JPH01216307A - Focus detecting device having adjusting means - Google Patents

Focus detecting device having adjusting means

Info

Publication number
JPH01216307A
JPH01216307A JP4257788A JP4257788A JPH01216307A JP H01216307 A JPH01216307 A JP H01216307A JP 4257788 A JP4257788 A JP 4257788A JP 4257788 A JP4257788 A JP 4257788A JP H01216307 A JPH01216307 A JP H01216307A
Authority
JP
Japan
Prior art keywords
light
receiving element
light receiving
objective lens
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4257788A
Other languages
Japanese (ja)
Other versions
JPH0529884B2 (en
Inventor
Keiji Otaka
圭史 大高
Kenji Suzuki
謙二 鈴木
Yasuo Suda
康夫 須田
Takashi Koyama
剛史 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4257788A priority Critical patent/JPH01216307A/en
Publication of JPH01216307A publication Critical patent/JPH01216307A/en
Publication of JPH0529884B2 publication Critical patent/JPH0529884B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To detect a focus with high accuracy by providing an adjusting means having a prescribed optical action in front of a photodetecting means and adjusting a projecting state of a projected image of a visual field mask on the surface of the photodetecting means. CONSTITUTION:A photodetecting means 5 has two photodetector trains 5-1, 5-2 which correspond to two lenses 4-1, 4-2 and have been placed in the rear thereof. Also, an adjusting means 16 is placed between a secondary optical system 4 and the photodetecting means 5. In this state, by moving such an optical member 16 in the direction as indicated with an arrow 19, only a luminous flux transmitting through a member 18 can be deflected in the direction as indicated with the arrow 19 without exerting no influence on a luminous flux transmitting through a member 17. In such a way, a projected image of a visual field mask can be formed easily and with high accuracy in the arranged direction of the photodetector trains and the focus can be detected with high accuracy.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な調整手
段を有した焦点検出装置に関し、特に対物レンズの瞳を
複数の領域に分割し、各領域を通過する光束を用いて複
数の被写体像に関する光量分布を形成し、これら複数の
光量分布の相対的な位置関係を求めることにより対物レ
ンズの合焦状態を検出する際に好適な調整手段を有した
焦点検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a focus detection device having adjustment means suitable for photographic cameras, video cameras, etc. An adjustment means suitable for detecting the in-focus state of an objective lens by forming a light amount distribution regarding a plurality of subject images using the light flux passing through each region, and determining the relative positional relationship of these multiple light amount distributions. The present invention relates to a focus detection device having:

(従来の技術) 従来より対物レンズを通過した光束を利用した受光型の
焦点検出方式に所謂像ずれ方式と呼ばれる方式がある。
(Prior Art) Conventionally, there is a so-called image shift method as a light-receiving focus detection method that utilizes a light beam passing through an objective lens.

この像ずれ方式は例えば特開昭59−107311号公
報や特開昭59−107313号公報等で提案されてい
る。
This image shift method has been proposed, for example, in Japanese Patent Laid-Open No. 59-107311 and Japanese Patent Laid-Open No. 59-107313.

第25図は従来の像ずれ方式を用いた焦点検出。Figure 25 shows focus detection using the conventional image shift method.

装置の光学系の概略図である。FIG. 2 is a schematic diagram of the optical system of the device.

同図において、1は対物レンズ、2は視野マスクであり
対物レンズ1の予定結像面近傍に配置されている。3は
フィールドレンズであり予定結像面の近傍に配置されて
いる。4は2次光学系であり対物レンズ1の光軸に対し
て対象に配置された二つのレンズ4−1.4−2により
構成されている。5は受光手段であり前記二つのレンズ
4−1.4−2に対応してその後方に配置された2つの
受光素子列5−1.5−2を有している。勿論、受光素
子列は1本の素子列の2つの範囲を電気的に指定しても
良い。6は絞りであり前記2つのレンズ4−1.4−2
に対応してその前方に配置された2つの開口部6−1.
6−2を有している。7は対物レンズ1の射出瞳であり
、分割された2つの領域7−1.7−2により構成され
ている。
In the figure, reference numeral 1 denotes an objective lens, and 2 denotes a field mask, which are arranged near the intended imaging plane of the objective lens 1. Reference numeral 3 denotes a field lens, which is arranged near the intended image plane. Reference numeral 4 denotes a secondary optical system, which is composed of two lenses 4-1 and 4-2 arranged symmetrically with respect to the optical axis of the objective lens 1. Reference numeral 5 denotes a light receiving means, which has two light receiving element rows 5-1.5-2 arranged behind the two lenses 4-1.4-2. Of course, two ranges of one light-receiving element array may be electrically specified. 6 is an aperture which connects the two lenses 4-1 and 4-2.
Two openings 6-1.
6-2. 7 is an exit pupil of the objective lens 1, which is composed of two divided regions 7-1 and 7-2.

なお、フィールドレンズ3は開口部6−1゜6−2を射
出瞳7の領域7−1.7−2に結像する作用を有してお
り、各領域7−1.7−2を透過した光束が受光素子列
5−1.5−2上に夫々光量分布を形成するようになっ
ている。
Note that the field lens 3 has the function of focusing the aperture 6-1°6-2 on the region 7-1.7-2 of the exit pupil 7, and transmits light through each region 7-1.7-2. The resulting light beams form a light amount distribution on the light receiving element arrays 5-1 and 5-2, respectively.

この第25図に示す焦点検出装置では、対物レンズ1の
結像点が予定結像面の前側にある場合は、2つの受光素
子列5−1.5−2上に夫々形成される物体像に関する
光量分布が互いに近づいた状態となり、また、対物レン
ズ1の結像点が予定結像面の後側にある場合は、2つの
受光素子列5−1.5−2上に夫々形成される光量分布
が互いに離れた状態となる。しかも、2つの受光素子列
5−1.5−2上に夫々形成された光量分布のずれ量は
対物レンズ1の焦点外れ量とある関数関係にあるので、
そのずれ量を適当な演算手段で算出すると、対物レンズ
1の焦点はずれの方向と量とを検出することができる。
In the focus detection device shown in FIG. 25, when the imaging point of the objective lens 1 is in front of the intended imaging plane, object images are formed on the two light-receiving element rows 5-1 and 5-2, respectively. When the light intensity distributions for the two light receiving element arrays 5-1 and 5-2 become close to each other, and when the imaging point of the objective lens 1 is located behind the intended imaging plane, the light receiving elements are formed on the two light receiving element rows 5-1 and 5-2, respectively. The light amount distributions become separated from each other. Moreover, since the amount of deviation in the light intensity distribution formed on the two light receiving element arrays 5-1 and 5-2 has a certain functional relationship with the amount of defocus of the objective lens 1,
By calculating the amount of deviation using a suitable calculation means, the direction and amount of the defocus of the objective lens 1 can be detected.

このような自動焦点検出装置においては2つの受光素子
列5−1.5−2が不図示の被写体のうち特に受光素子
列方向と直交する方向に関して同一の箇所の光量分布を
検出するように構成することが重要となってくる。換言
すれば2次光学系4によって2つの受光素子列5−1.
5−2面上にそれぞれ投影される視野マスク2の開口部
の2つの像との相対位置関係が特に受光素子列方向と直
交する方向に関して両者で同一となるように構成する必
要がある。
In such an automatic focus detection device, the two light-receiving element rows 5-1 and 5-2 are configured to detect the light intensity distribution at the same location of a subject (not shown), particularly in a direction orthogonal to the direction of the light-receiving element rows. It becomes important to do so. In other words, the secondary optical system 4 produces two light receiving element arrays 5-1.
It is necessary to configure so that the relative positional relationship between the two images of the opening of the field mask 2 projected onto the plane 5-2 is the same, especially in the direction orthogonal to the direction of the light receiving element array.

第18図は第25図の2次光学系4を対物レンズl側か
ら見た図である。例えば第18図のように2次光学系4
が一体的に、対物レンズ1の光軸の回りに回転したり、
平行移動した場合には、2次光学系4による視野マスク
2の受光素子列5−1.5−2上での投影像は例えば第
19図の8−1.8−2ように受光素子列5−1.5−
2に対してずれた配置関係となる。このような状態で対
物レンズ1により視野マスク2付近に例えば第20図に
示すような山形をした被写体像9が結像されたとすると
、この被写体像9は2次光学系4により受光素子列5−
1.5−2上に第19図の10−1.10−2で示すよ
うに投影される。この時の各受光素子列5−1.5−2
の出力は同図から明らかのように異なったものとなる。
FIG. 18 is a diagram of the secondary optical system 4 of FIG. 25 viewed from the objective lens l side. For example, as shown in Fig. 18, the secondary optical system 4
rotates integrally around the optical axis of objective lens 1,
In the case of parallel movement, the projected image of the field mask 2 on the light receiving element array 5-1.5-2 by the secondary optical system 4 will be the same as the light receiving element array 5-1.8-2 in FIG. 19, for example. 5-1.5-
The arrangement relationship is shifted from 2. In this state, if a mountain-shaped object image 9 is formed near the field mask 2 by the objective lens 1 as shown in FIG. −
1.5-2 as shown at 10-1.10-2 in FIG. Each light receiving element row 5-1.5-2 at this time
As is clear from the figure, the outputs are different.

これは2つの物体像に関する光量分布の相対的な位置関
係から対物レンズ1の焦点状態を検出する場合には合焦
検出の精度は著しく低下してしまう。−船釣に受光素子
列方向と垂直方向に光量分布を持つ被写体が光学要素の
組立誤差等により第19図に示すように受光素子面上で
視野マスクの投影がずれたときは合焦精度が低下してく
る。
This is because when the focus state of the objective lens 1 is detected from the relative positional relationship of the light quantity distributions regarding the two object images, the accuracy of focus detection is significantly reduced. - When fishing on a boat and shooting a subject that has a light intensity distribution in the direction perpendicular to the direction of the photodetector array, if the projection of the field mask on the photodetector surface shifts due to an assembly error of the optical elements, etc., as shown in Figure 19, the focusing accuracy may be affected. It's going to decline.

このときの合焦精度の低下を防止するには視野マスクの
投影像に対しては受光手段5を例えば対物レンズ1の光
軸回りに回転したり対物レンズlの光軸に直交する面内
で平行移動することにより、第21図のような位置関係
に調整すれば良い。
In order to prevent a decrease in focusing accuracy at this time, for example, the light receiving means 5 may be rotated around the optical axis of the objective lens 1 or rotated in a plane perpendicular to the optical axis of the objective lens l. By moving in parallel, the positional relationship can be adjusted as shown in FIG. 21.

しかしながら、一般にこの調整時に必要とされる精度は
非常に厳しい。一般に受光素子列方向と直交する方向の
受光素子列の位置調整時に必要とされる精度は、検出す
べき対物レンズのデイフォーカス精度や、2次光学系の
倍率、受光素子列のピッチ等に依存し、−眼レフカメラ
等に応用した場合、略1μm以下となってくる。これを
受光素子列の中心間隔を2mmとした時の調整回転角精
度に換算すると約3′となり、非常に高精度な調整機構
が必要となってくる。
However, the accuracy required during this adjustment is generally very strict. Generally, the accuracy required when adjusting the position of the photodetector array in the direction perpendicular to the photodetector array direction depends on the day focus accuracy of the objective lens to be detected, the magnification of the secondary optical system, the pitch of the photodetector array, etc. However, when applied to an eye reflex camera or the like, it becomes approximately 1 μm or less. If this is converted to the adjustment rotation angle accuracy when the center spacing of the light-receiving element rows is 2 mm, it is approximately 3', which requires an extremely high-precision adjustment mechanism.

以上は、視野方向、即ち受光素子列方向が一方向に限定
された焦点検出装置について説明した。
The above description has been made of a focus detection device in which the viewing direction, that is, the direction of the light-receiving element array is limited to one direction.

これに対して受光素子列と平行方向にのみ光量分布を持
つ被写体に対しても測距ができるような焦点検出装置を
本出願人が例えば特開昭62−95511号公報で開示
している。
On the other hand, the present applicant has disclosed, for example, in Japanese Patent Application Laid-Open No. 62-95511, a focus detection device that can measure a distance even to a subject having a light intensity distribution only in a direction parallel to the light receiving element array.

同公報では例えば第22図に示すように2次光学系とし
てのレンズ4−1.4−2の他にもう1対のレンズ11
−1.11−2を設け、これらに対応して絞り6にも新
たに開口部12−1゜12−2及び受光手段5にも受光
素子列13−1.13−2を配置している。
In the same publication, for example, as shown in FIG. 22, in addition to lenses 4-1 and 4-2 as a secondary optical system, another pair of lenses 11 is
-1.11-2 are provided, and correspondingly, light receiving element rows 13-1 and 13-2 are newly arranged in the aperture 6 as well as in the aperture 12-1 and 12-2 and in the light receiving means 5. .

視野マスク2′の開口は十字状であり、受光手段5面上
には第23図に示すような視野マスク2′の開口部の投
影像14−1.14−2.15−1.15−2が形成さ
れる。
The opening of the field mask 2' is cross-shaped, and a projected image 14-1.14-2.15-1.15- of the opening of the field mask 2' is shown on the surface of the light receiving means 5 as shown in FIG. 2 is formed.

測距の原理は第25図に示す焦点検出装置と同様であり
、それぞれの受光素子列5−1と5−2.13−1と1
3−2によって検出された物体像に関する光量分布の相
対的位置関係から対物レンズ1の焦点はずれ量を検出し
ている。
The principle of distance measurement is the same as that of the focus detection device shown in FIG.
The amount of defocus of the objective lens 1 is detected from the relative positional relationship of the light amount distribution with respect to the object image detected by 3-2.

このような構成においては測距視野の縦方向、或は横方
向にのみ光量分布がある被写体に対しても測距が可能と
なるが、前記した受光素子列方向と直交する方向に対す
る受光素子列と視野マスクの投影像との相対位置関係の
同一性を確保することは非常に困難となる。即ち、2次
光学系の偏心等によって受光手段面上での視野マスクの
投影像の位置がずれて、例えば第24図のような位置関
係になってくる。そうすると2対の受光素子列のうちの
一方の例えば受光素子列5−1.5−2に対しては前述
のように受光手段の対物レンズの光軸回りの回転や、光
軸と直交する平面内での平行移動により第23図5−1
.5−2のように:JI整し、2像の同一性を確保する
ことができるがもう一方のセンサ対13−1.13−2
の対しては2像の同一・性は必ずしも保証されない等の
問題点があった。
With such a configuration, it is possible to measure the distance even for objects that have a light intensity distribution only in the vertical or horizontal direction of the distance measurement field of view. It is very difficult to ensure the same relative positional relationship between the field mask and the projected image of the field mask. That is, the position of the projected image of the field mask on the surface of the light receiving means is shifted due to eccentricity of the secondary optical system, etc., resulting in a positional relationship as shown in FIG. 24, for example. Then, for one of the two pairs of light-receiving element arrays, for example, the light-receiving element array 5-1. Figure 23 5-1 due to parallel movement within
.. Like 5-2: JI alignment can ensure the identity of the two images, but the other sensor pair 13-1.13-2
However, there were problems such as the identity and gender of the two images was not necessarily guaranteed.

(発明が解決しようとする問題点) 本発明は所謂像ずれ方式の焦点検出装置において、予定
結像面近傍に配置した視野マスクの投影像が受光素子列
面上に正しく投影されていない場合であっても、受光手
段面の前方に配置したプリズムや所定の曲面等を有する
光学部材より成る調整手段を利用することにより、容易
にしかも高精度に受光素子列の並び方向に視野マスクの
投影像を形成することができる高精度な焦点検出が可能
な調整手段を有した焦点検出装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention provides a focus detection device using a so-called image shift method, in which a projected image of a field mask placed in the vicinity of a planned image forming plane is not correctly projected onto a light receiving element array surface. However, by using an adjusting means consisting of a prism or an optical member having a predetermined curved surface placed in front of the light-receiving means surface, the projected image of the field mask can be easily and precisely aligned in the direction of the light-receiving element array. It is an object of the present invention to provide a focus detection device having an adjustment means capable of highly accurate focus detection.

(問題点を解決するための手段) 対物レンズの像面側に配置した光学手段により前記対物
レンズの瞳の異なる領域を通過した光束を用いて被写体
像に関する複数の光量分布を形成し、該複数の光量分布
の相対的な位置関係を複数の素子より成る受光素子列を
少なくとも2つ有する受光手段により求め、該受光手段
からの信号を用いて前記対物レンズの合焦状態を求める
際、該受光手段の前方に該被写体像に関する複数の光量
分布のうち少なくとも1つの光量分布の形成方向を光学
的に調整することのできる調整手段を設けたことである
(Means for Solving the Problem) A plurality of light intensity distributions regarding a subject image are formed using a light flux that has passed through different regions of the pupil of the objective lens by an optical means disposed on the image plane side of the objective lens, and When determining the relative positional relationship of the light quantity distribution using a light receiving means having at least two light receiving element arrays each consisting of a plurality of elements, and determining the in-focus state of the objective lens using a signal from the light receiving means, the light received An adjusting means is provided in front of the means, which can optically adjust the formation direction of at least one light amount distribution among a plurality of light amount distributions regarding the subject image.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

同図において、1は対物レンズ、2は視野マスクであり
対物レンズ1の予定結像面近傍に配置されている。3は
フィールドレンズであり予定結像面の近傍に配置されて
いる。4は2次光学系であり対物レンズlの光軸に対し
て対象に配置された二つのレンズ4−1.4−2により
構成されている。5は受光手段であり前記二つのレンズ
4−1.4.−2に対応してその後方に配置された2つ
の受光素子列5−1.5−2を有している。6は絞りで
あり前記2つのレンズ4−1.4−2に対応してその前
方に配置された2つの開口部6−1.6−2を有してい
る。7は対物レンズ1の射出瞳であり、分割された2つ
の領域7−1.7−2により構成されている。
In the figure, reference numeral 1 denotes an objective lens, and 2 denotes a field mask, which are arranged near the intended imaging plane of the objective lens 1. Reference numeral 3 denotes a field lens, which is arranged near the intended image plane. Reference numeral 4 denotes a secondary optical system, which is composed of two lenses 4-1 and 4-2 arranged symmetrically with respect to the optical axis of the objective lens l. 5 is a light receiving means, and the two lenses 4-1.4. -2, it has two light receiving element rows 5-1 and 5-2 arranged behind it. A diaphragm 6 has two openings 6-1.6-2 arranged in front of the two lenses 4-1.4-2. 7 is an exit pupil of the objective lens 1, which is composed of two divided regions 7-1 and 7-2.

なお、フィールドレンズ3は開口部6−1゜6−2を射
出瞳7の領域7−1.7−2に結像する作用を有してお
り、各領域?−1,7−2を透過した光束が受光素子列
5−1.5−2上に夫々光暖分布を形成するようになっ
ている。
Note that the field lens 3 has the function of focusing the aperture 6-1°6-2 on the area 7-1, 7-2 of the exit pupil 7, and each area? The light beams transmitted through -1 and 7-2 form a luminous temperature distribution on the light receiving element arrays 5-1 and 5-2, respectively.

16は調整手段であり2次光学系4と受光手段5との間
に配置されている。
Reference numeral 16 denotes an adjusting means, which is arranged between the secondary optical system 4 and the light receiving means 5.

第2図は第1図の調整手段16の一実施例であり2次光
学系4側から見たときの斜視図である。
FIG. 2 is an embodiment of the adjusting means 16 shown in FIG. 1, and is a perspective view when viewed from the secondary optical system 4 side.

本実施例では調整手段を一定の厚さを有する透明平行平
板の部材17と受光素子列5−1と直交する方向に一定
の傾角を有する透明プリズム体の部材18の2つの部材
より成る光学部材より構成している。そして受光素子列
5−1に到達すべき光束は部材18を、又、受光素子列
5−2に到達すべき光束は部材17を透過するように設
定されている。本実施例において光学部材16を同図矢
印19の方向に移動させることにより、部材17を透過
する光束には何ら影響を与えることなく、部材18を透
過する光束のみを矢印19の方向に偏向させることが可
能となる。
In this embodiment, the adjusting means is an optical member consisting of two members: a transparent parallel plate member 17 having a certain thickness and a transparent prism member 18 having a certain inclination angle in a direction perpendicular to the light receiving element array 5-1. It is made up of more. The light flux that should reach the light-receiving element array 5-1 is set to pass through the member 18, and the light flux that should reach the light-receiving element array 5-2 is transmitted through the member 17. In this embodiment, by moving the optical member 16 in the direction of the arrow 19 in the figure, only the light flux passing through the member 18 is deflected in the direction of the arrow 19 without affecting the light flux passing through the member 17. becomes possible.

今、例えば第19図に示すように受光手段S上において
、受光素子列5−1.5−2に対して視野マスクの投影
像が8−1.8−2のように投影されていたとする。本
実施例の光学部材16を上方に移動させることにより、
視野マスク2の投影像8−2の位置は変化させずに視野
マスク2の投影像8−1のみを下方に移動させて、これ
により最終的に第3図に示す8−1′のような状態にす
ることが可能である。
For example, suppose that the projected image of the field mask is projected as 8-1.8-2 onto the light-receiving element array 5-1.5-2 on the light-receiving means S as shown in FIG. . By moving the optical member 16 of this embodiment upward,
By moving only the projected image 8-1 of the visual field mask 2 downward without changing the position of the projected image 8-2 of the visual field mask 2, the image 8-1' shown in FIG. It is possible to make the state.

この状態は、受光素子列対5−1.5−2に対する視野
マスク2の投影像8−1.8−2の位置関係が両者で同
一となった状態であり、先に述べた受光素子列の回転及
び平行移動による調整と同様め調整効果を有する。しか
も以下に示すように光学部材16の移動量に対する視野
マスク2の投影像の移動量の比、即ち調整敏感度を小さ
く設定することが可能であり、精度の高い調整が容易に
実現される。第4図は光学部材16の部材18の断面の
説明図である。同図においてプリズム角をθ、プリズム
の屈折率をnとすると、プリズム底面上の位置tに向け
て垂直に進みプリズム斜面に入射する光線20が屈折さ
れて底面に到、達する位置Xは X  =  t−tanθ・tanφ・・・(1)・ 
で表わされる。但しここでφは n5in(θ−φ)=sinθ −−−(2)で表わさ
れる値である。従って、:A整数感度Sは 今、θ=8° n=1.5と仮定すると5LTO,00
66 即ち、光学部材16の1mmの移動で視野マスクの投影
像が6〜7μm移動することを意味し、比較的簡単な調
整手段によって1μm以下の高精度な調整が可能となる
In this state, the positional relationship of the projected image 8-1.8-2 of the field mask 2 with respect to the light-receiving element array pair 5-1.5-2 is the same for both, and the light-receiving element array pair 5-1. It has the same adjustment effect as the adjustment by rotation and translation. Furthermore, as shown below, the ratio of the amount of movement of the projected image of the field mask 2 to the amount of movement of the optical member 16, that is, the adjustment sensitivity, can be set small, and highly accurate adjustment can be easily achieved. FIG. 4 is an explanatory diagram of a cross section of the member 18 of the optical member 16. In the figure, if the prism angle is θ and the refractive index of the prism is n, then the light ray 20 that travels perpendicularly toward a position t on the prism bottom surface and enters the prism slope is refracted and reaches the bottom surface, and the reaching position X is X = t-tanθ・tanφ...(1)・
It is expressed as However, φ is a value expressed by n5in(θ−φ)=sinθ ---(2). Therefore: A integer sensitivity S is now 5LTO,00 assuming θ=8° n=1.5
66 That is, a 1 mm movement of the optical member 16 means that the projected image of the field mask moves by 6 to 7 μm, and highly accurate adjustment of 1 μm or less is possible with a relatively simple adjustment means.

第5.第6.第8.第9図は順に第1図に示す調整手段
16の第2.第3.第4.第5実施例の概略図である。
Fifth. 6th. 8th. FIG. 9 sequentially shows the second adjustment means 16 shown in FIG. Third. 4th. FIG. 5 is a schematic diagram of a fifth embodiment.

第5図に示す第2実施例は第2図に示す第1実施例にお
ける光学部材16の部材17の部分を部材18のプリズ
ムと逆向きの傾角な有するプリズム24より成る部材よ
り構成したものである。本実施例に右いて視野マスクの
投影像の調整は光学部材21を同図に不図示の対物レン
ズの光軸22の回りに回転して行なう。又1本実施例に
おいては調整時に2つの視野マスクの投影像が逆向きに
同時に動くため、第1実施例に比べ、同じ調整敏感度を
実現するためにプリズム角をより小さく設定することが
でき、プリズムにより生ずる諸収差を軽減することがで
きる等の特長を有している。
In the second embodiment shown in FIG. 5, the member 17 of the optical member 16 in the first embodiment shown in FIG. be. In this embodiment, the projected image of the field mask is adjusted by rotating the optical member 21 around an optical axis 22 of an objective lens (not shown). Furthermore, in this embodiment, the projected images of the two field masks simultaneously move in opposite directions during adjustment, so the prism angle can be set smaller to achieve the same adjustment sensitivity compared to the first embodiment. , it has the advantage of being able to reduce various aberrations caused by the prism.

第6図に示す第3実施例は調整手段16を第22図に示
す焦点検出装置に適用した場合のものである。
A third embodiment shown in FIG. 6 is an example in which the adjusting means 16 is applied to the focus detection device shown in FIG. 22.

光学部材25は一定の厚さを有する透明平行板の部材2
6と受光素子列13−1と直交する方向に一定の傾角な
有する透明プリズム体の部材27の2つの部材から構成
され、受光素子列5−1゜5−2.13−2に到達すべ
き光束は部材26を、又受光素子列13−1に到達すべ
き光束は部材27を透過するように配置されている。
The optical member 25 is a transparent parallel plate member 2 having a certain thickness.
6 and a transparent prism member 27 having a certain angle of inclination in the direction orthogonal to the light receiving element array 13-1, and should reach the light receiving element array 5-1゜5-2.13-2. The arrangement is such that the light beam to reach the light receiving element array 13-1 passes through the member 26, and the light beam to reach the light receiving element array 13-1 passes through the member 27.

今、当初、2次光学系等の偏心によって第7図に示すよ
うに視野マスクの投影像14−1゜14−2.15−1
.15−2が受光素子列上でずれて形成されていたとす
る。このとき受光手段を平行移動又は回転させることに
より、受光素子列5−1.5−2については視野マスク
の投影像14−1.14−2との相対位置関係が両者で
同一になるようにし、受光素子列13−2については視
野マスクの投影像15−2の中にほぼ入るように調整し
て行なう。次いで第6図に示す光学部材25を矢印28
の右方向に移動させることにより、第7図の視野マスク
の投影像15−1のみが左方に移動し、最終的に投影像
16−1’の状態に導くことができ調整が完了する。
Now, initially, due to eccentricity of the secondary optical system, etc., the projected image of the field mask is 14-1°14-2.15-1 as shown in FIG.
.. 15-2 are formed in a shifted manner on the light receiving element array. At this time, by parallelly moving or rotating the light receiving means, the relative positional relationship between the light receiving element array 5-1.5-2 and the projected image 14-1.14-2 of the field mask is made the same for both. The light receiving element row 13-2 is adjusted so that it almost falls within the projected image 15-2 of the field mask. Next, the optical member 25 shown in FIG.
By moving the field mask to the right, only the projected image 15-1 of the field mask in FIG. 7 moves to the left, and finally the state of the projected image 16-1' can be reached, thus completing the adjustment.

第8図に示す第4実施例において光学部材29は一定の
厚さを有する透明平行平板の部材30゜31と互いに逆
向きの傾きで受光素子列13−1.13−2と直交する
方向に傾角な有する透明プリズム体の部材32.33の
4つの部材から構成され、受光素子列5−1.5−2.
13−1゜13−2に到達すべき光束がそれぞれ部材3
0゜31.32.33を透過するように配置されている
。    ゛ 本実施例における調整は第5図に示す第2実施例と同様
に光学部材29を第8図の不図示の対物レンズの光軸2
2の回りに回転し、受光素子列13−1.13−2に対
応する視野マスクの投影像を受光素子列13−1.13
−2と直交する互いに逆向きの方向に移動させることで
行なう。
In the fourth embodiment shown in FIG. 8, the optical member 29 and the transparent parallel plate member 30° 31 having a constant thickness are arranged at opposite angles to each other in a direction perpendicular to the light receiving element rows 13-1 and 13-2. It is composed of four members, transparent prism members 32, 33 having inclined angles, and light receiving element arrays 5-1, 5-2.
The light beams that should reach 13-1 and 13-2 are respectively connected to member 3.
It is arranged to transmit 0°31.32.33.゛The adjustment in this embodiment is the same as in the second embodiment shown in FIG.
2, the projected image of the field mask corresponding to the light receiving element row 13-1.13-2 is transferred to the light receiving element row 13-1.13.
This is done by moving in mutually opposite directions perpendicular to -2.

第9図に示す第5実施例において光学部材34は一定の
厚さを有する透明平行平板の部材35と受光素子列5−
1及び13−1とそれぞれ直交する方向に傾角な有する
透明プリズム体の部材36.37の3つの部材から構成
され受光素子列5−2.13−2に到達すべき光束は部
材35を受光素子列5−1.13−1に到達すべき光束
はそれぞれ部材36.37を透過するように配置されて
いる。
In the fifth embodiment shown in FIG.
It is composed of three members: members 36 and 37, which are transparent prism bodies having angles perpendicular to 1 and 13-1, respectively. The beams of light that are to reach the columns 5-1, 13-1 are each arranged to be transmitted through the elements 36, 37.

本実施例においては、光学部材34を矢印19の上下方
向に移動させることで受光素子列5−1に対応する視野
マスクの投影像を上下に、又光学部材34を矢印28の
左右方向に移動させることで受光素子列13−1に対応
する視野マスクの投影像を左右にそれぞれ独立に移動さ
せることで調整を行なう。
In this embodiment, by moving the optical member 34 in the vertical direction of the arrow 19, the projected image of the field mask corresponding to the light receiving element row 5-1 is moved vertically, and the optical member 34 is moved in the horizontal direction of the arrow 28. Adjustment is performed by moving the projected image of the field mask corresponding to the light-receiving element row 13-1 independently to the left and right.

本実施例においては、それぞれの受光素子列対の1方の
受光素子列に対応する視野マスクの投影像を独立に移動
させ調整することが可能であるため、受光素子対の双方
について高精度な調整が容易に実現される。
In this embodiment, since it is possible to independently move and adjust the projected image of the field mask corresponding to one of the light receiving element rows of each light receiving element row pair, high precision can be achieved for both light receiving element rows. Adjustment is easily achieved.

以上の実施例はすべて光学部材としてプリズムによる光
の偏向を利用したものであるため2次光学系の偏心等が
全くない理想的な基準状態においてもプリズムを透過す
る光束は一定量偏向され受光手段に到達する。これに応
じて受光素子列配置を、−直線上や七字線状に配置せず
、予め若干ずらして配置することは、調整量を減らすと
いう観点から有効である。
All of the above embodiments utilize the deflection of light by a prism as an optical member, so even in an ideal reference state where there is no eccentricity of the secondary optical system, the light beam passing through the prism is deflected by a certain amount, and the light receiving means reach. Accordingly, it is effective from the viewpoint of reducing the amount of adjustment to arrange the light-receiving element arrays in a slightly shifted manner in advance, rather than arranging them in a -straight line or in a seven-figure line.

又、光学部材としては上記実施例のプリズムのような一
定の傾角を有するものに限らず場所により傾角が変化す
るもの、換言すれば、曲面状のものも使用することが可
能である。
Further, the optical member is not limited to one having a fixed angle of inclination like the prism of the above embodiment, but it is also possible to use one whose inclination angle changes depending on the location, in other words, one having a curved surface.

第10.第12.第13図は順に第1図に示す調整手段
16の第6.第7.第8実施例の概略図であり、いずれ
も曲面状の部材を利用して視野マスクの投影像の調整を
行ったものである。
10th. 12th. FIG. 13 sequentially shows the sixth section of the adjusting means 16 shown in FIG. 7th. FIG. 8 is a schematic diagram of an eighth embodiment, in which the projected image of the field mask is adjusted using a curved member.

第10図に示す第6実施例において光学部材38は一定
の厚さを有する透明平行平板の部材39と受光素子列5
−1と直交する方向にのみパワーを有するシリンドリカ
ルレンズより成る部材40の2つの部材から構成され、
受光素子列5−1に到達すべき光束は部材40を又受光
素子列5−2に到達すべき光束は部材39を透過するよ
うに配置されている。このような構成で光学部材38を
矢印19の方向に移動させることにより、部材39を透
過する光束には何ら影響を与えることなく、部材40を
透過する光束のみを矢印の方向に偏向させることができ
第2図に示す第1実施例と同様の調整が可能である。第
11図は光学部材38のシリンドリカルレンズの部材4
oの断面を示す説明図であり、シリンドリカルレンズの
曲率半径なγ、屈折率をn、厚さをdl、シリンドリカ
ルレンズの底面から受光素子列iでの距離をd2とし、
受光素子列41面上の位置tに向けて垂直に進み、シリ
ンドリカルレンズ面に入射する光線42が屈折されて受
光素子列41に到達する位置Xは x=(a+ −(γ−F戸−ロ戸)) jan (θ−φ)+d、tanξ−−(4)で表わさ
れる。但し、ここでθ、φ、ξはn5in(θ−φ)=
sinξ・・・・(6)で表わされる値である。今、こ
こで例えばγ=20、d、=1、d2=1、n=1.5
とするとt=1でx=0.041、t=2でx=0.0
80であり調整敏感度は約1/25に小さくなっている
In the sixth embodiment shown in FIG.
It is composed of two members, the member 40 consisting of a cylindrical lens having power only in the direction perpendicular to -1,
The arrangement is such that the light flux that should reach the light receiving element array 5-1 passes through the member 40, and the light flux that should reach the light receiving element array 5-2 passes through the member 39. By moving the optical member 38 in the direction of the arrow 19 with such a configuration, only the light beam passing through the member 40 can be deflected in the direction of the arrow without any effect on the light beam passing through the member 39. The same adjustment as in the first embodiment shown in FIG. 2 is possible. FIG. 11 shows the member 4 of the cylindrical lens of the optical member 38.
It is an explanatory diagram showing a cross section of the cylindrical lens, where γ is the radius of curvature of the cylindrical lens, n is the refractive index, dl is the thickness, d2 is the distance from the bottom of the cylindrical lens to the light receiving element row i,
The position X where the light ray 42 that travels perpendicularly toward the position t on the surface of the light-receiving element array 41 and is incident on the cylindrical lens surface is refracted and reaches the light-receiving element array 41 is x = (a+ - (γ-F door-ro). )) jan (θ−φ)+d, tanξ−−(4). However, here θ, φ, ξ are n5in(θ−φ)=
sinξ... is a value expressed by (6). Now, for example, γ=20, d,=1, d2=1, n=1.5
Then, at t=1, x=0.041, and at t=2, x=0.0
80, and the adjustment sensitivity is reduced to about 1/25.

従って、前述のプリズムを用いた実施例と同様、高精度
な調整が可能である。
Therefore, as in the embodiment using the prism described above, highly accurate adjustment is possible.

第12図はシリンドリカルレンズを用いた第7実施例で
あり、本実施例は第10図に示す第6実施例に右いて平
行平板の部材39をシリンドリカルレンズの部材40と
正負逆の曲率半径をもつシリンドリカルレンズ43で構
成したものであり、第6実施例と同様に光学部材42の
矢印19の方向の移動により調整を行なうものである。
FIG. 12 shows a seventh embodiment using a cylindrical lens, and this embodiment is on the right side of the sixth embodiment shown in FIG. As in the sixth embodiment, adjustment is performed by moving the optical member 42 in the direction of the arrow 19.

本実施例では光学部材42の移動による調整時に2つの
視野マスクの投影像が同時に逆向きに動く点が第5実施
例と異っている。
This embodiment differs from the fifth embodiment in that the projected images of the two field masks simultaneously move in opposite directions during adjustment by moving the optical member 42.

第13図は同じくシリンドリカルレンズ番用いた第8実
施例を示す説明図である。本実施例では光学部材45を
受光素子列と直交する方向にパワーを有する1つのシリ
ンドリカルレンズで構成したもので、不図示の対物レン
ズの光軸22の回りの回転によって調整が行なわれる。
FIG. 13 is an explanatory diagram showing an eighth embodiment that also uses a cylindrical lens number. In this embodiment, the optical member 45 is composed of one cylindrical lens having power in a direction perpendicular to the light receiving element array, and adjustment is performed by rotating an objective lens (not shown) about the optical axis 22.

第14.第15.第tS、第17図は順に第1図に示す
調整手段16の第9.第10.第11゜第12実施例の
概略図であり、いずれもシリンドリカルレンズより成る
部材を光学部材として利用している。又、いずれも第2
2図に示す焦点検出装置に適用したものである。
14th. 15th. tS and FIG. 17 are sequentially shown in FIG. 9 of the adjusting means 16 shown in FIG. 10th. 11. It is a schematic view of the 12th embodiment, and all of them utilize a member made of a cylindrical lens as an optical member. Also, both are the second
This is applied to the focus detection device shown in FIG.

第14図に示す第9実施例は光学部材46の受光素子列
13−1に到達すべき光束が透過する部材47のみをシ
リンドリカルレンズとしたもので、矢印28の方向の移
動により、受光素子列13−1に対応する視野マスクの
投影像の位置を調整するものである。
In the ninth embodiment shown in FIG. 14, only the member 47 through which the light flux that should reach the light receiving element array 13-1 of the optical member 46 is transmitted is a cylindrical lens. This is to adjust the position of the projected image of the visual field mask corresponding to 13-1.

第15図に示す第10実施例は受光素子列13−1と1
3−2に到達すべき光束が透過する部材50.52を互
いに正負逆向きの曲率半径をもつシリンドリカルレンズ
としたもので、矢印28の方向の移動により受光素子列
13−1゜13−2に対応する2つの視野マスクの投影
像を互いに逆向きに移動させて、調整を行なうものであ
る。
The tenth embodiment shown in FIG.
The members 50 and 52 through which the light flux to reach 3-2 is transmitted are cylindrical lenses having radii of curvature with opposite positive and negative directions, and by moving in the direction of arrow 28, the light receiving element arrays 13-1 and 13-2 are moved. Adjustment is performed by moving the projected images of two corresponding field masks in opposite directions.

第16図に示す第11実施例は受光素子列13−1.1
3−2に到達すべき光束が透過する部材56.57を、
それぞれ受光素子列と直交する方向にパワーをもつシリ
ンドリカルレンズとしたもので、不図示の対物レンズの
光軸22の回りの回転により受光素子列13−1.13
−2に対応する視野マスクの投影像を互いに逆向きに移
動させて調整を行なうものである。
The eleventh embodiment shown in FIG. 16 is a light receiving element array 13-1.1.
The members 56 and 57 through which the light flux that should reach 3-2 is transmitted,
Each of the cylindrical lenses has power in a direction perpendicular to the light receiving element array, and the light receiving element array 13-1.13 is rotated around the optical axis 22 of an objective lens (not shown).
Adjustments are made by moving the projected images of the visual field masks corresponding to -2 in opposite directions.

第17図に示す第12実施例は受光素子列5−1.13
−1に到達すべき光束が透過する部材60.61をそれ
ぞれ受光素子列と直交する方向にパワーをもつシリンド
リカルレンズとしたものである。同図の矢印19の上下
方向に移動させることで受光素子列5−1に対応する視
野マスクの投影像を矢印28の左右方向に移動させるこ
とで受光素子列13−1に対応する視野マスクの投影像
を互いに独立に移動させて調整を行なっている。
The twelfth embodiment shown in FIG. 17 is a light receiving element array 5-1.13.
The members 60 and 61 through which the light flux that should reach -1 is transmitted are cylindrical lenses each having power in the direction orthogonal to the light receiving element array. By moving the projected image of the field mask corresponding to the light receiving element row 5-1 in the vertical direction of the arrow 19 in the figure, the projected image of the field mask corresponding to the light receiving element row 13-1 is moved in the left and right direction of the arrow 28. Adjustments are made by moving the projected images independently of each other.

以上の各実施例においては、調整手段としてプリズムと
シリンドリカルレンズを有する光学部材を例として説明
を行ってきたが、本発明はこれに限らず、一般に受光素
子列と直交する方向に厚さや、曲率が変化する光学部材
であればどのような部材であっても良い。例えば表面形
状だけでなく、内部の屈折率が受光素子列方向と直交す
る方向に変化する光学部材を用いても良い。
In each of the above embodiments, an optical member having a prism and a cylindrical lens has been described as an example of an adjustment means, but the present invention is not limited to this. Any optical member may be used as long as it changes. For example, an optical member may be used in which not only the surface shape but also the internal refractive index changes in a direction perpendicular to the direction of the light receiving element array.

又、第25図や第22図に示す像ずれ方式の焦点検出装
置に限らず、これと異なった視野形状のものや、異なっ
た方式の焦点検出装置にも通用することができる。
Further, the present invention is not limited to the image shift type focus detection apparatus shown in FIGS. 25 and 22, but can also be applied to focus detection apparatuses having a different field of view shape or using a different method.

尚、本発明に用いる光学部材は受光手段の前面に位置し
て好適に用いられるものであるので、受光手段のカバー
ガラス等の保護部材と兼用することが可能である。
Incidentally, since the optical member used in the present invention is suitably used by being located in front of the light receiving means, it can also be used as a protective member such as a cover glass for the light receiving means.

(発明の効果) 本発明によれば受光手段の前方に所定の光学作用を有す
る調整手段を設け、受光手段面上における視野マスクの
投影像の投影状態を調整することにより高精度な焦点検
出が可能な焦点検出装置を達成することができる。
(Effects of the Invention) According to the present invention, highly accurate focus detection is achieved by providing an adjusting means having a predetermined optical effect in front of the light receiving means and adjusting the projection state of the projected image of the field mask on the surface of the light receiving means. A possible focus detection device can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光学系の概略図である。 第2.第5.第6.第8.第9.第10゜第12.第1
3.第14.第15.第16゜第17図は順に本発明に
係る調整手段の第1〜第12実施例の概略図、第3.第
7.第19゜第21.第23.第24図は各々像ずれ方
式の焦点検出装置における受光素子列と視野マスクの投
影像との関係を示す説明図、第4図は第2図の一部分の
断面図、第11図は第10図に一部分の断面図、第18
図は第1図の一部分の説明図、第20図は視野マスクと
被写体との関係を示す説明図、第22.第25図は従来
の像ずれ方式の焦点検出装置の光学系の概略図である。 図中1は対物レンズ、2は視野マスク、3はフィールド
レンズ、4は2次光学系、5は受光手段、5−1.5−
2.13−1.13−2は受光素子列、6は絞り、7は
射出瞳、1a、zl。 25.29,34.3B、42,45,47゜50.5
3.58は調整手段、8−1.8−2は視野マスク2の
投影像である。 特許出願人  キャノン株式会社
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. Second. Fifth. 6th. 8th. 9th. 10th ° 12th. 1st
3. 14th. 15th. 16 and 17 are schematic diagrams of the first to twelfth embodiments of the adjusting means according to the present invention, and the third. 7th. No. 19゜No. 21. 23rd. 24 is an explanatory diagram showing the relationship between the light-receiving element array and the projected image of the field mask in each image shift type focus detection device, FIG. 4 is a cross-sectional view of a portion of FIG. 2, and FIG. 11 is the diagram of FIG. 10. Partial cross-sectional view, No. 18
The figures are an explanatory diagram of a part of FIG. 1, FIG. 20 is an explanatory diagram showing the relationship between the field mask and the subject, and FIG. FIG. 25 is a schematic diagram of an optical system of a conventional image shift type focus detection device. In the figure, 1 is an objective lens, 2 is a field mask, 3 is a field lens, 4 is a secondary optical system, 5 is a light receiving means, 5-1.5-
2.13-1.13-2 is a light receiving element array, 6 is an aperture, 7 is an exit pupil, 1a, zl. 25.29, 34.3B, 42, 45, 47°50.5
3.58 is an adjustment means, and 8-1.8-2 is a projected image of the field mask 2. Patent applicant Canon Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)対物レンズの像面側に配置した光学手段により前
記対物レンズの瞳の異なる領域を通過した光束を用いて
被写体像に関する複数の光量分布を形成し、該複数の光
量分布の相対的な位置関係を複数の素子より成る受光素
子列を少なくとも2つ有する受光手段により求め、該受
光手段からの信号を用いて前記対物レンズの合焦状態を
求める際、該受光手段の前方に該被写体像に関する複数
の光量分布のうち少なくとも1つの光量分布の形成方向
を光学的に調整することのできる調整手段を設けたこと
を特徴とする調整手段を有した焦点検出装置。
(1) Forming a plurality of light intensity distributions regarding the subject image using an optical means disposed on the image plane side of the objective lens using light fluxes that have passed through different areas of the pupil of the objective lens, and comparing the relative light intensity distributions of the plurality of light intensity distributions. When the positional relationship is determined by a light receiving means having at least two light receiving element arrays each consisting of a plurality of elements, and when determining the in-focus state of the objective lens using a signal from the light receiving means, the subject image is placed in front of the light receiving means. What is claimed is: 1. A focus detection device having an adjusting means, comprising: an adjusting means capable of optically adjusting the formation direction of at least one light amount distribution among a plurality of light amount distributions.
(2)前記調整手段は前記受光素子列の並び方向と直交
する方向に光学的作用を及ぼす光学部材を有しているこ
とを特徴とする請求項1記載の調整手段を有した焦点検
出装置。
(2) A focus detection device having an adjusting means according to claim 1, wherein the adjusting means has an optical member that exerts an optical effect in a direction perpendicular to the direction in which the light-receiving element rows are arranged.
(3)前記光学部材はプリズム又は所定の曲率分布を有
する曲面部材又はシリンドリカルレンズ又は屈折率分布
型部材であることを特徴とする請求項2記載の調整手段
を有した焦点検出装置。
(3) The focus detection device with adjusting means according to claim 2, wherein the optical member is a prism, a curved member having a predetermined curvature distribution, a cylindrical lens, or a gradient index member.
JP4257788A 1988-02-24 1988-02-24 Focus detecting device having adjusting means Granted JPH01216307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4257788A JPH01216307A (en) 1988-02-24 1988-02-24 Focus detecting device having adjusting means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4257788A JPH01216307A (en) 1988-02-24 1988-02-24 Focus detecting device having adjusting means

Publications (2)

Publication Number Publication Date
JPH01216307A true JPH01216307A (en) 1989-08-30
JPH0529884B2 JPH0529884B2 (en) 1993-05-06

Family

ID=12639919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4257788A Granted JPH01216307A (en) 1988-02-24 1988-02-24 Focus detecting device having adjusting means

Country Status (1)

Country Link
JP (1) JPH01216307A (en)

Also Published As

Publication number Publication date
JPH0529884B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US4992819A (en) Focus detecting device having a plurality of detecting areas and camera provided with the same
JPS6333683B2 (en)
US4841326A (en) Apparatus for detecting the focus adjusted state of an objective optical system
JPS6269217A (en) Focus detecting device
US5258804A (en) Focus detection device having a mechanism for adjusting light-receiving state
JPH0219813A (en) Single lens reflex camera possessing focal point detecting device
US4878078A (en) Focus detecting device and method of making same
JPH0820589B2 (en) Focus detection device
US5751409A (en) Multi-point distance measuring apparatus
JPH01216307A (en) Focus detecting device having adjusting means
JP2661205B2 (en) Focus detection device
US6272291B2 (en) Focus detecting device
JPH05264894A (en) Focus detecting device
JP3232692B2 (en) Focus detection device
US5037188A (en) Optical system for detecting focusing condition
JP4323592B2 (en) Focus detection device
JP2001343580A (en) Focus detector
JP3134429B2 (en) Focus detection device
JPH01243009A (en) Focus detecting device
JP2706932B2 (en) Focus detection device for camera
JPS59129811A (en) Focusing detecting device
JPS6278515A (en) Focus detector
JPH0341408A (en) Focus detector
JPS58221817A (en) Focusing detector
JPH01232314A (en) Automatic focus detecting device for camera