JPH01215835A - Flame retardant for resin - Google Patents

Flame retardant for resin

Info

Publication number
JPH01215835A
JPH01215835A JP4073688A JP4073688A JPH01215835A JP H01215835 A JPH01215835 A JP H01215835A JP 4073688 A JP4073688 A JP 4073688A JP 4073688 A JP4073688 A JP 4073688A JP H01215835 A JPH01215835 A JP H01215835A
Authority
JP
Japan
Prior art keywords
flame retardant
slurry
resin
magnesium hydroxide
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4073688A
Other languages
Japanese (ja)
Inventor
Keita Nakanishi
圭太 中西
Yasuo Suzuki
康生 鈴木
Junji Nomura
野村 順治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nihon Kagaku Kogyo KK
Original Assignee
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nihon Kagaku Kogyo KK filed Critical Shin Nihon Kagaku Kogyo KK
Priority to JP4073688A priority Critical patent/JPH01215835A/en
Publication of JPH01215835A publication Critical patent/JPH01215835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a flame retardant improved in weather resistance and retaining the flame retardance, processability and physical properties of Mg(OH)2, by dispersing a fluoride of Mg of Ca in Mg(OH)2. CONSTITUTION:A soluble salt of Mg of Ca (e.g., CaCl2) and 1-2 equivalents, per equivalent of the desired fluoride, of hydrofluoric acid are added to an aqueous slurry containing 50-200g/l of Mg(OH)2 of a BET specific surface area <=20m<2>/g and a diameter in the direction of the major diameter of 0.3-3mum, and the mixture is agitated at room temperature for 30min to obtain a slurry consisting of 95wt.% Mg(OH)2 in which 0.1-5wt.% Mg or Ca fluoride is dispersed. This slurry is optionally heated to 50-100 deg.C, and 0.1-10%, based on the solid content, metal salt of a fatty acid (e.g., sodium stearate) is added to the slurry to perform its surface treatment, and the product is filtered, washed with water and dried.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は樹脂用難燃剤、特に高温や高湿の大気中での耐
候性に優れた樹脂用難燃剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flame retardant for resins, and particularly to a flame retardant for resins that has excellent weather resistance in high temperature and high humidity atmosphere.

[従来の技術] 樹脂の難燃化技術としては、水酸化アルミニウム系、ハ
ロゲン化合物系、リン化合物系、ホウ素化合物系、アン
チモン化合物系などの難燃剤の添加による方法及び樹脂
の構造そのものを難燃化する方法が提案され、実施され
てきている。しかし、1984年の地下電話ケーブルの
火災事故以降、有害ガスの発生しない、更には煙の発生
しない難燃化技術が強く要求されている。
[Conventional technology] Flame retardant techniques for resins include adding flame retardants such as aluminum hydroxide, halogen compounds, phosphorus compounds, boron compounds, and antimony compounds, and making the structure of the resin itself flame retardant. Methods have been proposed and implemented. However, since the 1984 underground telephone cable fire accident, there has been a strong demand for flame retardant technology that does not generate harmful gases or even smoke.

それに伴い、水酸化アルミニウムを主とする無機化合物
が多く用いられている。水酸化アルミニウムは分解時の
熱吸収によって樹脂を難燃化すると考えられているが、
分解温度が樹脂の燃焼温度より低いため難燃効果が小さ
いという問題がある。これに対して水酸化マグネシウム
はその分解温度が樹脂の燃焼温度に近く難燃効果が大き
い。有毒ガスや煙の発生もなくすべての点で優れており
、注目されるようになってきた。
Along with this, many inorganic compounds mainly containing aluminum hydroxide are being used. Aluminum hydroxide is thought to make resin flame retardant by absorbing heat during decomposition, but
There is a problem that the flame retardant effect is small because the decomposition temperature is lower than the combustion temperature of the resin. On the other hand, magnesium hydroxide has a decomposition temperature close to the combustion temperature of the resin, and has a large flame retardant effect. It has been attracting attention because it is superior in all respects, as it does not emit toxic gas or smoke.

難燃剤用水酸化マグネシウムとしては、次のようなもの
が提案されてきた。
The following have been proposed as magnesium hydroxide for flame retardants.

例えば特許第1374030号では難燃剤として、難燃
性に優れ、かつ樹脂の性質を大きく損なわない水酸化マ
グネシウムとしてBET比表面積が20m2/g以下で
かつBET比表比表面積/ブレー比法比表面積が1〜3
の範囲にあるものを提案している。また例えば特願昭6
2− ILL(90号では、難燃剤として樹脂中の分散
が良く混練樹脂の脆化温度が低い水酸化マグネシウムを
得る方法として、水酸化マグネシウム種粒子及びマグネ
シウム塩の存在するスラリー中でマグネシアを水和させ
る方法を提案している。また、特願昭62−3173’
+5号では水酸化マグネシウムを配合した樹脂が大気中
に放置後に白色の粉をふく(以下粉ふき現象と呼ぶ)の
を防止するために水酸化マグネシウム中にあらかじめマ
グネシウムやカルシウムの炭酸塩あるいは塩基性炭酸塩
を含んだ難燃剤を提案している。
For example, in Japanese Patent No. 1374030, magnesium hydroxide, which has excellent flame retardancy and does not significantly impair the properties of the resin, is used as a flame retardant, and has a BET specific surface area of 20 m2/g or less, and a BET specific surface area / Bray ratio specific surface area. 1-3
We are proposing something within this range. Also, for example,
2-ILL (No. 90) uses magnesia in water in a slurry containing magnesium hydroxide seed particles and magnesium salt as a method for obtaining magnesium hydroxide as a flame retardant that has good dispersion in the resin and a low embrittlement temperature of the kneaded resin. He also proposed a method of harmonizing the
In No. +5, in order to prevent the resin containing magnesium hydroxide from forming a white powder after being left in the air (hereinafter referred to as the powdering phenomenon), magnesium or calcium carbonate or basic acid was added to the magnesium hydroxide in advance. They are proposing flame retardants containing carbonates.

上記のような水酸化マグネシウムは、難燃性に優れ、有
害ガスや煙を出さず、樹脂の加工性、物理的性質を大き
く損なうことはない。さらに、特願昭62−31731
5号では、樹脂放置後の粉ふき現象を防ぐ効果も得られ
ている。しかしながら、難燃剤配合(含有)樹脂は高温
や高湿下で長期にわたって使われることもあり、そのよ
うな条件下でも粉ふき現象を起こさないこと、さらには
難燃剤溶出による劣化を起こさないことが望まれている
Magnesium hydroxide as described above has excellent flame retardancy, does not emit harmful gas or smoke, and does not significantly impair the processability or physical properties of the resin. Furthermore, patent application No. 62-31731
No. 5 also has the effect of preventing the dusting phenomenon after the resin is left standing. However, flame retardant-containing resins may be used for long periods of time at high temperatures and high humidity, and it is important that they do not cause flaking or deterioration due to flame retardant elution even under such conditions. desired.

[発明が解決しようとする課題] 本発明は、こうした実情に鑑み、高温、高湿下で使用し
ても上記の欠点を生じない、新規な水酸化マグネシウム
基材樹脂用難燃剤を提供することを目的とするものであ
る。
[Problems to be Solved by the Invention] In view of these circumstances, the present invention provides a novel flame retardant for magnesium hydroxide-based resin that does not cause the above-mentioned drawbacks even when used under high temperature and high humidity conditions. The purpose is to

[課題を解決するための手段] 本発明者らは、従来の水酸化マグネシウムを難燃剤とし
て使用した場合の難燃性、無害性、加工性、物理的性質
を維持し、かつ粉ふき現象及び溶解により変質を起こし
にくい樹脂用難燃剤を得るべく鋭意努力を続けた結果、
該難燃剤に関して全く新しい知見を得て本発明を完成し
た。すなわち、本発明の構成はマグネシウムあるいはカ
ルシウムのフッ素化合物が水酸化マグネシウム中に分散
して含有されてなる樹脂用難燃剤である。ここでマグネ
シウムあるいはカルシウムのフッ素化合物とは、マグネ
シウム、カルシウムのフッ化物、オキシフッ化物、フッ
化水素吸着体などを意味する。
[Means for Solving the Problems] The present inventors have devised a method that maintains the flame retardancy, non-toxicity, processability, and physical properties of conventional magnesium hydroxide when used as a flame retardant, and also reduces the dusting phenomenon and As a result of continued efforts to obtain a flame retardant for resins that does not easily deteriorate due to dissolution,
The present invention was completed by obtaining completely new knowledge regarding the flame retardant. That is, the structure of the present invention is a flame retardant for resins containing a fluorine compound of magnesium or calcium dispersed in magnesium hydroxide. Here, the fluorine compound of magnesium or calcium means a fluoride of magnesium or calcium, an oxyfluoride, a hydrogen fluoride adsorbent, or the like.

マグネシウムあるいはカルシウムのフッ素化合物は、そ
のうちの1種以上が含まれていればよい。ただし、それ
らの粒子は水酸化マグネジラム中に分散していなければ
ならない。また、その量は粉ふき現象及び溶解による変
質を防止するとともに難燃性、加工性、物理的性質を維
持するという観点から0.1〜5重量%が好ましく、よ
り好ましくは0.1〜3重量%である。
The fluorine compound of magnesium or calcium may contain at least one of them. However, those particles must be dispersed in the magnesium hydroxide. In addition, the amount thereof is preferably 0.1 to 5% by weight, more preferably 0.1 to 3% by weight from the viewpoint of preventing deterioration due to dusting and dissolution and maintaining flame retardancy, processability, and physical properties. Weight%.

該樹脂用難燃剤を製造するには水酸化マグネシウムにマ
グネシウムあるいはカルシウムのフッ素化合物を湿式で
混合する方法、水酸化マグネシウムスラリーあるいは同
スラリーに加えて塩化マグネシウムや塩化カルシウムの
ようなマグネシウムやカルシウムの可溶性塩を含むスラ
リーにフッ化水素酸を添加する方法(以下、フッ素化法
と呼ぶ)などが採用される。
To produce the flame retardant for resins, a fluorine compound of magnesium or calcium is wet mixed with magnesium hydroxide, or a magnesium hydroxide slurry or a soluble form of magnesium or calcium such as magnesium chloride or calcium chloride is added to the slurry. A method of adding hydrofluoric acid to a slurry containing salt (hereinafter referred to as a fluorination method) is adopted.

フッ素化法による場合、水酸化マグネシウムスラリー濃
度は撹拌の効率、経済性、フッ素化の効率などから考え
て50〜200g/ Q程度が好ましい。用いるフッ化
水素酸の量は、希望するフッ化物の当量の1〜2倍加え
ることが好ましいマグネシウムあるいはカルシウムイオ
ンの存在下ではフッ素化は室温で30分程度行えばよい
が、これらのイオンがほとんど存在しない場合は50℃
以上に加熱して行うことが好ましい。
In the case of the fluorination method, the magnesium hydroxide slurry concentration is preferably about 50 to 200 g/Q in consideration of stirring efficiency, economical efficiency, fluorination efficiency, etc. The amount of hydrofluoric acid used is preferably 1 to 2 times the equivalent of the desired fluoride.In the presence of magnesium or calcium ions, fluorination can be carried out at room temperature for about 30 minutes; 50℃ if not present
It is preferable to carry out the heating at a higher temperature.

本発明に提案される樹脂用難燃剤の原料である水酸化マ
グネシウムは、マグネシウム塩の中和、マグネシウム塩
の中和とそれに続く加圧処理、マグネシウムの水和など
どのような方法で製造してもよいが、この水酸化マグネ
シウムの粒子及び分散性が最終的に樹脂の難燃性、加工
性、物理的性質に大きく影響するので、BET比表面積
20m’ 7g以下で長径方向の径が0.3〜3μmの
分散性に優れた水酸化マグネシウムを用いることが好ま
しい。より好ましくはBET比表面積10m2/g以下
で長径方向の径が0.5〜2.5μmの分散性のよい水
酸化マグネシウムを用いることが適当である。また、後
述の如く表面処理したものを用いてもよい。
Magnesium hydroxide, which is a raw material for the flame retardant for resins proposed in the present invention, can be produced by any method such as neutralization of magnesium salt, neutralization of magnesium salt followed by pressure treatment, or hydration of magnesium. However, since the particles and dispersibility of magnesium hydroxide ultimately greatly affect the flame retardancy, processability, and physical properties of the resin, the BET specific surface area is 20 m'7 g or less and the diameter in the major axis direction is 0. It is preferable to use magnesium hydroxide with excellent dispersibility of 3 to 3 μm. More preferably, it is appropriate to use magnesium hydroxide with good dispersibility, which has a BET specific surface area of 10 m2/g or less and a diameter in the major axis direction of 0.5 to 2.5 μm. Alternatively, a material that has been surface-treated as described below may be used.

本発明の樹脂用難燃剤における水酸化マグネシウムの含
量は難燃性、加工性、物理的性質を維持するという観点
から92重量%以上であることが好ましい。
The content of magnesium hydroxide in the flame retardant for resins of the present invention is preferably 92% by weight or more from the viewpoint of maintaining flame retardancy, processability, and physical properties.

本発明の樹脂難燃剤は樹脂の難燃性、加工性、物理的性
質を維持するため、脂肪酸金属塩によって表面処理して
用いることが好ましい。脂肪酸金属塩としては、例えば
ステアリン酸ナトリウム、オレイン酸ナトリウムなどを
用いることができる。表面処理は、例えば50〜100
’Cに加熱した50〜200g/ Mの水スラリーに撹
拌下で脂肪酸金属塩を固形分に対して約0.1〜約lo
%添加して行うことができる。
The resin flame retardant of the present invention is preferably used after being surface-treated with a fatty acid metal salt in order to maintain the flame retardancy, processability, and physical properties of the resin. As the fatty acid metal salt, for example, sodium stearate, sodium oleate, etc. can be used. Surface treatment is, for example, 50 to 100
Add fatty acid metal salts under stirring to a 50-200 g/M water slurry heated to
This can be done by adding %.

本発明の樹脂用難燃剤は広く一般の樹脂に添加されて、
これらの樹脂を難燃化することができる。これらの樹脂
としては熱可塑性樹脂、熱硬化性樹脂あるいはゴム状の
ものいずれのものでもよい。
The flame retardant for resins of the present invention can be widely added to general resins,
These resins can be made flame retardant. These resins may be thermoplastic resins, thermosetting resins, or rubber-like resins.

[実施例] 以下、実施例及び比較例により本発明を具体的に説明す
る。
[Examples] Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples.

実施例1 比表面積6.6m27g、長径方向の径が約2μmの六
角板状水酸化マグネシウムを100g/ 51 、塩化
マグネシウムを0.OL3mol/ Q含む水スラリー
15交に室温で5%フッ化水素酸水溶液39gを添加し
、30分間撹拌した。このスラリーを10%オレイン酸
ナトリウム eoogにより80 ℃で1時間表面処理
した。このスラリーを2香炉紙を用いて濾過した後、約
5倍量の純水で洗浄した。
Example 1 100g/51 of hexagonal plate-shaped magnesium hydroxide with a specific surface area of 6.6m27g and a diameter in the major axis direction of about 2μm, and 0.51g of magnesium chloride. 39 g of a 5% aqueous hydrofluoric acid solution was added to 15 portions of a water slurry containing 3 mol/Q of OL at room temperature, and the mixture was stirred for 30 minutes. This slurry was surface treated with 10% sodium oleate eoog at 80° C. for 1 hour. This slurry was filtered using two incense burner papers, and then washed with about 5 times the amount of pure water.

濾過ケークを通常の箱型電気乾燥器で120 ℃、12
時間乾燥した。
The filter cake was heated to 120°C in an ordinary box-type electric dryer for 12 minutes.
Dry for an hour.

この乾燥ケークl11g、エチレンビニルアセテート樹
脂77g及びカーボン40%を含有するポリエチレン樹
脂10gを、ニーダ−で140 ℃、1゜分間真空脱気
しながら混練した。この混練物を150mmX 100
n+m X 2+n+nの金型中で160 ℃、40k
g/cm 2で加圧成形しシートを得た。
11 g of this dry cake, 77 g of ethylene vinyl acetate resin, and 10 g of polyethylene resin containing 40% carbon were kneaded in a kneader at 140 DEG C. for 1 DEG while being vacuum degassed. This kneaded material is 150mm x 100
160℃, 40k in n+m x 2+n+n mold
A sheet was obtained by pressure molding at g/cm 2 .

このシートからの切り出し片を用いてJIS6301に
より低温脆性試験をJ I S 7133により引張り
試験を行った。それらの結果を表1に示す。
Using pieces cut out from this sheet, a low temperature brittleness test was conducted in accordance with JIS6301, and a tensile test was conducted in accordance with JIS 7133. The results are shown in Table 1.

また、混練時のトルクの尺度としてニーダ−の空運転時
の電流値と混練1o分後の電流値との差(A)を表1に
示す。尚、乾燥ケーク中のMg (011)2含量は9
7%、フッ素化合物含量は0.17%であった。
Further, as a measure of the torque during kneading, Table 1 shows the difference (A) between the current value when the kneader was running idle and the current value after 10 minutes of kneading. In addition, the Mg (011)2 content in the dry cake is 9
7%, and the fluorine compound content was 0.17%.

難燃剤の樹脂中での耐候性を調べるため、成形シートか
ら 2.5c+nX 4cmの矩形の試料を切出し、以
下に述べる炭酸化試験及び溶解試験に供した。炭酸化試
験は次のように行った。70℃飽和水蒸気雰囲気のデシ
ケータ中に上記試料を吊し、そこに90℃の水中を経由
した炭酸ガスを通じ約1日間放置した。放置後の試料を
取り出し、樹脂表面の粉ふき(白化)の程度を目視によ
り評価するとともに、試料の試験前に対する重量増加を
調べた。溶解試験は次のように行った。
In order to investigate the weather resistance of the flame retardant in the resin, a rectangular sample of 2.5c+nX 4cm was cut from the molded sheet and subjected to the carbonation test and dissolution test described below. The carbonation test was conducted as follows. The sample was suspended in a desiccator in a 70° C. saturated steam atmosphere, and carbon dioxide gas was passed through water at 90° C. and left there for about 1 day. The sample after being left was taken out, and the degree of dusting (whitening) on the resin surface was visually evaluated, and the weight increase of the sample compared to before the test was examined. The dissolution test was conducted as follows.

室温で水道水を満したシャーレ中に上記試料を浸し、さ
らにシャーレをデシケータ中に入れ、炭酸ガスをデシケ
ータ中に吹き込みながら4日間放置した。この前後にお
ける試料の重量変化(重量減)を調べた。それらの結果
を表1に示す。
The sample was immersed in a Petri dish filled with tap water at room temperature, and the Petri dish was further placed in a desiccator and left for 4 days while blowing carbon dioxide gas into the desiccator. The weight change (weight loss) of the sample before and after this was investigated. The results are shown in Table 1.

実施例2 実施例1で用いる 5%フッ化水素酸水溶液を98gと
し、同様のフッ素化処理及びオレイン酸ナトリウムによ
る表面処理を行った。さらに同様の樹脂混練、成形を行
い評価した。それらの結果を表1に示す。
Example 2 98 g of the 5% aqueous hydrofluoric acid solution used in Example 1 was subjected to the same fluorination treatment and surface treatment with sodium oleate. Furthermore, similar resin kneading and molding were performed and evaluated. The results are shown in Table 1.

実施例3 実施例1で用いる 5%フッ化水素酸水溶液を193g
とし、同様のフッ素化処理及びオレイン酸ナトリウムに
よる表面処理を行った。さらに同様の樹脂混練、成形を
行い評価した。それらの結果を表1に示す。
Example 3 193g of 5% hydrofluoric acid aqueous solution used in Example 1
Then, similar fluorination treatment and surface treatment with sodium oleate were performed. Furthermore, similar resin kneading and molding were performed and evaluated. The results are shown in Table 1.

実施例4 実施例1の水酸化マグネシウムスラリー1551に室温
で塩化マグネシウム6水塩LO5gを少量の水に溶かし
て添加し30分間撹拌した後、5%フッ化水素酸水溶液
578gを添加し、30分間撹拌した。このスラリーに
実施例1と同様の表面処理を行った後、同様の樹脂混線
、成形を行い評価した。それらの結果を表1に示す。
Example 4 5 g of magnesium chloride hexahydrate LO dissolved in a small amount of water was added to the magnesium hydroxide slurry 1551 of Example 1 at room temperature, stirred for 30 minutes, and then 578 g of a 5% aqueous hydrofluoric acid solution was added and stirred for 30 minutes. Stirred. This slurry was subjected to the same surface treatment as in Example 1, and then subjected to the same resin mixing and molding for evaluation. The results are shown in Table 1.

実施例5 実施例1の水酸化マグネシウムスラリー159に室温で
試薬特級フッ化マグネシウムを15g添加し、30分間
撹拌した。さらに実施例1と同様のオレイン酸ナトリウ
ムによる表面処理を行った後、同様の樹脂混練、成形を
行い評価した。
Example 5 15 g of reagent special grade magnesium fluoride was added to the magnesium hydroxide slurry 159 of Example 1 at room temperature and stirred for 30 minutes. Furthermore, after performing the same surface treatment with sodium oleate as in Example 1, the same resin kneading and molding were performed and evaluated.

それらの結果を表1に示す。The results are shown in Table 1.

実施例6 実施例1の水酸化マグネシウムをスラリー15父に室温
で無水塩化カルシウム4.3gを少量の水に溶かして添
加し、30分間撹拌した後、5%フッ化水素酸水溶液3
1gを添加、30分間撹拌した。このスラリーに実施例
1と同様の表面処理を行った後、同様の樹脂混練成形を
行い評価した。それらの結果を表1に示す。
Example 6 Magnesium hydroxide from Example 1 was added to slurry 15 at room temperature by dissolving 4.3 g of anhydrous calcium chloride in a small amount of water, and after stirring for 30 minutes, 5% aqueous hydrofluoric acid solution 3 was added.
1 g was added and stirred for 30 minutes. This slurry was subjected to the same surface treatment as in Example 1, and then subjected to the same resin kneading molding and evaluation. The results are shown in Table 1.

実施例7 実施例6で塩化カルシウム量をl1g、  5%フッ化
水素酸水溶液を77gとして同様の操作を行った。それ
らの結果を表1に示す。
Example 7 The same operation as in Example 6 was carried out except that the amount of calcium chloride was 11 g and the 5% aqueous hydrofluoric acid solution was 77 g. The results are shown in Table 1.

実施例8 実施例6で塩化カルシウム量を21g、  5%フッ化
水素酸水溶液を154gとして同様の操作を行った。そ
れらの結果を表1に示す。
Example 8 The same operation as in Example 6 was carried out except that the amount of calcium chloride was 21 g and the 5% aqueous hydrofluoric acid solution was 154 g. The results are shown in Table 1.

実施例9゜ 実施例6で塩化カルシウム量を43g、  5%フッ化
水素酸水溶液を308gとして同様の操作を行った。そ
れらの結果を表1に示す。
Example 9 The same operation as in Example 6 was carried out except that the amount of calcium chloride was 43 g and the 5% aqueous hydrofluoric acid solution was 308 g. The results are shown in Table 1.

実施例10 実施例6で塩化カルシウム量を85g、  5%フッ化
水素酸水溶液を615gとして同様の操作を行った。そ
れらの結果を表1に示す。
Example 10 The same operation as in Example 6 was carried out except that the amount of calcium chloride was 85 g and the 5% aqueous hydrofluoric acid solution was 615 g. The results are shown in Table 1.

比較例1 実施例1の水酸化マグネシウムスラリー1551に実施
例1と同様のオレイン酸ナトリウムによる表面処理のみ
を行い評価した。それらの結果を表1に示す。
Comparative Example 1 Magnesium hydroxide slurry 1551 of Example 1 was subjected to the same surface treatment with sodium oleate as in Example 1 and evaluated. The results are shown in Table 1.

実施例1〜10で難燃剤複合樹脂の難燃性は比較例1と
同程度で問題はなかった。
In Examples 1 to 10, the flame retardancy of the flame retardant composite resin was comparable to that of Comparative Example 1, and there were no problems.

[発明の効果] 以上説明したように、本発明の難燃剤は水酸化マグネシ
ウムが本来有・する難燃性、加工性および物理的性質を
維持し、しかも、耐候性に優れた樹脂用難燃剤である。
[Effects of the Invention] As explained above, the flame retardant of the present invention maintains the flame retardancy, processability, and physical properties inherent to magnesium hydroxide, and is a flame retardant for resins that has excellent weather resistance. It is.

特許出願人 新日本化学工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏Patent applicant Shin Nippon Chemical Industry Co., Ltd. Agent Patent Attorney Hidetake Komatsu Agent Patent Attorney Hiroshi Asahi

Claims (1)

【特許請求の範囲】[Claims] マグネシウムあるいはカルシウムのフッ素化合物が水酸
化マグネシウム中に分散して含有されてなる樹脂用難燃
剤。
A flame retardant for resins containing a fluorine compound of magnesium or calcium dispersed in magnesium hydroxide.
JP4073688A 1988-02-25 1988-02-25 Flame retardant for resin Pending JPH01215835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073688A JPH01215835A (en) 1988-02-25 1988-02-25 Flame retardant for resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073688A JPH01215835A (en) 1988-02-25 1988-02-25 Flame retardant for resin

Publications (1)

Publication Number Publication Date
JPH01215835A true JPH01215835A (en) 1989-08-29

Family

ID=12588918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073688A Pending JPH01215835A (en) 1988-02-25 1988-02-25 Flame retardant for resin

Country Status (1)

Country Link
JP (1) JPH01215835A (en)

Similar Documents

Publication Publication Date Title
KR100607429B1 (en) Magnesium hydroxide particles, process for producing the same, and resin composition containing the particles
RU2567910C2 (en) Synthetic resin filler, synthetic resin composition, method for production thereof and moulded article made therefrom
US4764539A (en) Flame resistant polymers
JPH062843B2 (en) Flame retardant and flame retardant resin composition
TWI593787B (en) Flame retardant, flame retardant composition and compact
KR19990037159A (en) Acid-resistant, thermoplastic resin composition containing magnesium hydroxide and its use
CN107778663B (en) Montmorillonite composite flame-retardant material and preparation method thereof
CN102492172A (en) Preparation method and application of nanometer organic-layered composite metal hydroxide
CN103408960B (en) Lanthanum stannate and application of composition of lanthanum stannate and inorganic flame retardant in halogen-containing superpolymer
CN104877177A (en) Coated fire retardant, preparation method and application thereof as well as molding composition consisting of coated fire retardant
JP3107926B2 (en) Flame retardant and flame retardant resin composition
JP2826973B2 (en) Composite metal hydroxide
JPH01215835A (en) Flame retardant for resin
US4806162A (en) Flame resistant polymers
WO1988000959A1 (en) Halogen-free fire-retardant synthetic resin composition
Yang et al. Effect of zinc hydroxystannate coated M-HOS whisker on flame retardant properties of flexible PVC
CN103709589A (en) Mica-ABS (Acrylonitrile Butadiene Styrene) flame-retardant insulation material and preparation method thereof
Cullis et al. The flame retardance of a natural polymer by a sulphur-aluminium-bromine system
JPH05112669A (en) Flame retardant, its production and flame-retardant resin composition incorporated with the same
JP3244690B2 (en) Stabilized red phosphorus and flame retardant resin composition
JP3444732B2 (en) Flame retardant composition for chlorine-containing polymer and resin composition containing the same
CN105218861A (en) A kind of flame-retardant smoke inhibition organically-modified hydrotalcite and preparation method thereof
CN104861206A (en) Coated flame retardant, preparation method and application thereof, as well as high polymer composition comprising coated flame retardant
WO1998055541A1 (en) Divalent metal stannate products
CN111217551A (en) Inorganic mineral polymeric fiber crystal halogen-free flame retardant powder