積
変化が緩やかになり、従来のようなスペーザ喘における
流路の急増減がなくなる。したがってスペーサによる圧
力損失が従来よりも減少する。また冷却(A流れがスム
ースになり渦の発生も減少するので、液膜の剥離がなく
なり限界出力が向上する。
(Function) Since the fuel rod spacer of the present invention has chevron-shaped protrusions on the lattice frame whose cross-sectional area gradually decreases toward the upstream and downstream sides of the coolant, changes in the cross-sectional area of the axial flow path near the spacer are prevented. It becomes gentler, and there is no sudden increase or decrease in the flow path as in the conventional spacing. Therefore, the pressure loss due to the spacer is reduced compared to the conventional case. In addition, the cooling (A flow) becomes smoother and the generation of vortices is reduced, so there is no separation of the liquid film and the limit output is improved.

なお、本発明において、格子枠、弾性支持具および突起
を以下の実施例に示すような形状のものとすることによ
って、ざらに上記効果を向上させることかできる。
Incidentally, in the present invention, the above-mentioned effects can be roughly improved by forming the lattice frame, the elastic support, and the projections into shapes as shown in the following embodiments.

(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を説明する燃料棒スペーサの
斜視図であり、第2図はその平面図、第3図は第2図の
A−A線に沿う縦断面図である。
FIG. 1 is a perspective view of a fuel rod spacer illustrating an embodiment of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is a longitudinal sectional view taken along line A--A in FIG. 2.

これらの図に説明するように、本発明の燃料棒スペーサ
1は、従来と同様に側枠2と格子枠3によって燃料棒を
挿通する格子区画空間4を形成しているが、格子枠3に
は、その交叉部にスペーサ1の上方および下方に向かっ
て伸びる山形の突起5が設けられている。この山形突起
5は第3図に示すように格子枠3の交叉部の上下延長線
上で頂点を形成し、交叉部と交叉部との間の中央部分で
谷となるような形状をしていて、交叉する部分では断面
形状が十字形になっている。この山形突起5は先端に向
かうにしたがって断面積が漸減している。なお、側枠2
はコーナーに丸味のある正方形をしており、スペーサを
チャンネルボックス内に支持する台形状のロブ8が設置
されている。
As explained in these figures, the fuel rod spacer 1 of the present invention has a side frame 2 and a lattice frame 3 forming a lattice compartment space 4 into which the fuel rods are inserted, as in the conventional case. A chevron-shaped protrusion 5 extending upward and downward of the spacer 1 is provided at the intersection thereof. As shown in FIG. 3, this chevron-shaped protrusion 5 has a shape that forms an apex on the vertical extension line of the intersection portions of the lattice frame 3, and a valley at the center between the intersection portions. , the cross-sectional shape at the intersection is cross-shaped. The cross-sectional area of this chevron-shaped protrusion 5 gradually decreases toward the tip. In addition, side frame 2
has a square shape with rounded corners, and a trapezoidal lobe 8 is installed to support the spacer within the channel box.

このように本実施例のスペーサ近傍では、断面積が上方
および下方に向かうにしたがって減少している山形突起
5が格子枠3に設置されているので、スペーサ内軸方向
の冷却材流路断面積の変化は緩やかになり、第4図に示
すような急増減のない流路断面積変化となる。したがっ
て、従来のスペーサのような流路断面積の急激な増減に
よる圧力損失が軽減され、また燃料棒表面の液膜の破断
ちなくなるので限界出力が向上する。
In this way, in the vicinity of the spacer of this embodiment, since the chevron-shaped protrusions 5 whose cross-sectional area decreases upward and downward are installed on the lattice frame 3, the cross-sectional area of the coolant flow path in the axial direction within the spacer The change becomes gradual, and the cross-sectional area of the flow path changes without rapid increase or decrease as shown in FIG. Therefore, the pressure loss caused by the rapid increase and decrease of the cross-sectional area of the flow path as in conventional spacers is reduced, and the liquid film on the surface of the fuel rods is prevented from breaking, so that the limit output is improved.

なお本実施例では、第2図に示すように、格子枠3に燃
料棒を支持する弾性支持具6および固定突起7が格子枠
3の中央位置に設置されている。
In this embodiment, as shown in FIG. 2, elastic supports 6 and fixing protrusions 7 for supporting fuel rods on the lattice frame 3 are installed at the center of the lattice frame 3.

この弾性支持具6は、第3図に示すように弾条部6aと
脚部6bからなり、二つの弾性支持具6が格子枠3を挟
んで向かい合って脚部6bの端で格子枠3に摺動可能な
ように接合している。脚部6bの先端および格子枠3の
先端は流動抵抗を少なくするために刃状加工が施されて
いる。一方、固定突起7は細長い流線形をしており、そ
の軸方向は冷却材の流動方向に一致している。固定突起
7は側枠2にも設けられている。
As shown in FIG. 3, this elastic support 6 consists of a striped part 6a and a leg part 6b. They are joined so that they can slide. The tips of the leg portions 6b and the tips of the lattice frame 3 are cut into blades to reduce flow resistance. On the other hand, the fixing protrusion 7 has an elongated streamlined shape, and its axial direction coincides with the flow direction of the coolant. The fixing protrusion 7 is also provided on the side frame 2.

このように弾性支持具6は格子枠3の上下両端で格子枠
3を挟むようにして接合しているので、従来のように弾
性支持具を取付けるための開口部を格子枠に設ける必要
がなくなり、スペーサ内の横方向の流動の発生による圧
力損失かなくなり、ざらに圧力損失か軽減される。また
、固定突起7は流線形としたので、固定突起による冷却
材流れの乱れが減少し、圧力損失が減少する。
In this way, the elastic supports 6 are joined at both the upper and lower ends of the lattice frame 3 so as to sandwich the lattice frame 3, so there is no need to provide an opening in the lattice frame for attaching the elastic supports as in the conventional case, and the spacer The pressure loss due to the occurrence of lateral flow within the tank is eliminated, and the pressure loss is greatly reduced. Further, since the fixed protrusion 7 has a streamlined shape, turbulence in the coolant flow due to the fixed protrusion is reduced, and pressure loss is reduced.

上記スペーサ内の冷却材の流れは第5図のようになる。The flow of the coolant inside the spacer is as shown in FIG.

すなわち、従来のスペーサ内の流れ(第12図(b)参
照)と比べ、スペーサ内の流れはスムースになり、蒸気
流の燃料棒に向う流れが減少する。また、渦の発生がな
くなるので、燃料棒表面の液膜9の薄膜化が緩和され、
液膜の破断が減少する。
That is, compared to the flow in the conventional spacer (see FIG. 12(b)), the flow in the spacer becomes smoother, and the flow of steam toward the fuel rods is reduced. In addition, since the generation of vortices is eliminated, the thinning of the liquid film 9 on the surface of the fuel rod is alleviated.
Breaking of the liquid film is reduced.

[発明の効果] 以上説明したように、本発明の燃料棒スペーサは格子枠
に上述したような山形の突起を設けているので、スペー
サ近傍における流路面積の急激な変化がなくなり、圧力
損失が減少する。また、燃料棒表面における液膜破断も
なくなり燃料集合体の限界出力か向上する。
[Effects of the Invention] As explained above, since the fuel rod spacer of the present invention has the above-mentioned chevron-shaped protrusions on the lattice frame, sudden changes in the flow passage area near the spacer are eliminated, and pressure loss is reduced. Decrease. Furthermore, the liquid film rupture on the fuel rod surface is eliminated, and the limit output of the fuel assembly is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する燃料棒スペーサの
斜視図、第2図は第1図の燃料棒スペーーリ−の平面図
、第3図は第2図のA−A線に沿う縦図隼 断面図、第4図は第1〜3図の燃料棒スペーサ近△ へ を説明する図、第6図は従来の沸騰水型原子炉の燃料集
合体の構造を説明する断面図、第7図および第8図はそ
れぞれ従来の燃料棒スペーサの平面図および正面図、第
9図および第10図はそれぞれ従来の別の燃料棒スペー
サの平面図および正面図、第11図は従来の燃料棒スペ
ーサを使用した場合の軸方向冷却材流路面積の変化を示
す図、第12図は従来の燃料棒スペーサの冷却材流れへ
の影響を説明する図で、(a)は第9図の部分拡大図、
(b)は(a)図のA−A線に沿う断面の冷却材流れの
状態を示す図である。 1・・・燃料棒スペーサ、 2・・・側枠3・・・格子
枠、     4・・・格子区画空間5・・・山形突起
、    6・・・弾性支持具6a・・・弾性支持具の
弾条部 6b・・・弾性支持具の脚部 7・・・固定突起、    8・・・ロブ14・・・燃
料棒 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第1図 1   第2図 第3図 第4図 第5図 ■ 第6図 第7図 第9図 第i0図
Figure 1 is a perspective view of a fuel rod spacer illustrating an embodiment of the present invention, Figure 2 is a plan view of the fuel rod spacer in Figure 1, and Figure 3 is taken along line A-A in Figure 2. A vertical cross-sectional view of Hayabusa, FIG. 4 is a diagram explaining the fuel rod spacer near △ in FIGS. 1 to 3, and FIG. 6 is a cross-sectional diagram explaining the structure of a fuel assembly of a conventional boiling water reactor. 7 and 8 are a plan view and a front view, respectively, of a conventional fuel rod spacer, FIG. 9 and 10 are a plan view and a front view, respectively, of another conventional fuel rod spacer, and FIG. 11 is a plan view and a front view, respectively, of a conventional fuel rod spacer. Figure 12 is a diagram showing the change in axial coolant flow path area when fuel rod spacers are used. Figure 12 is a diagram explaining the influence of conventional fuel rod spacers on coolant flow. (a) is Figure 9. A partially enlarged view of
(b) is a diagram showing the state of coolant flow in a cross section taken along line A-A in figure (a). DESCRIPTION OF SYMBOLS 1... Fuel rod spacer, 2... Side frame 3... Lattice frame, 4... Lattice section space 5... Chevron projection, 6... Elastic support 6a... Elastic support Bullet portion 6b...Leg portion 7 of the elastic support device...Fixing protrusion, 8...Lob 14...Fuel rod agent Patent attorney Noriyuki Chika Kenichi Figure 1 2 Figure 3 Figure 4 Figure 5 ■ Figure 6 Figure 7 Figure 9 Figure i0

Claims (1)

【特許請求の範囲】[Claims] (1)側枠および格子枠によって格子区画空間を形成し
、前記格子枠に設けた突起および弾性支持具によって前
記格子区画空間に燃料棒を離間支持してなる燃料棒スペ
ーサにおいて、前記格子枠に冷却材の上流側および下流
側に向かって断面積が次第に減少する山形の突起を設け
たことを特徴とする燃料棒スペーサ。
(1) A fuel rod spacer in which a side frame and a lattice frame form a lattice compartment space, and fuel rods are supported at a distance in the lattice compartment space by protrusions and elastic supports provided on the lattice frame. A fuel rod spacer characterized by being provided with a chevron-shaped protrusion whose cross-sectional area gradually decreases toward the upstream and downstream sides of the coolant.
JP63041861A 1988-02-26 1988-02-26 Fuel rod spacer Expired - Fee Related JP2656287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041861A JP2656287B2 (en) 1988-02-26 1988-02-26 Fuel rod spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041861A JP2656287B2 (en) 1988-02-26 1988-02-26 Fuel rod spacer

Publications (2)

Publication Number Publication Date
JPH01217294A true JPH01217294A (en) 1989-08-30
JP2656287B2 JP2656287B2 (en) 1997-09-24

Family

ID=12620029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041861A Expired - Fee Related JP2656287B2 (en) 1988-02-26 1988-02-26 Fuel rod spacer

Country Status (1)

Country Link
JP (1) JP2656287B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331679A (en) * 1991-12-09 1994-07-19 Kabushiki Kaisha Toshiba Fuel spacer for fuel assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289485A (en) * 1987-05-21 1988-11-25 Mitsubishi Heavy Ind Ltd Nuclear fuel rod support grid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289485A (en) * 1987-05-21 1988-11-25 Mitsubishi Heavy Ind Ltd Nuclear fuel rod support grid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331679A (en) * 1991-12-09 1994-07-19 Kabushiki Kaisha Toshiba Fuel spacer for fuel assembly

Also Published As

Publication number Publication date
JP2656287B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JPH0233200Y2 (en)
JP2657152B2 (en) Spacer
US5272741A (en) Nuclear fuel assembly
JP3986096B2 (en) Nuclear fuel assembly grid with skew springs for fuel retention
JPH06174875A (en) Thermo-hydric grid and nuclear fuel assembly
US5530729A (en) Fuel assembly and spacer for a boiling reactor
US5787140A (en) Handle assembly and channel for a nuclear reactor fuel bundle assembly
HU224776B1 (en) Reactor's cover for nuclear reactor
JPH01217294A (en) Fuel rod spacer
JP5200205B2 (en) Fuel assemblies for nuclear reactors
US4914679A (en) Fuel assembly
EP0769784B1 (en) A nuclear fuel assembly and a spacer for a nuclear fuel assembly
JP3900438B2 (en) Fuel assemblies for boiling water reactors
JPS6262309B2 (en)
JP4573330B2 (en) Boiling water reactor fuel assembly spacer and fuel assembly
JPH05150064A (en) Fuel assembly
JP2928516B2 (en) Fuel assembly
JPH01182794A (en) Fuel rod spacer
JPH10253791A (en) Fuel spacer and fuel assembly
JPH0349399B2 (en)
JPH06214073A (en) Nuclear fuel spacer
JPH06249987A (en) Fuel spacer and fuel assembly
JPH0259697A (en) Boiling water reactor
JPS6113197B2 (en)
JPH11174183A (en) Fuel spacer and fuel assembly

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees