JPH01216520A - Annealing method - Google Patents

Annealing method

Info

Publication number
JPH01216520A
JPH01216520A JP4318588A JP4318588A JPH01216520A JP H01216520 A JPH01216520 A JP H01216520A JP 4318588 A JP4318588 A JP 4318588A JP 4318588 A JP4318588 A JP 4318588A JP H01216520 A JPH01216520 A JP H01216520A
Authority
JP
Japan
Prior art keywords
sample
semiconductor layer
light
annealing
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318588A
Other languages
Japanese (ja)
Inventor
Yasushi Morita
靖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4318588A priority Critical patent/JPH01216520A/en
Publication of JPH01216520A publication Critical patent/JPH01216520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To decrease the escape of heat from a heated semiconductor layer and to perform annealing with low energy, by supporting a sample that is formed with the semiconductor layer in a space over a light transmitting insulating substrate, and projecting light from the side of the light transmitting insulating substrate. CONSTITUTION:A polycrystalline silicon layer is formed by a low pressure CVD method on one surface of a quartz substrate 1. Silicon ions that are neutral ions are implanted into the polycrystalline silicon layer. A non-single crystal semiconductor layer 2 as an amorphous- state silicon layer is formed. A recess part 7 having the size approximately corresponding to the area of a sample 3 is provided in a holder 6. Step parts 8 are provided at the sample holder 6 so as to hold the edge parts of the sample on the upper peripheral parts of the recess part 7. The sample 3 is arranged and supported on the step parts 8 of the upper parts of the recess part 7 in the sample holder 6. The sample 3 is supported in a space so that the non-single crystal semiconductor layer 2 faces downward 2. Under this state, laser light, i.e., excimer laser, is projected on the sample 3 from the side of the quartz substrate 1. Annealing for growing the diameter of the crystal grain is performed for the non-single crystal semiconductor layer 2. Since the laser is projected on the sample 3 from the side of the quartz substrate 1 in this way and annealing is performed, the diameter of the crystal grain can be made large with low energy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置等の製造工程におけるアニール方
法、特に光透過性絶縁基体上に形成した半導体層のアニ
ール方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an annealing method in the manufacturing process of semiconductor devices and the like, and particularly to an annealing method for a semiconductor layer formed on a light-transmitting insulating substrate.

〔発明の概要〕[Summary of the invention]

本発明は、光透過性絶縁基体上に形成した半導体層のア
ニール方法にふいて、光透過性絶縁基体上に半導体層を
形成してなる試料を中空支持し、光透過性絶縁基体側か
ら光を照射することにより、半導体層に対するアニール
を効率よ(行えるようにしたものである。
In addition to the method of annealing a semiconductor layer formed on a light-transmitting insulating substrate, the present invention provides a method for annealing a semiconductor layer formed on a light-transmitting insulating substrate, in which a sample having a semiconductor layer formed on a light-transmitting insulating substrate is supported in a hollow, and light is emitted from the side of the light-transmitting insulating substrate. By irradiating the semiconductor layer with irradiation, the semiconductor layer can be annealed efficiently.

〔従来の技術〕[Conventional technology]

半導体装置の製造工程に使用されるアニール方法として
、例えば半導体基体をその両主面が素光するように支持
し、両生面方向から直接高出力のインコヒーレント光で
ある赤外ランプ光線を照射して例えばイオン注入後の活
性化のための高温−短時間のアニール法が知られている
(特開昭57−117246号参照)。また、半導体ウ
ェハを複数の石英突起上に置いて水平に支持し、抵抗加
熱拡散炉にてウェハ全面を均一に加熱、冷却するように
したアニール法も知られている(実開昭51−1428
63号参照)。
As an annealing method used in the manufacturing process of semiconductor devices, for example, a semiconductor substrate is supported so that both principal surfaces thereof are uniformly illuminated, and infrared lamp light, which is high-output incoherent light, is irradiated directly from both surfaces. For example, a high-temperature, short-time annealing method for activation after ion implantation is known (see JP-A-57-117246). Additionally, an annealing method is known in which a semiconductor wafer is placed on a plurality of quartz protrusions and supported horizontally, and the entire surface of the wafer is uniformly heated and cooled in a resistance heating diffusion furnace (Utility Model Publication No. 51-1428).
(See No. 63).

一方、近時、半導体装置の製造技術において、例えば石
英基板上に非単結晶半導体層即ちシリコン層を形成し、
所定の光源を用いてアニールし再結晶化させて所謂S 
O1(silicon on 1nsulator)基
板を作成し、このSol基板を半導体装置の製造に利用
するための開発が進められている。この非単結晶半導体
層をアニールするための光源としては、例えばレーザ装
置等が用いられ、このレーデ装置から発生するレーザビ
ームを非単結晶半導体層に照射して1.その結晶粒径を
大きくするためのアニールが行われる。
On the other hand, in recent years, in semiconductor device manufacturing technology, for example, a non-single crystal semiconductor layer, that is, a silicon layer is formed on a quartz substrate,
The so-called S is annealed and recrystallized using a predetermined light source.
Development is underway to create an O1 (silicon on insulator) substrate and use this Sol substrate for manufacturing semiconductor devices. As a light source for annealing this non-single crystal semiconductor layer, for example, a laser device or the like is used, and the non-single crystal semiconductor layer is irradiated with a laser beam generated from this laser device. Annealing is performed to increase the crystal grain size.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

大きな結晶粒径を半導体層中に得ようとした場合には、
それに対応して大きな光エネルギーを出力する光照射装
置が必要となる。光照射装置として、例えば紫外域で発
振するエキシマレーザを用い、その光エネルギーを太き
(して使用したときには大きな結晶粒径を有する半導体
層を得ることも可能であるが、その反面、大きなレーザ
パワーを出力するレーザ装置は高価であること、また大
きな出力のレーザ光は危険であること等の問題点がある
When trying to obtain a large crystal grain size in a semiconductor layer,
A light irradiation device that outputs a correspondingly large amount of light energy is required. For example, if an excimer laser that oscillates in the ultraviolet region is used as a light irradiation device, it is possible to obtain a semiconductor layer with a large crystal grain size when the light energy is increased. There are problems such as that laser devices that output power are expensive and that high output laser light is dangerous.

これに対して、本出願人は先に石英基板上に非単結晶半
導体層即ちシリコン層を形成した試料に対して石英基板
側からレーザ光を照射して、低エネルギーで所望の結晶
粒径の半導体層を得5ことができるようにしたアニール
方法を開発した。装置としては従来のレーザアニール装
置が用いられた。
On the other hand, the present applicant has previously developed a sample with a non-single crystal semiconductor layer, that is, a silicon layer, on a quartz substrate by irradiating a laser beam from the quartz substrate side to obtain a desired crystal grain size with low energy. We have developed an annealing method that allows us to obtain a semiconductor layer. A conventional laser annealing device was used as the device.

ところで、従来のレーザアニール装置では、第2図に示
すように石英基板(1)上にシリコンの非単結晶半導体
層(2)を形成して成る試料(3)に裏面の石英基板(
1)側からレーデ光(4)を照射する場合、(即ち所謂
裏面照射する場合)、試料(3)は金ry4製の試料ホ
ルダー(5)上に、その半導体層(2)の表面を接触す
るように直線載置して行われる。しかし、この場合には
、レーデ光照射によって加熱された半導体層(2)から
試料ホルダー(5)へ熱が逃げてしまい、効率の良いア
ニールができず(即ち冷却時の半導体層(2)の厚み方
向の温度勾配が固相成長に影響する)、又裏面照射の効
果を十分利用できなかった。
By the way, in a conventional laser annealing apparatus, as shown in FIG.
1) When irradiating the radar light (4) from the side (i.e., so-called backside irradiation), the sample (3) is placed in contact with the surface of its semiconductor layer (2) on the sample holder (5) made of gold RY4. It is done by placing it in a straight line. However, in this case, heat escapes from the semiconductor layer (2) heated by Raded light irradiation to the sample holder (5), making it impossible to perform efficient annealing (i.e., the temperature of the semiconductor layer (2) during cooling cannot be improved). The temperature gradient in the thickness direction affects solid phase growth), and the effect of backside irradiation could not be fully utilized.

また、半導体層(2)の表面を直接試料ホルダー(5)
に接触させるため半導体層(2)表面の傷や汚れが問題
となった。
In addition, the surface of the semiconductor layer (2) is directly attached to the sample holder (5).
Scratches and stains on the surface of the semiconductor layer (2) became a problem.

本発明は、上述の点に鑑み、アニール時の熱の逃げを低
減し、裏面照射の効果を十分利用できるようにし、高品
質の半導体層を得ることができるアニール方法を提供す
るものである。
In view of the above-mentioned points, the present invention provides an annealing method that can reduce heat escape during annealing, fully utilize the effect of backside irradiation, and obtain a high-quality semiconductor layer.

(!1lljiを解法するための手段〕本発明は、光透
過性絶縁基体(1)上に形成した半導体層C)のアニー
ル方法において、光透過性絶縁基体(1)上に半導体層
(2)を形成してなる試料(3)を中空支持し、光透過
性絶縁基体(1)側から光源を用いて加熱するようにな
す。
(Means for solving !1llji) The present invention provides a method for annealing a semiconductor layer (C) formed on a light-transmitting insulating substrate (1), in which a semiconductor layer (2) is formed on a light-transmitting insulating substrate (1). A sample (3) formed by forming a sample (3) is supported in a hollow space and heated using a light source from the light-transmissive insulating substrate (1) side.

非単結晶半導体層口)は例えば多結晶シリコン層やアモ
ルファスシリコン層等の単結晶半導体層でない半導体層
であり、LP(低圧)CVD法やプラズマCVD法等に
よって形成することができる。
The non-single crystal semiconductor layer is a semiconductor layer other than a single crystal semiconductor layer, such as a polycrystalline silicon layer or an amorphous silicon layer, and can be formed by an LP (low pressure) CVD method, a plasma CVD method, or the like.

光透過性絶縁基体(1)は、光源からの光を透過する機
能を有する基板であり、例えば石英基板等を用いること
ができる。また、光源の波長によって、例えば光源の波
長が紫外域であるときには、その波長の光線を透過しう
るように基板を用いれば良い。
The light-transmissive insulating substrate (1) is a substrate that has a function of transmitting light from a light source, and for example, a quartz substrate or the like can be used. Further, depending on the wavelength of the light source, for example, when the wavelength of the light source is in the ultraviolet region, the substrate may be used so as to be able to transmit light of that wavelength.

上記光源としては、例えばエキシマレーザ等のレーザ装
置、ランプ装置等を用いることができる。
As the light source, for example, a laser device such as an excimer laser, a lamp device, etc. can be used.

試料(3)を中空支持する手段としては、例えば試料の
面積に対応する大きさの凹所(7)を有した試料ホルダ
ー(6)を構成し、半導体層(6)が凹所(7)に対向
するように試料(3)の周辺を凹所の上部周縁の段部(
8)に支持するようにしてもよい。或いは試料(3)の
周辺の複数個所を支持し、半導体層(2)が試料ホルダ
ーに接しないようにすることもできる。
As a means for hollowly supporting the sample (3), for example, a sample holder (6) having a recess (7) of a size corresponding to the area of the sample is configured, and the semiconductor layer (6) is placed in the recess (7). Place the periphery of the sample (3) on the step part (
8) may be supported. Alternatively, it is also possible to support the sample (3) at multiple locations around it so that the semiconductor layer (2) does not come into contact with the sample holder.

〔作用〕[Effect]

試料(3)に対して光透過性絶縁基体(1)側から例え
ばエキシマレーザを照射した場合と、半導体層(2)側
からエキシマレーザを照射した場合とを比較すると、紫
外反射スペクトルピークは光透過性絶縁基体(1)側か
らのエキシマレーザ照射による場合の方が大きい(即ち
レーザエネルギーの吸収が大きい)。したがって光透過
性絶縁基体(1)側からの光照射による場合の方が半導
体層の結晶粒径が太きくなり、実質的に低エネルギーで
アニールを行うことができる。
Comparing the case where the sample (3) is irradiated with an excimer laser from the light-transmissive insulating substrate (1) side and the case where the excimer laser is irradiated from the semiconductor layer (2) side, the ultraviolet reflection spectrum peak is The case of excimer laser irradiation from the transparent insulating substrate (1) side is larger (that is, the absorption of laser energy is larger). Therefore, the crystal grain size of the semiconductor layer becomes thicker when light is irradiated from the light-transmitting insulating substrate (1) side, and annealing can be performed with substantially lower energy.

そして、上述のアニール方法によれば、特に試料(3)
が中空に支持され、試$4 (3)の半導体層の表面が
試料ホルダー(6)に接触されないため、光透過性絶縁
基体(1)側から光(4)を照射して半導体層(2)に
対するアニールを行った際に、加熱された半導体層□(
2)の熱の逃げが低減し、再結晶化等のアニールが良好
に行える。また、半導体層(2)表面を傷つけたり、汚
染する心配もない。
According to the above-mentioned annealing method, especially sample (3)
Since the surface of the semiconductor layer (3) is not in contact with the sample holder (6), the semiconductor layer (2) is irradiated with light (4) from the light-transmissive insulating substrate (1) side. ), the heated semiconductor layer □(
2) Heat escape is reduced, and annealing such as recrystallization can be performed satisfactorily. Further, there is no fear of damaging or contaminating the surface of the semiconductor layer (2).

〔実施例〕〔Example〕

以下、第1図を参照して本発明によるアニール方法の実
施例を説明する。
Hereinafter, an embodiment of the annealing method according to the present invention will be described with reference to FIG.

第1図に示すようにアニールを行う試料(3)として、
石英基板(1)の−面に対して例えば低圧CVD法によ
り多結晶シリコン層を形成し、この多結晶シリコン層に
対して中性イオンであるシリコンイオンを注入して、非
単結晶半導体層(2)としてアモルファス状態のシリコ
ン層とする。なお、注入イオンはシリコンイオンに限定
されず、他の中性イオンであっても良い。また、このよ
うな非単結晶半導体層(2)の他の例としては、プラズ
マCVD法等によって直接非晶質層を形成したものであ
っても良く、多結晶シリコン層であっても良い。
As the sample (3) to be annealed as shown in Figure 1,
A polycrystalline silicon layer is formed on the negative side of the quartz substrate (1) by, for example, low-pressure CVD, and silicon ions, which are neutral ions, are implanted into the polycrystalline silicon layer to form a non-single-crystalline semiconductor layer ( 2) is a silicon layer in an amorphous state. Note that the implanted ions are not limited to silicon ions, and may be other neutral ions. Further, as another example of such a non-single crystal semiconductor layer (2), an amorphous layer formed directly by a plasma CVD method or the like may be used, or a polycrystalline silicon layer may be used.

一方例えばエキシマレーザを照射するレーザアニール装
置においては、図示のような試料(3)の面積にほぼ対
応した大きさの凹所(7)を有し、且つ凹所(7)の上
部周縁に試料(3)の周辺を支持する段部(8)を有し
て成る試料ホルダー(6)を設ける。凹所(7)の深さ
は、深い程好ましい。この試料ホルダー(6)の凹所(
7)上部の段B(8)に試1I4(3)を支持するよう
に配置する。このとき、試$4 (3)は、その非単結
晶半導体層(2)が下向きとなるように中空支持される
On the other hand, for example, a laser annealing device that irradiates with an excimer laser has a recess (7) of a size approximately corresponding to the area of the sample (3) as shown in the figure, and the sample is attached to the upper periphery of the recess (7). A sample holder (6) having a stepped portion (8) supporting the periphery of (3) is provided. The depth of the recess (7) is preferably as deep as possible. The recess of this sample holder (6) (
7) Arrange sample 1I4 (3) to support it on the upper step B (8). At this time, the sample (3) is supported in a hollow manner so that its non-single crystal semiconductor layer (2) faces downward.

この状態で試料(3)に対して石英基板(1)側からレ
ーザ光(4)即ちエキシマレーデを照射し、非単結晶半
導体層(2)に対して結晶粒径を成長させるためのアニ
ールを行う。
In this state, the sample (3) is irradiated with laser light (4), that is, excimerode, from the quartz substrate (1) side, and annealing is performed to grow the crystal grain size of the non-single crystal semiconductor layer (2). .

このアニール法によれば、試料(3)に対して石英基板
(1)側からエキシマレーザを照射してアニール(所謂
裏面照射アニール)するので、実質的に低エネルギーで
結晶粒径を大きくすることができる。
According to this annealing method, the sample (3) is annealed by irradiating the excimer laser from the quartz substrate (1) side (so-called backside irradiation annealing), so the crystal grain size can be increased with substantially low energy. Can be done.

そして、試1114 (3)は試料ホルダー(6)によ
って中空支持され、非単結晶半導体層(2)が試料ホル
ダー(6)に接触されないのでアニール時に加熱された
非単結晶半導体層(2)の熱は逃げることがな(、半導
体層の膜厚方向に関する温度勾配が生じにくくなる。
Sample 1114 (3) is supported in the hollow by the sample holder (6), and since the non-single crystal semiconductor layer (2) is not in contact with the sample holder (6), the non-single crystal semiconductor layer (2) heated during annealing is Heat does not escape (and temperature gradients in the thickness direction of the semiconductor layer are less likely to occur).

従って、所謂裏面照射の利点を十分利用でき効率的なア
ニールを行うことができる。また、非単結晶半導体層(
2)はどこにも接触されないので表面を傷つけたり、汚
染することもない。よって高品質の半導体層を有するS
ol基板を得ることができる。
Therefore, the advantage of so-called backside irradiation can be fully utilized and efficient annealing can be performed. In addition, a non-single crystal semiconductor layer (
2) Since it is not touched anywhere, it does not damage or contaminate the surface. Therefore, S with a high quality semiconductor layer
ol substrate can be obtained.

上例では、試料ホルダーとして凹所(7)を有した試料
ホルダー(6)を構成したが、その他、試料の表面を数
点において支持するような試料ホルダーを構成すること
もできる。
In the above example, a sample holder (6) having a recess (7) was configured as the sample holder, but it is also possible to configure a sample holder that supports the surface of the sample at several points.

上例では光源をエキシマレーザとしたが、これに限定さ
れず、他のランプ等の光源でも良い。
In the above example, the light source is an excimer laser, but the present invention is not limited to this, and other light sources such as lamps may be used.

なお、第1図の試料ホルダー(6)は半導体層側からレ
ーザを照射する場合にも、試料の置き方を変えるだけで
利用できる。
Note that the sample holder (6) in FIG. 1 can also be used when irradiating the laser from the semiconductor layer side by simply changing the way the sample is placed.

〔発明の効果〕〔Effect of the invention〕

本発明のアニール方法は、光透過性絶縁基体上に半導体
層を形成してなる試料を中空支持し、光透過性絶縁基体
側から光照射することにより、加熱された半導体層の熱
の逃げが低減され、低エネルギーでアニールが行えると
いう裏面照射アニール効果を十分利用でき、効率のよい
アニールを行うことができる。
In the annealing method of the present invention, a sample consisting of a semiconductor layer formed on a light-transmissive insulating substrate is supported in the air, and light is irradiated from the light-transmissive insulating substrate side, thereby preventing heat from escaping from the heated semiconductor layer. It is possible to fully utilize the backside irradiation annealing effect, which allows annealing to be performed with low energy.

同時に、半導体層の表面を傷つけず、且つ汚染すること
もない。よって、例えば高品質のSol基板の作成に適
用して好適である。
At the same time, the surface of the semiconductor layer is not damaged or contaminated. Therefore, it is suitable for application to, for example, the production of a high-quality Sol substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアニール方法における試料の支持及び
レーザ照射方向の一例を示す構成図、第2図は比較例に
おける試料の支持及びレーザ照射方向を示す構成図であ
る。 (1)は石英基板、(2)はシリコンの非単結晶半導体
層、(3)は試料、(4)はレーザ光、(5) (6)
は試料ホルダーである。
FIG. 1 is a block diagram showing an example of sample support and laser irradiation direction in the annealing method of the present invention, and FIG. 2 is a block diagram showing sample support and laser irradiation direction in a comparative example. (1) is a quartz substrate, (2) is a silicon non-single crystal semiconductor layer, (3) is a sample, (4) is a laser beam, (5) (6)
is the sample holder.

Claims (1)

【特許請求の範囲】  光透過性絶縁基体上に形成した半導体層のアニール方
法において、 上記光透過性絶縁基体上に半導体層を形成してなる試料
を中空支持し、 上記光透過性絶縁基体側から光源を用いて加熱すること
を特徴とするアニール方法。
[Claims] In a method of annealing a semiconductor layer formed on a light-transmitting insulating substrate, a sample having a semiconductor layer formed on the light-transmitting insulating substrate is supported in a hollow, and the side of the light-transmitting insulating substrate is An annealing method characterized by heating using a light source.
JP4318588A 1988-02-25 1988-02-25 Annealing method Pending JPH01216520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318588A JPH01216520A (en) 1988-02-25 1988-02-25 Annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318588A JPH01216520A (en) 1988-02-25 1988-02-25 Annealing method

Publications (1)

Publication Number Publication Date
JPH01216520A true JPH01216520A (en) 1989-08-30

Family

ID=12656851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318588A Pending JPH01216520A (en) 1988-02-25 1988-02-25 Annealing method

Country Status (1)

Country Link
JP (1) JPH01216520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153261A (en) * 2006-12-14 2008-07-03 Mitsubishi Electric Corp Laser annealing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153261A (en) * 2006-12-14 2008-07-03 Mitsubishi Electric Corp Laser annealing apparatus

Similar Documents

Publication Publication Date Title
KR0155545B1 (en) Apparatus for heat-treating a substrate
US4581520A (en) Heat treatment machine for semiconductors
TWI482224B (en) Method for surface treatment of semiconductor substrates
CN102160157B (en) The heat budget of management annealing of substrates
JPS58223320A (en) Diffusing method for impurity
WO1993019484A1 (en) Rapid thermal annealing using thermally conductive overcoat
KR102126119B1 (en) Heat treatment method
US4468259A (en) Uniform wafer heating by controlling light source and circumferential heating of wafer
JPH09237789A (en) Shielding body as well as apparatus and method for heat treatment
JP2009123807A (en) Heat treatment apparatus
JPH03266424A (en) Annealing process of semiconductor substrate
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
TW202322268A (en) Support plate for localized heating in thermal processing systems
JPH01216520A (en) Annealing method
JPS61116820A (en) Annealing method for semiconductor
JPS59178718A (en) Semiconductor substrate processing apparatus
JP2003092267A (en) Apparatus and method for manufacturing silicon carbide semiconductor
JP2002083768A5 (en) Method for manufacturing single crystal thin film
JP2009123810A (en) Heat treatment apparatus
JPS63271922A (en) Heat treatment device
JP2548961B2 (en) Laser heat treatment equipment
JPH01212431A (en) Manufacture of thin film semiconductor device
JPS6088432A (en) Method of wafer annealing
JPH02271611A (en) Production of polycrystalline silicon
JP3754846B2 (en) Heat treatment method for semiconductor wafers