JPH01216006A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JPH01216006A
JPH01216006A JP3739788A JP3739788A JPH01216006A JP H01216006 A JPH01216006 A JP H01216006A JP 3739788 A JP3739788 A JP 3739788A JP 3739788 A JP3739788 A JP 3739788A JP H01216006 A JPH01216006 A JP H01216006A
Authority
JP
Japan
Prior art keywords
steam flow
turbine
steam
valve
flow control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3739788A
Other languages
Japanese (ja)
Inventor
Shozo Miyabe
昇三 宮部
Shinichi Tajima
伸一 田島
Masamichi Motono
本野 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP3739788A priority Critical patent/JPH01216006A/en
Publication of JPH01216006A publication Critical patent/JPH01216006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To suppress pressure fluctuation in a reactor vessel by inputting output from a servo amplifier which outputs valve driving signals of steam flow control valves into mutual diagnostic circuits, and suitably controlling opening of the steam flow control valves when abnormality is detected by means of mutual diagnosis. CONSTITUTION:Steam flow control valves 10, 11 are respectively provided to a main steam pipe 1 which extends from a reactor 4 to a turbine 6 and to a by-pass pipe 2 which is branched out from the main steam pipe 1 and extends to a condenser 7. In a device which controls the steam flow control valves 10, 11 according to steam pressure and turbine speed, valve opening signals 115-117 of the respective steam flow control valves 10, 11 are input into mutual diagnostic circuits 118-120 for valve opening of respective operational parts of systems I-III. Valve driving signals 107-109 of the respective systems I-III are input into mutual diagnostic circuits 121-123 for valve driving signals. When abnormality of valve opening and valve driving signal is judged, a valve driving signal responding to a normal system is chosen by change-over logic 110 and output into the steam flow control valves 10, 11.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明の目的は、演算部が3重化されたタービン制御装
置に係り、特にタービン制御装置内の部品の故障時にプ
ラントの正常な運転を継続することを容易にするタービ
ン制御装置に関わる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The object of the present invention is to provide a turbine control device with triple computing units, and in particular to ensure normal operation of a plant when a component in the turbine control device fails. Involved in turbine control equipment that facilitates continuation.

〔従来の技術〕[Conventional technology]

従来のタービン制御装置は、火力原子力発電(I S 
S N0387−1029)第317号、IX、原子力
プラントの制御と自動化に示されている。第3図に示す
ように、タービン制御袋fi5は、原子炉圧力容器4内
の原子炉圧力Prをほぼ一定に保つと同時に、タービン
6に直結された発電機8の周波数naを一定にする目的
のため、主蒸気配管1上の配管分岐点9の上流側におい
て、、原子炉圧力Pr と同等の主蒸気圧力pt ta
IIJ定し、蒸気流量調節弁10および蒸気流量調節弁
11の開度を制御している。このような制御装置におい
て、従来。
Conventional turbine control devices are used for thermal and nuclear power generation (IS).
SN0387-1029) No. 317, IX, Control and Automation of Nuclear Plants. As shown in FIG. 3, the purpose of the turbine control bag fi5 is to keep the reactor pressure Pr in the reactor pressure vessel 4 almost constant and at the same time keep the frequency na of the generator 8 directly connected to the turbine 6 constant. Therefore, on the upstream side of the pipe branch point 9 on the main steam pipe 1, the main steam pressure pt ta is equivalent to the reactor pressure Pr.
IIJ to control the opening degrees of the steam flow rate control valve 10 and the steam flow rate control valve 11. Conventionally, in such a control device.

第4図に示すように、プラント運転の継続を目的として
演算部を3重化(システム!、システム■およびシステ
ムIII) L、、それら3重化された演算部より出力
された制御指令101,102,103と、3重化され
た蒸気流量調節弁開度検出器(以下弁開度検出器)11
2,113,114よりの弁開度信号115,116,
117をそれぞれに設けたサーボアンプ104、サーボ
アンプ10’5゜サーボアンプ106によりそれぞれの
弁駆動信号107.108,109を求め、それらを切
替ロジック110により弁駆動信号111を選択し。
As shown in FIG. 4, for the purpose of continuing plant operation, the calculation units are tripled (system!, system ■, and system III) L, control commands 101 output from these triple calculation units, 102, 103, and triplex steam flow rate control valve opening detector (hereinafter referred to as valve opening detector) 11
Valve opening signals 115, 116 from 2, 113, 114,
The valve drive signals 107, 108, and 109 are obtained by the servo amplifier 104, servo amplifier 10'5 degree servo amplifier 106, and the valve drive signal 111 is selected by the switching logic 110.

蒸気流量調節弁10,11を駆動する0通常切替ロジッ
ク110は弁駆動信号111はシステム!に対応する弁
駆動信号107を選択しているがシステムt、n、m演
算部内の弁開度用相互診断回路により、弁開度信号11
5の異常を検出すると待機系であるシステム■、または
システム■に対応する弁駆動信号を選択する。待機系2
系とも正常な場合はシステム■に対応する弁駆動信号1
08を、システム■が異常な場合はシステム■に対応す
る。弁駆動信号109を選択する。弁開度用相互診断回
路118,119,120は、入力された弁開度信号1
15,116,117の3信号のうち、115と116
の値は一致しているか、116と117の値は一致して
いるか、また117と115の値は一致しているかをチ
エツクし、例えば、115と116は不一致、116と
117は一致、117と115は不一致となった時は弁
開度信号115を異常と判断する。切替ロジック110
においては、上記結果がシステム1.II。
The 0 normal switching logic 110 that drives the steam flow rate control valves 10 and 11 is the valve drive signal 111 that is the system! Although the valve drive signal 107 corresponding to
When abnormality No. 5 is detected, the system (2), which is a standby system, or the valve drive signal corresponding to the system (2) is selected. Standby system 2
If both systems are normal, valve drive signal 1 corresponding to system ■
08 corresponds to system ■ if system ■ is abnormal. Select valve drive signal 109. The valve opening mutual diagnosis circuits 118, 119, 120 receive the input valve opening signal 1.
Of the three signals 15, 116, and 117, 115 and 116
The values of 116 and 117 are the same, and the values of 117 and 115 are the same. For example, 115 and 116 do not match, 116 and 117 match, and 117 and When the signal 115 does not match, the valve opening signal 115 is determined to be abnormal. Switching logic 110
In System 1. II.

■演算部内の相互診断回路のうち、同時に2つ以上の相
互診断回路において得られた場合、システムIに対応す
る弁開度信号115、弁開度信号112等を異常とみな
し、選択の対象外とする。
■If obtained from two or more mutual diagnostic circuits in the calculation unit at the same time, the valve opening signal 115, valve opening signal 112, etc. corresponding to system I will be regarded as abnormal and will not be selected. shall be.

本方式によると、例えば弁駆動信号107が切替ロジッ
ク110により弁駆動信号111として選択されている
時に、サーボアンプ104が故障したとすると、切替ロ
ジック110により弁駆動信号108が選択されるまで
には、異常となった弁駆動信号107により蒸気流量調
節弁が駆動を始め、弁本体の時定数によりある時間遅れ
を経過してから弁開度検出器112,113,114よ
り入力された弁開度信号115,116,117により
、弁開度用相互診断回路118,119゜120内でシ
ステムI異常を検出するというよう゛に、弁本体側の時
間遅れ分だけ切替ロジック11Gによる信号選択時間が
遅れる可能性がある。
According to this method, if the servo amplifier 104 fails while the valve drive signal 107 is selected as the valve drive signal 111 by the switching logic 110, the valve drive signal 108 is selected by the switching logic 110. The steam flow control valve starts to be driven by the valve drive signal 107 which has become abnormal, and after a certain time delay has elapsed due to the time constant of the valve body, the valve opening is inputted from the valve opening detectors 112, 113, 114. The signal selection time by the switching logic 11G is delayed by the time delay on the valve body side, such that the system I abnormality is detected in the valve opening mutual diagnosis circuits 118, 119, and 120 by the signals 115, 116, and 117. there is a possibility.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、タービン制御装置内で発生した部品の
相互診断を実施していないために、タービン制御V&[
内で発生した部品の故障時にも、蒸気流量調節弁本体の
時定数による時間遅れを経過しなければ切替ロジックに
より正常なシステムに対応する弁駆動信号に切替えるこ
とが出来ない点に問題があった。
The above conventional technology does not perform mutual diagnosis of parts generated within the turbine control device, so the turbine control V&[
There was a problem in that even when a component failure occurred inside the valve, the switching logic could not switch to a valve drive signal that corresponds to a normal system until a time delay due to the time constant of the steam flow control valve body elapsed. .

本尭明の目的は、タービン制御装置内で発生した部品の
故障時には、蒸気流量調節弁本体の時定数による時間遅
れの影響を受けることなく正常なシステムに対応する弁
駆動信号に切替えることにより、プラントへの影響を最
小限に抑えることにある。
The purpose of this system is to switch to a valve drive signal that corresponds to a normal system without being affected by the time delay due to the time constant of the steam flow control valve body when a component failure occurs in the turbine control device. The aim is to minimize the impact on the plant.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、サーボアンプの出力信号である弁駆動信号
用相互診断回路を設け、弁駆動信号に対しても相互診断
による異常検出を実施することにより、達成される。
The above object is achieved by providing a mutual diagnosis circuit for the valve drive signal, which is the output signal of the servo amplifier, and performing abnormality detection by mutual diagnosis for the valve drive signal as well.

〔作用〕[Effect]

サーボアンプの出力信号である弁駆動信号を相互診断回
路により異常検出することは、タービン制御装置内で発
生した部品の故障時には、蒸気流量調節弁を駆動する以
前に異常を検出することが可能となる。それによって、
蒸気流量調節弁が異常となった弁駆動信号により駆動す
る以前に切替ロジックは正常な弁駆動信号を選択するこ
とが可能となるため、蒸気流量調節弁は誤動作すること
がなく、プラントへの影響を最小限に抑えることが可能
となる。
Detecting an abnormality in the valve drive signal, which is the output signal of the servo amplifier, using a mutual diagnostic circuit makes it possible to detect an abnormality before driving the steam flow control valve when a component failure occurs in the turbine control device. Become. Thereby,
The switching logic can select a normal valve drive signal before the steam flow control valve is driven by an abnormal valve drive signal, so the steam flow control valve will not malfunction and will have no impact on the plant. can be minimized.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図、第2図により説明す
る1本実施例において、蒸気流量調節弁10,11の弁
開度信号115,116,117をシステム夏演算部、
システム■演算部、システム■演算部の弁開度用相互診
断回路118.119゜120に入力し、相互診断によ
る弁開度の異常検出する一方、さらにシステムI弁駆動
信号107、システム■弁駆動信号108、システム■
弁駆動信号109を弁駆動信号用相互診断回路121゜
122.123に入力し、各システムの弁部信号の相互
診断を実施する。これにより弁開度検出器112.11
3,114が異常になった場合、弁開度検出器をタービ
ン制御装置と接続している部分が異常となった場合には
、従来と同様に弁開度信号115,116,117の相
互診断により速やかに切替ロジック110により、弁駆
動信号111は正常なシステムに対応する弁駆動信号を
選択することが出来る。さらに、サーボアンプ出力10
7,108,109を弁駆動信号用相互診断回路121
,122,123において相互診断による異常検出を実
施するため、タービン制御装置1i5内の部品が故障し
た場合には、蒸気流量調節弁10,11本体の時定数に
よる時間遅れの影響を受けることなく、切替ロジック1
10は正常なシステムに対応する弁駆動信号を選択する
ことが可能となる0例えばいまサーボアンプ104゜1
05.106ともに正常で、切替ロジック110は弁駆
動信号111としてシステムIに対応する弁駆動信号1
07を選択しているとする。この時のサーボアンプの出
力である各システムに対応する弁駆動信号107,10
8,109の値がAとする。この制御状態において、い
まシステム■に対応するサーボアンプ104が故障した
とする。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In this embodiment, the valve opening signals 115, 116, 117 of the steam flow rate control valves 10, 11 are calculated by a system summer calculation section,
System ■Arithmetic unit, System ■Arithmetic unit's valve opening mutual diagnosis circuit 118, 119° 120 is input to detect an abnormality in valve opening by mutual diagnosis, and System I valve drive signal 107, System ■Valve drive Signal 108, system■
The valve drive signal 109 is input to mutual diagnosis circuits 121, 122, and 123 for valve drive signals, and mutual diagnosis of valve signals of each system is performed. As a result, the valve opening degree detector 112.11
3, 114 becomes abnormal, or if the part connecting the valve opening detector to the turbine control device becomes abnormal, mutual diagnosis of the valve opening signals 115, 116, 117 is performed as in the past. The switching logic 110 allows the valve drive signal 111 to more quickly select the valve drive signal corresponding to a normal system. Furthermore, servo amplifier output 10
7, 108, 109 as mutual diagnosis circuit 121 for valve drive signal
, 122, 123 performs abnormality detection through mutual diagnosis, in the event that a component within the turbine control device 1i5 fails, the system is not affected by the time delay due to the time constant of the main bodies of the steam flow rate control valves 10, 11. Switching logic 1
10 makes it possible to select a valve drive signal corresponding to a normal system. For example, the servo amplifier 104°1
05.106 are both normal, and the switching logic 110 uses the valve drive signal 1 corresponding to the system I as the valve drive signal 111.
Assume that 07 is selected. Valve drive signals 107, 10 corresponding to each system are the output of the servo amplifier at this time.
Assume that the value of 8,109 is A. In this control state, it is assumed that the servo amplifier 104 corresponding to system (2) has failed.

するとサーボアンプ104の出力である弁駆動信号10
7の値は、A±αとなる。この時システム夏演算部内の
弁駆動信号用相互診断回路121ではシステムIに対応
する弁駆動信号107の値がA±α、システム■に対応
する弁駆動信号108の値がA、またシステム■に対応
する弁駆動信号109の値がAであることより、サーボ
アンプ104のを異常と判断する。同様に、システム■
演算部内の弁駆動信号用相互診断回路122およびシス
テム■演算部内の弁駆動信号用相互診断回路゛123に
おいても、サーボアンプ104を異常と判断する。この
時切替ロジック110においては、同時に2つ以上の相
互診断回路によりサーボアンプ104が異常と判断され
たことより、弁駆動信号111として、システムIに対
応する弁駆動信号107より正常なシステム■に対応す
る弁駆動信号108に切替える。その結果、蒸気流量調
節弁10.11は、異常となった弁駆動信号により駆動
することがなくなる1本回路による異常検出の手段は、
サーボアンプの故障以外にも、例えば演算部とサーボア
ンプの接続部の異常、演算部の異常に対しても有効であ
る。
Then, the valve drive signal 10 which is the output of the servo amplifier 104
The value of 7 is A±α. At this time, in the valve drive signal mutual diagnosis circuit 121 in the system summer calculation section, the value of the valve drive signal 107 corresponding to system I is A±α, the value of the valve drive signal 108 corresponding to system ■ is A, and the value of valve drive signal 108 corresponding to system ■ is A±α. Since the value of the corresponding valve drive signal 109 is A, it is determined that the servo amplifier 104 is abnormal. Similarly, the system ■
The valve drive signal mutual diagnosis circuit 122 in the calculation section and the system 1 mutual diagnosis circuit 123 for valve drive signals in the calculation section also determine that the servo amplifier 104 is abnormal. At this time, in the switching logic 110, since the servo amplifier 104 is judged to be abnormal by two or more mutual diagnostic circuits at the same time, the valve drive signal 107 corresponding to the system I is switched to the normal system ■ as the valve drive signal 111. Switch to the corresponding valve drive signal 108. As a result, the steam flow rate control valve 10.11 will not be driven by the valve drive signal that has become abnormal.The abnormality detection means using a single circuit is as follows:
In addition to failures of the servo amplifier, this is also effective against abnormalities in the connection between the arithmetic unit and the servo amplifier, and abnormalities in the arithmetic unit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、演算部が3重化されたタービン制御装
置において、弁駆動信号の相互診断回路を設けることに
より、弁駆動信号の相互診断を実施すれば、タービン制
御装置内の部品の故障が発生しても、蒸気流量調節弁本
体の時定数による時間遅れに影響されることなく、正常
なシステムに対応する弁駆動信号により前記蒸気流量調
節弁を駆動することが可能となるため、タービン制御装
置内の部品に故障が発生した時にも、前記蒸気流量調節
弁を最適に制御し、プラントへの影響を最小限に抑える
ことが出来る。
According to the present invention, in a turbine control device in which arithmetic units are triplexed, by providing a mutual diagnosis circuit for valve drive signals, if mutual diagnosis of valve drive signals is performed, failure of parts in the turbine control device can be prevented. Even if a steam flow control valve occurs, the steam flow control valve can be driven by a valve drive signal corresponding to a normal system without being affected by the time delay due to the time constant of the steam flow control valve body. Even when a failure occurs in a component within the control device, the steam flow rate control valve can be optimally controlled and the impact on the plant can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
弁駆動信号のタイムチャート図、第3図は原子力発電プ
ラントの系統図、第4図は従来のブロック図を示す。 1・・・主蒸気管、2・・・バイパス管、4・・・原子
容器、5・・・タービン制御装置、6・・・タービン、
7・・・復水器、10・・・主蒸気流量調節弁、11・
・・バイパス流量調節弁、101,102,103・・
・制御信号、104.105,106・・・サーボアン
プ、107゜108.109,111・・・弁駆動信号
、110・・・切替ロジック、112,113,114
・・・弁開度検出器、115,116,117・・・弁
開度信号。 萎1 図 茶2回 第3回 第4図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a time chart of valve drive signals, FIG. 3 is a system diagram of a nuclear power plant, and FIG. 4 is a conventional block diagram. DESCRIPTION OF SYMBOLS 1... Main steam pipe, 2... Bypass pipe, 4... Atomic container, 5... Turbine control device, 6... Turbine,
7... Condenser, 10... Main steam flow rate control valve, 11...
...Bypass flow rate control valve, 101, 102, 103...
・Control signal, 104.105,106...Servo amplifier, 107°108.109,111...Valve drive signal, 110...Switching logic, 112,113,114
... Valve opening degree detector, 115, 116, 117... Valve opening degree signal. 1st drawing 2nd drawing 3rd drawing 4th

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉容器と、タービンと、前記原子炉容器から前
記タービンに蒸気を導く主蒸気管と、前記タービンの下
流に配置された復水器と、前記主蒸気管より分岐されて
復水器に接続されるバイパス管とからなる原子力プラン
トの、前記分岐点より下流側で主蒸気管およびバイパス
管に設けられた蒸気流量調節弁と、前記分岐点より上流
側の配管内の蒸気圧を検出する第1検出手段と、前記タ
ービンの速度を検出する第2検出手段と、前記第1およ
び第2検出手段の出力信号に基づいて前記蒸気流量調節
弁により前記蒸気圧を所定量に調節する制御手段とを有
するタービン制御装置において、前記蒸気流量調節弁の
異常を速やかに検出し、前記原子炉容器内の圧力を変動
させることなくプラント運転を継続させることを目的と
して、前記主蒸気配管およびバイパス管に設けられた蒸
気流量調節弁の開度を最適に制御する手段を設けたこと
を特徴とするタービン制御装置。
1. A reactor vessel, a turbine, a main steam pipe that guides steam from the reactor vessel to the turbine, a condenser disposed downstream of the turbine, and a condenser branched from the main steam pipe. Detection of steam flow control valves installed in the main steam pipe and bypass pipe downstream of the branch point, and steam pressure in the piping upstream of the branch point, in a nuclear power plant consisting of a bypass pipe connected to the branch point. a first detection means for detecting the speed of the turbine; a second detection means for detecting the speed of the turbine; and control for adjusting the steam pressure to a predetermined amount by the steam flow rate control valve based on output signals of the first and second detection means. In the turbine control device, the main steam piping and the bypass control device are configured to promptly detect an abnormality in the steam flow rate control valve and to continue plant operation without changing the pressure in the reactor vessel. A turbine control device comprising means for optimally controlling the opening degree of a steam flow rate control valve provided in a pipe.
JP3739788A 1988-02-22 1988-02-22 Turbine control device Pending JPH01216006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3739788A JPH01216006A (en) 1988-02-22 1988-02-22 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3739788A JPH01216006A (en) 1988-02-22 1988-02-22 Turbine control device

Publications (1)

Publication Number Publication Date
JPH01216006A true JPH01216006A (en) 1989-08-30

Family

ID=12496395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3739788A Pending JPH01216006A (en) 1988-02-22 1988-02-22 Turbine control device

Country Status (1)

Country Link
JP (1) JPH01216006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129805U (en) * 1991-05-22 1992-11-27 三菱重工業株式会社 Governor valve servo motor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129805U (en) * 1991-05-22 1992-11-27 三菱重工業株式会社 Governor valve servo motor control device

Similar Documents

Publication Publication Date Title
US4071897A (en) Power plant speed channel selection system
JPH01216006A (en) Turbine control device
JP2001242286A (en) Steam turbine control device for nuclear power plant
JPS625402A (en) Plant controller
JP5319499B2 (en) Multiplexing controller
JP2509612B2 (en) Bypass controller
JPH01283081A (en) Double signal selecting device
RU2710944C1 (en) Method of control of hydraulic turbines (versions)
JPH041401A (en) Steam regulating valve vibration diagnosing device
JP2647392B2 (en) Controller abnormality diagnosis method
JPS592562Y2 (en) Redundant input signal source switching device
JPS60157603A (en) Feed flow rate controller for nuclear reactor
JP4427789B2 (en) Hydropower plant control equipment
JPH1069312A (en) Method for preparing assumed detection signal in plant controller of thermal power plant
JPS60134902A (en) Controller
JPH10222203A (en) Digital controller
JPS59140518A (en) Method and device for monitoring plant operation state
JPH0572378A (en) Trouble detection of nuclear reactor and its device, and ouput control of nuclear reactor and its device
JPS6336002A (en) Method for detecting main steam pressure for controlling turbine
JPH0821203A (en) Pressure controller
JPH0430604B2 (en)
JPS6025754B2 (en) Abnormality diagnosis device for reactor water supply control system
JPS59211109A (en) Control system for water supply
JPH04120601A (en) Controlling system for multiplex controller
JPS60252904A (en) Signal doubling device