JPH01216316A - Acousto-optical q switch element - Google Patents

Acousto-optical q switch element

Info

Publication number
JPH01216316A
JPH01216316A JP4071888A JP4071888A JPH01216316A JP H01216316 A JPH01216316 A JP H01216316A JP 4071888 A JP4071888 A JP 4071888A JP 4071888 A JP4071888 A JP 4071888A JP H01216316 A JPH01216316 A JP H01216316A
Authority
JP
Japan
Prior art keywords
acousto
optic
optical
diffraction efficiency
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4071888A
Other languages
Japanese (ja)
Inventor
Takeshi Kasai
健 葛西
Akihiko Doi
土井 昭彦
Yuzuru Tanabe
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4071888A priority Critical patent/JPH01216316A/en
Publication of JPH01216316A publication Critical patent/JPH01216316A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0322Arrangements comprising two or more independently controlled crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/117Q-switching using intracavity acousto-optic devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To execute Q switching with a high diffraction efficiency by placing two pieces of acousto-optical elements so that the propagation directions of an ultrasonic wave are orthogonal to each other, and also, an incident laser light passes through the optical surfaces of two acousto-optical elements and emitted. CONSTITUTION:Two pieces of acousto-optical elements 6 provided with a transducer 2 for generating an ultrasonic wave of a longitudinal wave on one face of an acousto- optical medium 1 are placed so that the propagation directions of an ultrasonic wave which is propagated in the acousto-optical medium 1 are orthogonal to each other, and also, an incident laser light 3 passes through the optical surface of two acusto- optical elements 6 and emitted. That is, in case of the ultrasonic wave of a longitudinal wave, the diffraction efficiency is deteriorated in other polarized light direction than a specific polarized light direction of the incident light, therefore, two acousto-optical elements 6 are used and placed so that the propagation directions of the ultrasonic wave are orthogonal to each other, and also, the incident light passes through the respective optical surfaces, and divided into one piece each as a vector and covered in any polarized light direction. In such a way, a large output laser light of every polarized light surface can be brought to Q switching with a high diffraction efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、大出力レーザに使用される回折効率の高い音
響光学Qスイッチ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an acousto-optic Q-switch element with high diffraction efficiency used in a high-output laser.

[従来の技術] 従来、音響光学Qスイッチ素子を用いて大出力レーザを
Qスイッチ動作させるために、高い回折効率を得ようと
して以下に示すように様々な技術的工夫がなされている
[Prior Art] Conventionally, in order to Q-switch a high-output laser using an acousto-optic Q-switch element, various technical improvements have been made as described below in an attempt to obtain high diffraction efficiency.

i)トランスデユーサの圧電体の幅を局所的に広くある
いは狭くして、超音波のパワーを局所的に集中させる。
i) The width of the piezoelectric body of the transducer is locally widened or narrowed to locally concentrate the ultrasonic power.

ii)  駆動電力を大きくする。ii) Increase the driving power.

1ii)  性能指数の大きい縦波を発生するトランス
デユーサを設ける。
1ii) A transducer that generates a longitudinal wave with a large figure of merit is provided.

−しかし、Qスイッチ素子の全体形状に制約があり、し
かもレーザのアパーチャも限られているので、トランス
デユーサの圧電体の大きさも限度がある。一般に、圧電
体の幅を広くすると回折効率が低下し、反対に狭くする
と圧電体の人力電力に対するダメージが大きくなりしか
もレーザのアパーチャより小さくできないという制約が
ある。従って上記iの方法では大きな効果は望めない。
-However, since there are restrictions on the overall shape of the Q-switch element and the aperture of the laser, there is also a limit on the size of the piezoelectric body of the transducer. In general, if the width of the piezoelectric material is widened, the diffraction efficiency decreases, and if the width is made narrow, the damage to the human power of the piezoelectric material increases, and there is a restriction that the width cannot be made smaller than the aperture of the laser. Therefore, the above method i cannot be expected to have a great effect.

又、駆動電力を大きくすればするほど駆動回路の製造が
難しく、又音響光学媒体およびトランスデユーサの発熱
量が大きくなり圧電体の割れ等の故障を発生しやすくな
り冷却装置も大型化するので、上記iiの方法にも限度
がある。上記iiiの方法では、縦波の超音波は特定の
偏光方向(超音波の伝播方向と垂直な方向)以外の方向
では回折効率が低いという欠点がある。従って、従来小
型で高回折効率を有する音響光学Qスイッチ素子を得る
ことは困難であった。
In addition, the larger the drive power, the more difficult it is to manufacture the drive circuit, and the greater the amount of heat generated by the acousto-optic medium and transducer, the more likely failures such as cracks in the piezoelectric body occur, and the larger the cooling device becomes. , method ii above also has limitations. The above method iii has a drawback that the diffraction efficiency of longitudinal ultrasound waves is low in directions other than a specific polarization direction (direction perpendicular to the propagation direction of the ultrasound waves). Therefore, it has conventionally been difficult to obtain an acousto-optic Q-switch element that is small and has high diffraction efficiency.

[発明が解決しようとする課題] 本発明の目的は、従来技術が有していた前述の欠点を解
消しようとするものである。
[Problems to be Solved by the Invention] An object of the present invention is to overcome the above-mentioned drawbacks of the prior art.

[課題を解決するための手段] 本発明は、前述の問題点を解決すべくなされたものであ
り、音響光学媒体の1面に縦波の超音波を発生するトラ
ンスデユーサを設けた2個の音響光学素子を、音響光学
媒体内を伝播する超音波の伝播方向が互いに直交しかつ
入射レーザ光が2つの音響光学素子の光学面を通過して
出射するよう配置したことを特徴とする音響光学Qスイ
ッチ素子を提供するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and includes two transducers each of which is provided with a transducer that generates longitudinal ultrasonic waves on one surface of an acousto-optic medium. Acousto-optic elements are arranged such that the propagation directions of the ultrasonic waves propagating in the acousto-optic medium are orthogonal to each other and the incident laser beam passes through the optical surfaces of the two acousto-optic elements and is emitted. An optical Q-switch element is provided.

本発明の音響光学媒体としては、レーザ光の通過する光
学面に反射防止膜を施した石英ガラスが好ましく、他に
はモリブデン酸鉛、酸化テルル等も使用できる。トラン
スデユーサの圧電体にはニオブ酸リチウムを使用し、性
能指数の高い縦波の超音波が発生するよう圧電体の分極
方向を超音波の伝播方向に対して平行にして設ける。パ
ッケージは軽量で放熱性の高いアルミニウムを使用する
のが好ましく、他には銅、真鍮等の材料が使用できる。
As the acousto-optic medium of the present invention, quartz glass whose optical surface through which the laser light passes is coated with an antireflection film is preferable, and lead molybdate, tellurium oxide, and the like may also be used. Lithium niobate is used for the piezoelectric body of the transducer, and the polarization direction of the piezoelectric body is set parallel to the propagation direction of the ultrasonic wave so that longitudinal ultrasonic waves with a high figure of merit are generated. It is preferable to use aluminum, which is lightweight and has high heat dissipation properties, for the package, but other materials such as copper and brass can also be used.

[作 用] 本発明において、縦波の超音波はある偏波面に対して性
能指数が大きいので、回折効率を高めるよう働いて小型
の音響光学Qスイッチ素子の大出力レーザ用Qスイッチ
としての使用を可能とする。回折効率ηは(1)式のよ
うに表わされ、Mが性能指数、kが結合係数である。
[Function] In the present invention, since longitudinal ultrasonic waves have a large figure of merit for a certain plane of polarization, they work to increase diffraction efficiency, allowing the use of a small acousto-optic Q-switch element as a Q-switch for a high-output laser. is possible. The diffraction efficiency η is expressed as in equation (1), where M is the figure of merit and k is the coupling coefficient.

ηocsin”A5k”       ・(11縦波の
超音波のM−k”は、従来の横波の超音波の約2倍あり
、圧電体形状、駆動電力、レーザ波長から決まる因子A
が同じ場合、縦波の超音波の方がηが大きくなる。しか
し、縦波の超音波の場合は、入射光の特定の偏光方向以
外の偏光方向では回折効率が低下するので、2つの音響
光学素子を用いて超音波の伝播方向が互いに直交しかつ
それぞれの光学面を入射光が通過するよう配置し、どん
な偏光方向でもベクトル的に片方づつに分割しカバーす
ることにより回折効率を高めることができる。
ηocsin"A5k"・(11M-k" of longitudinal wave ultrasound is approximately twice as large as that of conventional transverse wave ultrasound, and is determined by the factor A determined by the piezoelectric body shape, driving power, and laser wavelength.
If they are the same, the longitudinal ultrasonic wave has a larger η. However, in the case of longitudinal ultrasound, the diffraction efficiency decreases in polarization directions other than the specific polarization direction of the incident light. The diffraction efficiency can be increased by arranging the optical surface so that the incident light passes through it, and dividing the polarization direction vectorwise into one side and covering the other.

[実施例] 本発明の1実施例を第1図に示す。ニオブ酸リチウムよ
りなる音響光学媒体lの形状は、従来の横波の超音波を
用いたものと同じほぼ直方体であり、超音波の反射面は
斜めにカットされテーバ状となっている。レーザ光3の
通過する光学面には、ZrO□、 Sin□、 MgF
a等の単層あるいは複層の反射防止膜が設けられている
。トランスデユーサの圧電体はllX21mmの大きさ
のものを2つ設けており、圧電体上の電極の大きさはI
Q、 2X 20.2mmである。2つの音響光学素子
6は、超音波の伝播方向が互いに直交しかつレーザ光3
がそれぞれの光学面を通過して出射するよう直線上に配
置されている。パッケージの材質はアルミニウムであり
、その全体形状は86×90X 107mn+の長方体
であり、レーザ光3の光軸高さは底面より24mmであ
る。各々の音響光学素子6は全体のパッケージ内におい
て、第2図に示すよう枠体lOにアルミニウムのパッケ
ージ11(全体のパッケージとは異なる)を介して保持
され、音響光学素子の下面中央部に対応する位置に設け
たボールベアリング9のまわりに4つの回転調整ネジ7
によって回転可能に取り付けられる。ボールベアリング
9の左右には2個の金属製のロッド8が設けられ、特に
第2図 (b)に示すよう音響光学素子の前後方向の回
転を滑らかにしている。又、第2図(a)に示すよう音
響光学素子の左右方向の回転も微調整可能に、ロッド8
とパッケージ11のクリアランスが設けられている。第
2図(a) 、 (b)に示すように、4つの回転調整
ネジ7により任意の方向への回転が可能になっている。
[Example] An example of the present invention is shown in FIG. The shape of the acousto-optic medium l made of lithium niobate is approximately a rectangular parallelepiped, which is the same as that used in conventional transverse wave ultrasound, and the ultrasound reflecting surface is cut obliquely into a tapered shape. The optical surface through which the laser beam 3 passes is made of ZrO□, Sin□, MgF.
A single-layer or multi-layer antireflection film such as a is provided. The transducer has two piezoelectric bodies measuring 1 x 21 mm, and the size of the electrodes on the piezoelectric bodies is I.
Q, 2X 20.2mm. The two acousto-optic elements 6 have ultrasonic propagation directions perpendicular to each other and a laser beam 3.
are arranged on a straight line so that the light passes through each optical surface and is emitted. The material of the package is aluminum, its overall shape is a rectangular body of 86×90×107 mm+, and the height of the optical axis of the laser beam 3 is 24 mm from the bottom surface. Each acousto-optic element 6 is held within the whole package by a frame lO via an aluminum package 11 (different from the whole package), as shown in FIG. Four rotation adjustment screws 7 are installed around the ball bearing 9 provided at the position where
Rotatably mounted. Two metal rods 8 are provided on the left and right sides of the ball bearing 9 to smooth the rotation of the acousto-optic element in the front and back direction, as shown in FIG. 2(b). In addition, as shown in FIG. 2(a), the rod 8 can be used to finely adjust the horizontal rotation of the acousto-optic element.
A clearance between the package 11 and the package 11 is provided. As shown in FIGS. 2(a) and 2(b), four rotation adjustment screws 7 allow rotation in any direction.

又、第2図(c)に示すように前後方向に直線状に移動
できるよう、4つのm1後可動溝用ネジ12が枠体lO
の4隅にパッケージ11の上面の4隅を押圧し固定でき
るよう設けられている。音響光学素子6のまわりには冷
却水が通過する冷却経路が設けられており、パッケージ
正面に171口インチロ径の継手が入る冷却水出入口4
が設けられている。さらに。
In addition, as shown in FIG. 2(c), four m1 rear movable groove screws 12 are attached to the frame lO so as to be able to move linearly in the front-rear direction.
The four corners of the upper surface of the package 11 are provided so that the four corners of the upper surface of the package 11 can be pressed and fixed. A cooling path through which cooling water passes is provided around the acousto-optic element 6, and a cooling water inlet/outlet 4 into which a 171 inch diameter joint is inserted is provided on the front of the package.
is provided. moreover.

サーモスタットが各音響光学素子に接続されており、あ
る温度以上になると電力供給を停止しQスイッチ動作が
停止するようにしている。駆動周波数と駆動電力は60
MIIz、 100Wが最適である。
A thermostat is connected to each acousto-optic element, and when the temperature exceeds a certain level, the power supply is stopped and the Q-switch operation is stopped. Drive frequency and drive power are 60
MIIz, 100W is optimal.

第3図は、本発明の音響光学Qスイッチ素子と従来の横
波の超音波を用いた1個の音響光学素子からなる音響光
学Qスイッチ素子について、駆動電力(W)に対する回
折効率(%)の値を示すグラフである。レーザ出力c 
w 5 W 、アパーチャφ4mm、偏光面がランダム
なマルチモード、波長1.064μmのYAGレーザを
用いており、 50Ml1z、 100Wの駆動周波数
、電力で、回折効率が従来の40%に対して約2倍の8
5%となっており優れた効果を有している。
Figure 3 shows the diffraction efficiency (%) versus driving power (W) for an acousto-optic Q-switch element consisting of an acousto-optic Q-switch element of the present invention and one acousto-optic element using conventional transverse ultrasound. It is a graph showing values. Laser output c
w 5 W, aperture φ4 mm, multi-mode YAG laser with random polarization plane, wavelength 1.064 μm, 50 Ml1z, 100 W driving frequency, power, diffraction efficiency is approximately twice as much as the conventional 40%. No. 8
It is 5% and has an excellent effect.

[発明の効果] 本発明の音響光学Qスイッチ素子は、あらゆる偏光面の
大出力レーザ光を高い回折効率でQスイッチングするこ
とが可能となるので、レーザパルスの大出力化が可能と
なるという優れた効果を有する。従って、レーザによる
被加工材質の範囲を広げると同時に、より短時間で溶断
及び微細加工が可能になるという効果も有する。
[Effects of the Invention] The acousto-optic Q-switching element of the present invention is capable of Q-switching high-output laser light of any polarization plane with high diffraction efficiency, and has the advantage of enabling high-output laser pulses. It has a great effect. Therefore, it has the effect of expanding the range of materials to be processed by the laser, and at the same time making it possible to perform fusing and fine processing in a shorter time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明による音響光学Qスイッチ素子
の実施例を示すものであり、第1図は音響光学Qスイッ
チ素子の基本構成を示す1部切欠き斜視図であり、第2
図(a) 、 (b)は音響光学素子の回動構造を示す
正面図と側面図であり、第2図(c)は音響光学素子の
前後方向可動構造を示す平面図であり、第3図は本発明
と従来の音響光学Qスイッチ素子の駆動電力と回折効率
の値を比較するグラフである。 1・・・音響光学媒体   2・・・トランスデユーサ
3・・・レーザ光     6・・・音響光字素子力 
1 回 石 2 回 o−−−4ミ者しe月の1L列g−t1字ΩLイッチ赤
モトμ 第 3 回
1 to 3 show examples of the acousto-optic Q-switch element according to the present invention, and FIG. 1 is a partially cutaway perspective view showing the basic configuration of the acousto-optic Q-switch element, and
Figures (a) and (b) are a front view and a side view showing the rotating structure of the acousto-optic element, and Figure 2 (c) is a plan view showing the back and forth movable structure of the acoustooptic element. The figure is a graph comparing the driving power and diffraction efficiency values of the present invention and a conventional acousto-optic Q-switch element. 1... Acousto-optic medium 2... Transducer 3... Laser light 6... Acousto-optic element force
1st time stone 2nd time o---4th time e month's 1L column g-t1 character ΩL switch red motoμ 3rd time

Claims (1)

【特許請求の範囲】[Claims] 音響光学媒体の1面に縦波の超音波を発生するトランス
デューサを設けた2個の音響光学素子を、音響光学媒体
内を伝播する超音波の伝播方向が互いに直交しかつ入射
レーザ光が2つの音響光学素子の光学面を通過して出射
するよう配置したことを特徴とする音響光学Qスイッチ
素子。
Two acousto-optic elements each having a transducer that generates longitudinal ultrasonic waves on one surface of an acousto-optic medium are arranged so that the propagation directions of the ultrasonic waves propagating in the acousto-optic medium are perpendicular to each other and two incident laser beams are connected to each other. An acousto-optic Q-switch element, characterized in that the acousto-optic Q-switch element is arranged to emit light through an optical surface of the acousto-optic element.
JP4071888A 1988-02-25 1988-02-25 Acousto-optical q switch element Pending JPH01216316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4071888A JPH01216316A (en) 1988-02-25 1988-02-25 Acousto-optical q switch element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071888A JPH01216316A (en) 1988-02-25 1988-02-25 Acousto-optical q switch element

Publications (1)

Publication Number Publication Date
JPH01216316A true JPH01216316A (en) 1989-08-30

Family

ID=12588377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071888A Pending JPH01216316A (en) 1988-02-25 1988-02-25 Acousto-optical q switch element

Country Status (1)

Country Link
JP (1) JPH01216316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866357A2 (en) * 1997-03-04 1998-09-23 Ando Electric Co., Ltd. Acoustooptical modulator
EP0899603A2 (en) * 1997-08-29 1999-03-03 Ando Electric Co., Ltd. Optoacoustic modulator
US5963569A (en) * 1997-03-28 1999-10-05 International Business Machines Corporation Multiple channel acousto-optic modulators
US5981903A (en) * 1997-03-28 1999-11-09 International Business Machines Corporation Laser system for simultaneous texturing of two sides of a substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866357A2 (en) * 1997-03-04 1998-09-23 Ando Electric Co., Ltd. Acoustooptical modulator
EP0866357A3 (en) * 1997-03-04 1999-09-08 Ando Electric Co., Ltd. Acoustooptical modulator
US6008930A (en) * 1997-03-04 1999-12-28 Ando Electric Co., Ltd. Acoustooptical modulator
US5963569A (en) * 1997-03-28 1999-10-05 International Business Machines Corporation Multiple channel acousto-optic modulators
US5981903A (en) * 1997-03-28 1999-11-09 International Business Machines Corporation Laser system for simultaneous texturing of two sides of a substrate
EP0899603A2 (en) * 1997-08-29 1999-03-03 Ando Electric Co., Ltd. Optoacoustic modulator
EP0899603A3 (en) * 1997-08-29 1999-09-08 Ando Electric Co., Ltd. Optoacoustic modulator
US6057957A (en) * 1997-08-29 2000-05-02 Ando Electric Co., Ltd. Optoacoustic modulator

Similar Documents

Publication Publication Date Title
EP1764886B1 (en) Passively Q-switched microlaser with controllable peak power density
US7385749B2 (en) Silicon acousto-optic modulator
WO2005091447A1 (en) Laser equipment
CN102882116A (en) Pulse green laser system for minuteness welding of copper
US3828276A (en) High efficiency acousto-optical q-switch
JPH01216316A (en) Acousto-optical q switch element
US3464026A (en) Laser using porro prism end reflectors
CN112397977B (en) Lath laser
RU2699947C1 (en) Laser radiation modulation method and device for its implementation
JP2000101175A (en) Solid-state passive q-switch block, solid-state q-switch laser oscillator, and solid-state laser device
JP2586110B2 (en) Solid-state laser device
JPH01189972A (en) Laser oscillator
JPS6135719B2 (en)
GB1112927A (en) Laser beam direction apparatus
JP2727260B2 (en) Optical wavelength converter
JP3094557B2 (en) Q switch laser
JPS6136399B2 (en)
JP2793225B2 (en) Electro-optic lens device
JPH09197456A (en) Optical parts for uv rays and wavelength conversion device and uv light source
JP2002189201A (en) Acoustooptical element, and optical device and laser beam machining device using the same
CN116505356A (en) Double-amplification inner cavity Raman laser
CN113507035A (en) Laser nonlinear wavelength conversion system
JPH0451495Y2 (en)
JPS58147715A (en) X-y optical deflector
JPH04318990A (en) Optical wavelength converter