JPH01216723A - Method for discharging electric charge of capacitor of electrolytic finishing machine - Google Patents

Method for discharging electric charge of capacitor of electrolytic finishing machine

Info

Publication number
JPH01216723A
JPH01216723A JP4034788A JP4034788A JPH01216723A JP H01216723 A JPH01216723 A JP H01216723A JP 4034788 A JP4034788 A JP 4034788A JP 4034788 A JP4034788 A JP 4034788A JP H01216723 A JPH01216723 A JP H01216723A
Authority
JP
Japan
Prior art keywords
charge
discharge
current
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4034788A
Other languages
Japanese (ja)
Inventor
Teruo Asaoka
浅岡 輝雄
Haruki Sugiyama
治樹 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP4034788A priority Critical patent/JPH01216723A/en
Publication of JPH01216723A publication Critical patent/JPH01216723A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the power capacity of the parts of circuits by carrying out electric discharge for a certain time via grounding resistance when the charge of a capacitor is below a defined value while carrying out the discharge by stages for each defined electric quantity when the charge is above the defined value. CONSTITUTION:A pulse current is fed to between an electrode 2 and a workpiece 4 from capacitors 22-1-22-n based on a control signal from a machining condition control portion (CPU) 42 via a pulse generator 36, a current wave form setting portion 37, a gate circuit 34 and discharge switches 24-1-24-n. In the method of discharging the electric charge of the capacitors 22-1-22-n, when the residual electric charge thereof is above a voltage which can make a current corresponding to the power rating value of the discharging resistance of an electric charge discharging device 39 flow, the electric charge is discharged by stages for each power quantity which is determined by a CR characteristic. When the residual charge is below a defined value, discharge is carried out for fairly a long defined time. Thereby, the power capacity of using parts can be reduced, while obtaining a gloss surface, etc., in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、蓄電器の電荷放電方法に係り、特に三次元
形状の被加工面を短時間かつ高精度に仕上げる電解仕上
げ加工機における蓄電器の電荷放電方法に間する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for discharging the charge of a capacitor, and particularly to a method for discharging the charge of a capacitor in an electrolytic finishing machine that finishes a three-dimensionally shaped work surface in a short time and with high precision. Intermittent discharge method.

[従来の技術] 従来の金属加工機としては、電極とワークとの間隙に硝
酸ナトリウムや塩化ナトリウム等の電解液を満たし、こ
の電解液を高速で流すとともに、安定した電解作用を阻
害する電解生成物、すなわち溶出した金属化合物や金属
イオン及び水素ガス等を除去しながら、直流電流をワー
クから電極に流して加工する電解加工機(特開昭61−
71921号公報及び特開昭60−44228号公報参
照)が知られている。
[Conventional technology] Conventional metal processing machines fill the gap between the electrode and the workpiece with an electrolyte such as sodium nitrate or sodium chloride, flow this electrolyte at high speed, and generate electrolysis that inhibits stable electrolytic action. An electrolytic machining machine (Japanese Patent Laid-Open No. 1983-1999) that processes a workpiece by passing a direct current from it to an electrode while removing eluted metal compounds, metal ions, hydrogen gas, etc.
71921 and Japanese Unexamined Patent Publication No. 60-44228) are known.

[発明が解決しようとする課題] しかしながら、この電解加工機にあっては、特に三次元
形状の底付き加工(凹窩状に形成された三次元構造のも
のに対する加工をいう)において、ワークに電極の精密
な転写を行うことが困難で、高精度の表面品質が得られ
ないという不都合があった。
[Problems to be Solved by the Invention] However, with this electrolytic processing machine, there is a problem with the workpiece, especially when machining with a three-dimensional bottom (meaning machining of a three-dimensional structure formed in the shape of a concave hole). This method has the disadvantage that it is difficult to precisely transfer the electrode, and high-precision surface quality cannot be obtained.

そこで、当山願人はこれらの不都合を除去する電解仕上
げ加工機として、特願昭62−117486号を出願し
たが、この電解仕上げ加工機は、静止した電解液を介し
て所定間隙で対設した電極とワークとの極間に、所定電
圧で充電した複数の蓄電器から、電荷の放電による単一
のパルスを供給するとともに、仕上げ加工の前期と後期
とで供給するパルスの電流密度が異なるようにしていた
Therefore, Ganto Toyama filed Japanese Patent Application No. 62-117486 for an electrolytic finishing machine that would eliminate these inconveniences. A single pulse is supplied between the electrode and the workpiece by discharging the charge from multiple capacitors charged at a predetermined voltage, and the current density of the supplied pulse is made different between the early and late stages of finishing. was.

ところで、この電解仕上げ加工機にあっては、電極とワ
ークとの極間に供給するパルスのピーク電流密度が、例
えば?OA/cm2程度と大電流値であり、この電流値
を複数個並列に接続した静電容量の大きな蓄電器から得
るようにしている。したがって、例えば仕上げ加工終了
時に蓄電器に残留する電荷の量が大きくなる場合が多く
、次の加工を開始する際に、この電荷を接地した放電抵
抗を介して放電すると、放電抵抗を小抵抗値として放電
時間を短縮させるようにしているため、放電時に大電流
が流れ、この電流により放電抵抗やその他の回路部品が
損傷したり、回路の安全装置(サーマルリレー等)が作
動して回路機能がたびたび遮断されるという不都合があ
った。また、使用する部品に電力容量の大きなものが必
要となりコストアップになるという不都合があった。
By the way, in this electrolytic finishing machine, for example, what is the peak current density of the pulses supplied between the electrode and the workpiece? It has a large current value of about OA/cm2, and this current value is obtained from a plurality of capacitors with large capacitance connected in parallel. Therefore, for example, the amount of charge remaining in the capacitor at the end of finishing machining is often large, and when starting the next machining, if this charge is discharged through a grounded discharge resistor, the discharge resistance will be set to a small resistance value. Because the discharge time is shortened, a large current flows during discharge, and this current may damage the discharge resistor and other circuit components, or may cause circuit safety devices (thermal relays, etc.) to activate, causing the circuit to malfunction. There was the inconvenience of being blocked. Further, there is a problem in that the parts used have to have a large power capacity, which increases the cost.

そこで、この発明の目的は、回路部品の電力容量を小さ
くし得てコストダウンが図れるとともに、回路機能の遮
断を防ぐことができ、光沢面等の高精度な表面品質を短
時間に得ることができる電解仕上げ加工機における蓄電
器の電荷放電方法を実現するにある。
Therefore, the purpose of the present invention is to reduce the power capacity of circuit components, reduce costs, prevent circuit functions from being cut off, and obtain high-precision surface quality such as a glossy surface in a short time. The object of the present invention is to realize a method for discharging charges of a capacitor in an electrolytic finishing machine.

[課題を解決するための手段] この目的を達成するために、この発明は、静止した電解
液を介して所定間隙で対設した電極とワークとの極間に
蓄電器からの電荷の放電による単一のパルスを供給する
とともに、前記間隙に生成した電解生成物を除去しなが
ら前記ワークを仕上げ加工するものにおいて、前記蓄電
器の電荷を接地した抵抗を介して放電しうる如くし、前
記蓄電器の電荷が所定値以下の場合は所定時間放電し、
前記蓄電器の電荷が所定値を超える場合は所定の電気量
毎に段階的に放電することを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention provides a simple method of discharging electric charge from a condenser between an electrode and a workpiece, which are disposed opposite to each other at a predetermined gap via a stationary electrolyte. In the apparatus for finishing the workpiece while supplying one pulse and removing electrolytic products generated in the gap, the charge in the capacitor is discharged through a grounded resistor, and the charge in the capacitor is If is less than a predetermined value, it will be discharged for a predetermined time,
If the electric charge of the capacitor exceeds a predetermined value, it is characterized in that it is discharged in stages for each predetermined amount of electricity.

[作 用] この発明の構成によれば、蓄電器の例えば残留電荷が、
使用回路部品の電力容量により予め設定した所定値以下
の場合は、接地した抵抗を介して所定時間残留電荷を放
電し、残留電荷が所定値を超える場合は、例えば所定電
力毎に段階的に放電するため、放電抵抗及び放電回路等
に流れる電流値を使用部品の電力容量以下に押えること
ができる。
[Function] According to the configuration of the present invention, for example, the residual charge of the capacitor is
If the power capacity of the circuit components used is below a predetermined value, the residual charge is discharged for a predetermined period of time via a grounded resistor, and if the residual charge exceeds a predetermined value, it is discharged in stages, for example, at each predetermined power level. Therefore, the current value flowing through the discharge resistor, discharge circuit, etc. can be kept below the power capacity of the parts used.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜5図は、この発明の一実施例を示すものである。1 to 5 show an embodiment of the present invention.

第1図において、この発明を実施し得る電解仕上げ加工
機1は、電極2を固定する電極固定装置3、ワーク4を
固定するワーク固定装置5、サーボモータ6の回転運動
を往復運動に変換する駆動変換部7、パルス電流を発生
する電源装置8、モータ駆動制御部9と加工条件制御部
10と電解液流制御部11等からなる制御装置12、ワ
ーク4に関する各種データ等を入力する入力装置13、
電解液を濾過する電解液濾過装置14、加工槽15等か
らなる。
In FIG. 1, an electrolytic finishing machine 1 capable of carrying out the present invention includes an electrode fixing device 3 that fixes an electrode 2, a work fixing device 5 that fixes a work 4, and a servo motor 6 that converts rotational motion into reciprocating motion. A control device 12 consisting of a drive conversion section 7, a power supply device 8 that generates a pulse current, a motor drive control section 9, a machining condition control section 10, an electrolyte flow control section 11, etc., and an input device that inputs various data regarding the workpiece 4. 13,
It consists of an electrolyte filtration device 14 that filters an electrolyte, a processing tank 15, and the like.

前記電極固定装置3は、その下部に設けたロッド16の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aとワーク4の被加工面4aとが三
次元方向に−様な間隙17を保つように固定する。この
電極固定装置3は、前記モータ駆動制御部9の制御信号
によるサーボモータ60回転により上下動し、電極面2
aと被加工面4aとを所定の間隙17に設定する。
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 16 provided at the bottom thereof, with a gap such that the electrode surface 2a and the processed surface 4a of the workpiece 4 are spaced in a three-dimensional direction. Fix it so that it maintains 17. This electrode fixing device 3 is moved up and down by 60 rotations of a servo motor based on a control signal from the motor drive control section 9, and the electrode surface 2
A and the processed surface 4a are set at a predetermined gap 17.

前記ワーク固定装置5は、絶縁性の高いグラナイトもし
くはセラミックス製のテーブルで、その上面に例えば型
彫放電加工されたワーク4を図示しないセット治具、ネ
ジ等により固定する。
The workpiece fixing device 5 is a table made of highly insulating granite or ceramics, and the workpiece 4 that has been subjected to die-sinking electrical discharge machining, for example, is fixed to the upper surface of the table using a setting jig, screws, etc. (not shown).

前記電極2とワーク4との極間に、所定のパルス電流を
供給する電源装置8と、この電源装置8を制御する前記
加工条件制御部lOは、例えば第2図に示す如く構成す
る。
A power supply device 8 that supplies a predetermined pulse current between the electrode 2 and the workpiece 4, and the processing condition control unit 1O that controls the power supply device 8 are configured as shown in FIG. 2, for example.

即ち、電源装置8は直流電源部18と充放電部19とで
構成され、直流電源部18は、変圧器20と整流器21
とからなり、変圧器20により電圧を所定値に降下させ
整流器21により整流して直流電流を得て、後述する蓄
電器22−1〜22−nに供給する。
That is, the power supply device 8 includes a DC power supply section 18 and a charging/discharging section 19, and the DC power supply section 18 includes a transformer 20 and a rectifier 21.
The voltage is lowered to a predetermined value by a transformer 20 and rectified by a rectifier 21 to obtain a direct current, which is supplied to capacitors 22-1 to 22-n, which will be described later.

また、充放電部19は、極間に電荷を放電する複数個の
蓄電器22−1〜22−nと、これらの各蓄電器22−
1〜22−nに接続し直流電源部18側への電荷の逆流
を阻止するダイオード23−1〜23−nと、放電側へ
電荷を放電させるべく開閉される放電スイッチ24−1
〜24−nと、前記各蓄電器22−1〜22−nを所定
に充電すべく前記直流電源部18からの電源を給断する
充電スイッチ25とからなる。
The charging/discharging unit 19 also includes a plurality of capacitors 22-1 to 22-n that discharge charges between electrodes, and each of these capacitors 22-
Diodes 23-1 to 23-n connected to diodes 1 to 22-n to prevent backflow of charges to the DC power supply section 18 side, and a discharge switch 24-1 that is opened and closed to discharge charges to the discharge side.
24-n, and a charging switch 25 that supplies and disconnects power from the DC power supply section 18 to charge each of the capacitors 22-1 to 22-n to a predetermined value.

前記加工条件制御部10は、蓄電器22−1〜22−n
の電圧値を検出する電圧検出器26と、この電圧検出器
26で検出した電圧値とD/A変換器27からの出力値
とを比較する電圧比較器28と、この電圧比較器28か
らの出力信号により前記蓄電器22−1〜22−nの充
電の完了及び開始を検出する充電検出器29と、極間に
放電される電荷の電流値を検出する電流検出器30と、
この電流検出器30で検出した電流値のピーク値をホー
ルドするピークホールド回路31と、このピークホール
ド回路31でホールドしたピーク電流値とD/A変換器
32の出力値とを比較する電流比較器33と、所定時間
幅のパルスを発生するパルス発生器36と極間に放電す
る電荷の電流波形を設定する電流波形設定器37からの
入力信号により前記各放電スイッチ24−1〜24−n
に開閉駆動信号を出力するゲート回路34と、前記各蓄
電器22−1〜22−nへ供給する充電電圧値を設定し
その信号を前記D/A変換器27に出力する充電電圧設
定器35と、極間に流れる電流値を設定しその信号を前
記D/A変換器32に出力する電流設定器382;、前
記蓄電器22−1〜22−nの残留電荷を放電する電荷
放電器39と、この電荷放電器39に制御信号を出力す
る電荷放電指令器40と、電極2とワーク4の接触を検
知する接触検知器41と、前記入力装置13の入力デー
タ等に基づき加工条件等を演算・処理するCPU42等
からなる。なお、図中符号43は逆起電力によって各放
電スイッチ24−1〜24−nが破壊するのを防止する
ダイオードである。
The processing condition control unit 10 controls the capacitors 22-1 to 22-n.
a voltage detector 26 that detects the voltage value of , a voltage comparator 28 that compares the voltage value detected by this voltage detector 26 with the output value from the D/A converter 27, and A charging detector 29 that detects the completion and start of charging of the capacitors 22-1 to 22-n based on an output signal, and a current detector 30 that detects the current value of the charge discharged between the electrodes.
A peak hold circuit 31 that holds the peak value of the current detected by the current detector 30, and a current comparator that compares the peak current value held by the peak hold circuit 31 with the output value of the D/A converter 32. 33, a pulse generator 36 that generates a pulse with a predetermined time width, and a current waveform setting device 37 that sets the current waveform of the charge discharged between the poles.
a gate circuit 34 that outputs an opening/closing drive signal to the capacitors 22-1 to 22-n, and a charging voltage setter 35 that sets a charging voltage value to be supplied to each of the capacitors 22-1 to 22-n and outputs the signal to the D/A converter 27. , a current setting device 382 that sets the current value flowing between the poles and outputs the signal to the D/A converter 32; and a charge discharger 39 that discharges the residual charges of the capacitors 22-1 to 22-n. A charge discharge command device 40 outputs a control signal to the charge discharger 39, a contact detector 41 detects contact between the electrode 2 and the workpiece 4, and calculates and processes machining conditions based on the input data of the input device 13. It consists of a CPU 42 and the like for processing. Note that the reference numeral 43 in the figure is a diode that prevents each of the discharge switches 24-1 to 24-n from being destroyed by back electromotive force.

前記電荷放電器39は、例えば第3図に示す如く構成す
る。即ち、電荷放電器39は、スイッチ機構としての電
fji開閉器44と、一端を接地した放電用の抵抗45
とで構成する。電磁開閉器44は、3個の主接点46−
1〜46−3と2個の補助接点47−1.47−2と電
磁コイル48とを有し、主接点46−1〜46−3は、
常時その接点が非接触で電磁コイル48が通電されて電
磁開閉器44がオンしたときに接触し、補助接点47−
1.47−2は常時その接点が接触し電磁開閉器44が
オンすると非接触となる。そして主接点46−1〜46
−3はそれぞれ並列に接続して一端を放電スイッチ24
−1〜24−nに接続し、他端をワーク4に接続する。
The charge discharger 39 is constructed as shown in FIG. 3, for example. That is, the charge discharger 39 includes a power switch 44 as a switch mechanism and a discharge resistor 45 whose one end is grounded.
It consists of The electromagnetic switch 44 has three main contacts 46-
1 to 46-3, two auxiliary contacts 47-1, 47-2, and an electromagnetic coil 48, and the main contacts 46-1 to 46-3 are
The contact is always non-contact, and comes into contact when the electromagnetic coil 48 is energized and the electromagnetic switch 44 is turned on, and the auxiliary contact 47-
1.47-2 is always in contact and becomes non-contact when the electromagnetic switch 44 is turned on. and main contacts 46-1 to 46
-3 are connected in parallel and one end is connected to the discharge switch 24.
-1 to 24-n, and the other end is connected to the workpiece 4.

また、補助接点47−L 47−2も並列に接続して一
端を放電スイッチ24−1〜24−nに接続するととも
に、他端を前記抵抗45に接続する。前記電磁コイル4
8は前記電荷放電指令器40に接続され、この電荷放電
指令器40の制御信号により電磁コイル48が通電され
て電磁開閉器44がオンする。なお、第3図中符号30
aは前記電流検出器30の電流検出用の抵抗である。
Further, the auxiliary contacts 47-L 47-2 are also connected in parallel, with one end connected to the discharge switches 24-1 to 24-n, and the other end connected to the resistor 45. The electromagnetic coil 4
8 is connected to the charge discharge command device 40, and a control signal from the charge discharge command device 40 energizes the electromagnetic coil 48 and turns on the electromagnetic switch 44. In addition, the reference numeral 30 in Fig. 3
a is a current detection resistor of the current detector 30;

前記入力装置13は、加工面積S、仕上げ加工しろ等の
ワーク4に関する各種データ、及び加工条件等を入力す
る。また、前記電解液濾過装置14は、例えば図示しな
い遠心分離器、液温調整器、フィルタ、電磁弁等を有し
、加工で生じた電解生成物を含む電解液を濾過するとと
もに、濾過した新鮮な電解液を、電解液流制御部11の
制御信号により、前記間隙17に指向する如く配設した
噴出ノズル49(第1図参照)から間隙17内に噴出す
る。
The input device 13 inputs various data regarding the workpiece 4 such as the machining area S, finishing machining margin, machining conditions, and the like. The electrolyte filtration device 14 has, for example, a centrifugal separator, a liquid temperature regulator, a filter, a solenoid valve, etc. (not shown), and filters the electrolyte containing electrolytic products generated during processing, and also filters the filtered fresh electrolyte. The electrolytic solution is ejected into the gap 17 from the ejection nozzle 49 (see FIG. 1) disposed so as to be directed toward the gap 17 in response to a control signal from the electrolyte flow control section 11.

次に、この電解仕上げ加工機lによる仕上げ加工動作の
一例について第4図のフローチャートにより説明する。
Next, an example of the finishing operation performed by the electrolytic finishing machine 1 will be explained with reference to the flowchart shown in FIG.

仕上げ加工に際しては、電極固定装置3のロッド16の
下端に、例えばワーク4を型彫放電加工する際に使用し
た電極2を固定するとともに、ワーク固定装置5にワー
ク4をそれぞれ固定し、電解仕上げ加工機1の電源を投
入(50)する。そして、例えば入力装置13の放電キ
ー(図示せず)を押すと、前記放電スイッチ24−1〜
24−ロがオンするとともに、電荷放電指令器40から
電荷放電器39に制御信号が出力し、この信号により、
前記ステップ(50)でオンとなった電荷放電器39の
電磁開閉器44がオフ(51) b、前記補助接点47
−1.47−2が接触(主接点46−1〜46−3は非
接触)する。
During finishing, the electrode 2 used, for example, when performing die-sinking electrical discharge machining on the workpiece 4 is fixed to the lower end of the rod 16 of the electrode fixing device 3, and the workpiece 4 is fixed to the workpiece fixing device 5 for electrolytic finishing. Power on the processing machine 1 (50). For example, when a discharge key (not shown) of the input device 13 is pressed, the discharge switches 24-1 to 24-1 are pressed.
24-B turns on, a control signal is output from the charge discharge command device 40 to the charge discharger 39, and this signal causes
The electromagnetic switch 44 of the charge discharger 39 that was turned on in the step (50) is turned off (51) b, the auxiliary contact 47
-1.47-2 is in contact (main contacts 46-1 to 46-3 are not in contact).

電荷放電器39がオフすると、前記抵抗45に所定の電
流を流し得る時間T1〜TnをCPU42から読み込む
(52) 、このT1〜Tnは、第5図(A)に示すよ
うに、抵抗45を介して放電する際に、抵抗45の平均
消費電力を一定にするための時間であり、T1は、蓄電
器22−1〜22−nの最大充電電圧時に流し得る時間
(第5図の面積St=電力に相当する時間)、T2〜T
nは、T1の面積Slと同一面積S2〜Snが得られる
時間である。なお、この時間T1〜Tnは、前記蓄電器
22−1〜22−nの静電容量Cと抵抗45の抵抗値R
とによる放電特性から予め求め、CPU42に記憶した
ものである。
When the charge discharger 39 is turned off, the time T1 to Tn during which a predetermined current can flow through the resistor 45 is read from the CPU 42 (52). T1 is the time required to keep the average power consumption of the resistor 45 constant when discharging through the capacitors 22-1 to 22-n, and T1 is the time that can be passed at the maximum charging voltage of the capacitors 22-1 to 22-n (area St in FIG. 5 = time equivalent to electric power), T2~T
n is the time required to obtain the same areas S2 to Sn as the area Sl of T1. Note that this time period T1 to Tn depends on the capacitance C of the capacitors 22-1 to 22-n and the resistance value R of the resistor 45.
This is determined in advance from the discharge characteristics determined by the above and stored in the CPU 42.

そして、前記TlxTnに基づき所定の周期T、例えば
後述する所定電圧Vsを放電するに必要なTs時間より
長い時間を算出(53)する。その後、第5図(B)に
示す特性から、前記T1〜Tnと同様に予め記憶させで
ある、T1〜Tnに対応する電圧Vl−Vnを読み込む
(54)。
Then, based on the TlxTn, a predetermined period T, for example, a time longer than the Ts time required to discharge a predetermined voltage Vs, which will be described later, is calculated (53). Thereafter, from the characteristics shown in FIG. 5(B), voltages Vl-Vn corresponding to T1 to Tn, which are stored in advance in the same manner as T1 to Tn, are read (54).

電圧Vl−Vnを読み込むと、加工条件制御部10の制
御信号により、前記電圧検出器26が蓄電器22−1〜
22−nの電圧Vo(残留電荷)を検出(55) シ、
この電圧vOが所定値Vs以下か否かを判断(56)す
る。この判断(56)でNOの場合、即ち、蓄電器22
−1〜22−nの電圧VOがVsを超える場合は、ステ
ップ(54)で読み込んだv1〜Vnの中より、Voの
直上位の電圧Viと、この電圧Viに対応する時間Ti
を選択(57)する。そして、Ti時間電荷を放電(5
8) L/、T−Ti時間の待ち時間(59)をおいて
、前記ステップ(55)に戻り、ステップ(56)でY
ESになるまで繰り返す。
When the voltages Vl-Vn are read, the voltage detector 26 is activated by the control signal from the machining condition control unit 10.
Detect the voltage Vo (residual charge) of 22-n (55)
It is determined whether this voltage vO is less than or equal to a predetermined value Vs (56). If this judgment (56) is NO, that is, the capacitor 22
If the voltage VO of −1 to 22-n exceeds Vs, select the voltage Vi immediately above Vo from among v1 to Vn read in step (54) and the time Ti corresponding to this voltage Vi.
Select (57). Then, the Ti time charge is discharged (5
8) After a waiting time (59) of L/, T-Ti time, return to step (55), and in step (56)
Repeat until ES is reached.

つまり、蓄電器22−1〜22−nの電圧vOを、抵抗
45の電力規格値Wに相当する電流を流し得る電圧Vs
まで、電荷放電指令器40の制御信号により電荷放電器
39を一定周期TでTi+1、Ti+2・・・時間順次
オンさせることにより残留電荷を放電する。なお、前記
放電スイッチ24−1〜24−nはオンした状態のまま
である。
In other words, the voltage vO of the capacitors 22-1 to 22-n is changed to a voltage Vs through which a current corresponding to the power standard value W of the resistor 45 can flow.
Until then, the charge discharger 39 is sequentially turned on for Ti+1, Ti+2, . . . at a constant period T by the control signal of the charge discharge command device 40, thereby discharging the residual charge. Note that the discharge switches 24-1 to 24-n remain in the on state.

前記ステップ(56)でYES、即ち蓄電器22−1〜
22−nの電圧VoがVs以下になると、予め設定した
一定の時間、例えば前記時間TI−Tnより長い時間T
s重電荷放電(60) L/、残留電荷の放電を終了す
るとともに、電荷放電指令器4oの制御信号により電荷
放電器39がオン(61)する。
If YES in the step (56), that is, the capacitors 22-1~
When the voltage Vo of 22-n becomes equal to or lower than Vs, a predetermined period of time, e.g.
s Heavy charge discharge (60) L/, the discharge of the residual charge is completed, and the charge discharger 39 is turned on (61) by the control signal of the charge discharge command unit 4o.

この一連の工程で、加工開始前に残留(前回の加工終了
時に残留)していた蓄電器22−1〜22−nの残留電
荷の放電が完了し、残留電荷がなくなると、この状態で
仕上げ加工が開始され、まず電極2が下降してワーク4
に接触する。この接触を前記接触検知器41が検知(6
2)すると、CPU42は、この点を加工原点Aとして
記憶するとともに、前記電解液濾過装置14を作動させ
て、加工槽15内に電解液を供給(63)する。そして
、電極2を上昇させて入力装置13で入力した電極間隙
δを維持する位置に電極2を設定(64)する。
Through this series of steps, the discharge of the residual charges in the capacitors 22-1 to 22-n that remained before the start of machining (residual at the end of the previous machining) is completed, and when the residual charges disappear, finishing processing is performed in this state. is started, and first the electrode 2 is lowered and the workpiece 4 is
come into contact with. The contact detector 41 detects this contact (6
2) Then, the CPU 42 stores this point as the machining origin A, and operates the electrolyte filtration device 14 to supply the electrolyte into the machining tank 15 (63). Then, the electrode 2 is raised to a position where the electrode gap δ input using the input device 13 is maintained (64).

電極2が設定され間隙17の電解液が静止(65)した
ら、加工条件制御部10の制御信号により、電源装置8
の蓄電器22−1〜22−nからワーク4の加工面積S
に応じた所定の、例えばピーク電流密度が30〜50A
/Cm2でパルスオン時間が2〜10m5ecの面粗度
向上用の単一のパルス電流を供給(66) L/、この
パルス電流のオフ後に電極2を上昇(67)させる。
When the electrode 2 is set and the electrolyte in the gap 17 is stationary (65), the power supply device 8 is turned on by the control signal from the processing condition control unit 10.
Machining area S of workpiece 4 from capacitors 22-1 to 22-n
For example, the peak current density is 30 to 50 A.
A single pulsed current for improving surface roughness with a pulse-on time of 2 to 10 m5ec is supplied at /Cm2 (66) L/, and after this pulsed current is turned off, the electrode 2 is raised (67).

そして、前記電解液濾過装置14により噴出ノズル49
から間隙17に新鮮な電解液を噴出し、パルス電流の供
給により溶出した間隙の電解生成物を排除(68)する
。その後、電極2を下降(69)させて被加工面4aに
接触させ、この位置と前記原点AとをCPU42で比較
して加工深さを測定(70)する。
Then, the ejection nozzle 49 is opened by the electrolyte filtering device 14.
A fresh electrolyte is injected into the gap 17 from the gap 17, and the eluted electrolytic products in the gap are removed by supplying a pulsed current (68). Thereafter, the electrode 2 is lowered (69) and brought into contact with the surface to be machined 4a, and the CPU 42 compares this position with the origin A to measure the machining depth (70).

この加工深さが所定値になるまでステップ(64)〜(
70)を繰り返しく71) 、所定の加工深さに達した
ら、加工条件制御部100制御信号により、蓄電器22
−1〜22−nから供給されるパルス電流を光沢面形成
用のパルス電流、例えばピーク電流密度が30〜50A
 / c m2でパルスのオン時間が20〜60m5e
Cの単一のパルス電流に切り換え(72) 、前記ステ
ップ(64)〜(68)と同様の加工(73)〜(77
)を所定回数繰り返しく78)、光沢面を得て全ての加
工を終了(79)する。
Steps (64) to (
70) is repeated 71), and when a predetermined machining depth is reached, the condenser 22 is
The pulse current supplied from -1 to 22-n is a pulse current for forming a glossy surface, for example, the peak current density is 30 to 50 A.
/ cm m2, pulse on time 20~60m5e
Switch to a single pulse current of C (72), and perform the same processing as steps (64) to (68) (73) to (77).
) is repeated a predetermined number of times (78), a glossy surface is obtained and all processing is completed (79).

このように、この発明に係る電解仕上げ加工機1におけ
る蓄電器22−1〜22−nの電荷放電方法にあっては
、蓄電器22−1〜22−nの残留電荷が、放電用の抵
抗45の電力規格値に相当する電流を流し得る電圧Vs
を超える場合は、CRの放電回路特性によって予め求め
た所定の電力量毎に、電圧がVsになるまで段階的に電
荷を放電させ、また、残留電荷が電圧Vs以下の場合は
、比較的長い一定時間電荷を放電させるため、電荷放電
器390回路及び放電スイッチ24−1〜24−n等の
各回路を流れる電流値あるいは回路で消費される電力値
を常に一定値以内にすることができ、回路部品の電力容
量の低減化とコストダウンが図れるとともに、回路機能
の遮断を防止することができる。
As described above, in the method of discharging charges of the capacitors 22-1 to 22-n in the electrolytic finishing machine 1 according to the present invention, the residual charges of the capacitors 22-1 to 22-n are discharged from the resistor 45 for discharging. Voltage Vs that allows a current corresponding to the power standard value to flow
If the residual charge exceeds the voltage Vs, the charge is discharged in stages until the voltage reaches Vs at each predetermined amount of power determined in advance according to the discharge circuit characteristics of the CR, and if the residual charge is below the voltage Vs, the charge is discharged for a relatively long time. Since the charge is discharged for a certain period of time, the value of the current flowing through each circuit such as the charge discharger 390 circuit and the discharge switches 24-1 to 24-n, or the value of the power consumed by the circuit can always be kept within a certain value, The power capacity of circuit components can be reduced and costs can be reduced, and circuit function interruption can be prevented.

第6〜8図はこの発明の他の実施例を示すフローチャー
トで、第4図と同一ステップには同一符号を付してその
説明を省略する。第6図は、ステップ(57)で蓄電器
22−1〜22−nの電圧Voの直上値の電圧Vi及び
Tiを選択(57) L/た後に、式V i ’ =V
 i −(Vi+1)により放電する電圧vi′を設定
(80) L/、この電圧vi′に相当する電荷をTi
時間放電(81)することを特徴とする。
6 to 8 are flowcharts showing other embodiments of the present invention, in which the same steps as in FIG. 4 are given the same reference numerals and their explanations will be omitted. FIG. 6 shows that after selecting (57) L/ the voltages Vi and Ti that are directly above the voltage Vo of the capacitors 22-1 to 22-n in step (57), the formula V i '=V
The discharge voltage vi' is set by i - (Vi+1) (80) L/, and the charge corresponding to this voltage vi' is Ti
It is characterized by time discharge (81).

また、第7図は、電圧Voが電圧Vsを超える場合に、
前記TI−Tnの中の最小の71時間電荷を放電(83
)することを特徴とし、さらに、第8図は、電圧vOが
電圧Vsを超える場合に、V。
Moreover, FIG. 7 shows that when the voltage Vo exceeds the voltage Vs,
Discharge the charge for a minimum of 71 hours in the TI-Tn (83
), and FIG. 8 further shows that when the voltage vO exceeds the voltage Vs, V.

−Vs’  (Vs’は予め設定した電圧)の電圧を前
記加工条件制御部10の充電電圧設定部35に設定(8
5)するとともに、Ts’時間(Ts’は予め設定した
時間)の放電(86)を、前記充電検出器29から充電
完了信号が出力、即ち蓄電器22−1〜22−nの残留
電荷が放電され、電圧VoがVo−Vs9に降下するま
で繰り返しく87)、電圧Vs’毎に電荷を放電して、
電圧Vsまで段階的に電荷を放電することを特徴とする
-Vs'(Vs' is a preset voltage) is set in the charging voltage setting section 35 of the processing condition control section 10 (8
5) At the same time, a charge completion signal is output from the charge detector 29 to discharge (86) for a time Ts'(Ts' is a preset time), that is, the residual charges in the capacitors 22-1 to 22-n are discharged. and repeats until the voltage Vo drops to Vo - Vs9 (87), discharging the charge every voltage Vs',
It is characterized by discharging charges in stages up to the voltage Vs.

なお、上記実施例においては、蓄電器22−1〜22−
nの残留電荷の放電について説明したが、この発明はこ
れに何ら限定されず、例えば、仕上げ加工前期には低電
流密度のパルス電流で面粗度を向上させるとともに、こ
の加工中に高電流密度のパルス電流を供給して被加工面
に生成する酸化皮膜を除去し、仕上げ加工の後期には光
沢面形成用の高電流密度のパルス電流を供給してワーク
を仕上げ加工する場合等おいて、各パルス電流の切換(
高電流密度から低電流密度のパルス電流への切換)時の
電荷の放電にももちろん適用できる。
In addition, in the above embodiment, the power storage devices 22-1 to 22-
Although the discharge of the residual charge of When finishing the workpiece by supplying a pulsed current of 100% to remove an oxide film formed on the workpiece surface, and supplying a pulsed current of high current density to form a glossy surface in the latter stage of finishing, Switching of each pulse current (
Of course, it can also be applied to the discharge of charge during switching from a high current density to a low current density pulse current.

また、上記実施例においては、電荷放電器39の電磁開
閉器44に主接点46−1〜46−3と補助接点47−
1.47−2と毛設けたが、主接点46−1〜46−3
は省略(回路の短絡)することもでき、この場合は、電
磁開閉器440通電容量が抵抗45のみで決まる(加工
電流の影響を受けない)ため、電荷放電器39の小型、
小容量化が図れる。
In the above embodiment, the electromagnetic switch 44 of the charge discharger 39 has main contacts 46-1 to 46-3 and an auxiliary contact 47-.
1.47-2, but main contacts 46-1 to 46-3
can be omitted (short circuit); in this case, the current carrying capacity of the electromagnetic switch 440 is determined only by the resistor 45 (not affected by the machining current), so the small size of the charge discharger 39,
Capacity can be reduced.

[発明の効果] 以上詳細に説明したように、この発明に係る電解仕上げ
加工機における蓄電器の電荷放電方法にあっては、蓄電
器の電荷が予め設定した所定値以下の場合は、所定時間
電荷を放電し、蓄電器の電荷が所定値を超える場合は、
一定の電気量毎に段階的に放電するため、■回路に使用
する部品の電力容量を小さくし得てコストダウンが図れ
る、■回路機能をみだらに遮断することを防止し得て、
光沢面等の高精度な表面品質が短時間に得られる、■省
力化が遅れている金型加工分野での品質向上と機械化を
達成することができる、等の効果を奏する。
[Effects of the Invention] As explained in detail above, in the method for discharging the charge of the capacitor in the electrolytic finishing machine according to the present invention, when the charge of the capacitor is less than a predetermined value set in advance, the charge is discharged for a predetermined period of time. If it discharges and the charge in the capacitor exceeds a predetermined value,
Since the electric power is discharged in stages for each fixed amount of electricity, ■ the power capacity of the parts used in the circuit can be reduced and costs can be reduced, and ■ the circuit function can be prevented from being cut off unnecessarily.
It has the following effects: high-precision surface quality such as a glossy surface can be obtained in a short time, and quality improvement and mechanization can be achieved in the field of mold processing, where labor saving has been slow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電解仕上げ加工装置のブロック図、
第2図は要部のブロック図、第3図は電荷放電器の回路
図、第4図は仕上げ加工動作の一例を示すフローチャー
ト、第5図(A)、(B)は作用を説明するための図、
第6〜8図は他の実施例を示すフローチャートである。 1・・・電解仕上げ加工機、2・・・電極、4・・・ワ
ーク、    8・・・電源装置、9・・・モータ駆動
制御部、10・・・加工条件制御部11・・・電解液流
制御部、 12・・・制御装置、13・・・入力装置、
    14・・・電解液濾過装置22−1〜22−n
・・・蓄電器、 39・・・電荷放電器、40・・・電
荷放電指令器、 42・・・CPU。 特許出願人  静岡製機株式会社 代表者鈴木重夫。 第1図 第7図
FIG. 1 is a block diagram of the electrolytic finishing apparatus of this invention.
Figure 2 is a block diagram of the main parts, Figure 3 is a circuit diagram of the charge discharger, Figure 4 is a flowchart showing an example of finishing operation, and Figures 5 (A) and (B) are for explaining the operation. diagram,
6 to 8 are flowcharts showing other embodiments. DESCRIPTION OF SYMBOLS 1... Electrolytic finishing machine, 2... Electrode, 4... Workpiece, 8... Power supply device, 9... Motor drive control section, 10... Machining condition control section 11... Electrolysis Liquid flow control unit, 12...control device, 13...input device,
14... Electrolyte filtration device 22-1 to 22-n
...Electricity storage device, 39...Charge discharger, 40...Charge discharge command device, 42...CPU. Patent applicant Shigeo Suzuki, representative of Shizuoka Seiki Co., Ltd. Figure 1 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)静止した電解液を介して所定間隙で対設した電極
とワークとの極間に蓄電器の電荷の放電による単一のパ
ルスを供給するとともに、前記間隙に生成した電解生成
物を除去しながら前記ワークを仕上げ加工するものにお
いて、前記蓄電器の電荷を接地した抵抗を介して放電し
うる如くし、前記蓄電器の電荷が所定値以下の場合は所
定時間放電し、前記蓄電器の電荷が所定値を超える場合
は所定の電気量毎に段階的に放電することを特徴とする
電解仕上げ加工機における蓄電器の電荷放電方法。
(1) A single pulse is supplied between the electrode and the workpiece, which are disposed opposite to each other with a predetermined gap, through a stationary electrolyte, and the electrolytic products generated in the gap are removed. In the apparatus for finishing the workpiece, the charge in the capacitor is discharged through a grounded resistor, and when the charge in the capacitor is less than a predetermined value, it is discharged for a predetermined time, and the charge in the capacitor is lowered to a predetermined value. 1. A method for discharging a charge of a condenser in an electrolytic finishing machine, characterized in that if the amount of electricity is exceeded, the charge is discharged in stages for each predetermined amount of electricity.
JP4034788A 1988-02-23 1988-02-23 Method for discharging electric charge of capacitor of electrolytic finishing machine Pending JPH01216723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4034788A JPH01216723A (en) 1988-02-23 1988-02-23 Method for discharging electric charge of capacitor of electrolytic finishing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4034788A JPH01216723A (en) 1988-02-23 1988-02-23 Method for discharging electric charge of capacitor of electrolytic finishing machine

Publications (1)

Publication Number Publication Date
JPH01216723A true JPH01216723A (en) 1989-08-30

Family

ID=12578101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4034788A Pending JPH01216723A (en) 1988-02-23 1988-02-23 Method for discharging electric charge of capacitor of electrolytic finishing machine

Country Status (1)

Country Link
JP (1) JPH01216723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143586A (en) * 1990-04-26 1992-09-01 Mitsubishi Denki K.K. Electrochemical machining process and equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211940A (en) * 1975-07-18 1977-01-29 Agency Of Ind Science & Technol Hologram regeneration apparatus
JPS60255313A (en) * 1984-05-31 1985-12-17 Fanuc Ltd Electric discharge machining power supply
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211940A (en) * 1975-07-18 1977-01-29 Agency Of Ind Science & Technol Hologram regeneration apparatus
JPS60255313A (en) * 1984-05-31 1985-12-17 Fanuc Ltd Electric discharge machining power supply
JPS62255013A (en) * 1986-04-28 1987-11-06 Toyota Motor Corp Electro-chemical machining device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143586A (en) * 1990-04-26 1992-09-01 Mitsubishi Denki K.K. Electrochemical machining process and equipment

Similar Documents

Publication Publication Date Title
US8648275B2 (en) Power supply device for sinker electric discharge machining
US3607689A (en) Power supply for large-surface electrochemical machining
EP0124625A1 (en) Electric discharge machining control circuit
EP0266180B1 (en) Electrolytic finishing method
KR20060135030A (en) Discharge processing machine power supply apparatus and power supply control method
KR930007253B1 (en) Finishing method and machine employing electro-chemical machining
JPH01216723A (en) Method for discharging electric charge of capacitor of electrolytic finishing machine
US7175752B2 (en) Method and apparatus for electrochemical machining
EP0526089B1 (en) Electric discharge machining apparatus
KR860000619B1 (en) Wire-cut electric discharge machining device
JPH0911043A (en) Electric discharge machining method and electric discharge machining device
KR910006553B1 (en) Electrolytic finishing method
US4883568A (en) Finishing method employing electro-chemical process
US3456087A (en) Power supply and automatic control system for high-speed electric discharge machining apparatus
US4861450A (en) Power supply system for electrolytic processing apparatus
JPH0343119A (en) Abnormality detection circuit for electrolysis finishing processing device
JP2756962B2 (en) Control device for wire electric discharge machine
EP0273380B1 (en) Power supply system for electrolytic processing apparatus
WO1990011863A1 (en) Method of predicting short-circuiting in electrolytic machining
JPH02109635A (en) Electrolytic finishing method for sintered hard metal
JPH01193124A (en) Power unit for electrochemical finishing machine
JPH02274421A (en) Foreknowing method for short circuit in electrochemical machining
JPS6327941Y2 (en)
JP2671468B2 (en) Electrolytic machining control device
JPH02139123A (en) Short circuit foreseeing method in electrolytic finishing