JPH01215833A - Production of poly-p-phenylene sulfide molding - Google Patents

Production of poly-p-phenylene sulfide molding

Info

Publication number
JPH01215833A
JPH01215833A JP4309088A JP4309088A JPH01215833A JP H01215833 A JPH01215833 A JP H01215833A JP 4309088 A JP4309088 A JP 4309088A JP 4309088 A JP4309088 A JP 4309088A JP H01215833 A JPH01215833 A JP H01215833A
Authority
JP
Japan
Prior art keywords
molding
temperature
pps
polymer
phenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4309088A
Other languages
Japanese (ja)
Inventor
Osami Shinonome
東雲 修身
Tomoyuki Izumi
智之 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4309088A priority Critical patent/JPH01215833A/en
Publication of JPH01215833A publication Critical patent/JPH01215833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To improve the heat resistance of a molding of a polymer based on poly-p-phenylene sulfide at relatively low temperature in good efficiency without causing any dimensional change of the molding, by irradiating said molding with an ionizing radiation. CONSTITUTION:A polymer (A) mainly consisting of repeating p-phenylene sulfide units is optionally mixed with additives (B) such as another polymer (e.g., PP), an antioxidant, a slip agent, a matting agent and a pigment, and the obtained mixture is molten at 290-330 deg.C and molded into any desired shape to obtain a molding having a temperature higher than the glass transition temperature of component A. This molding is irradiated with an ionizing radiation at a dose of 5-100 Mrad in air under conditions of a temperature of 100-200 deg.C and an acceleration voltage of 10-10,000kV.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維、フィルムその他の成形品として有用な
、耐熱性ポリP−フェニレンスルフィド(以下PPSと
略記する。)系成形品の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing heat-resistant polyP-phenylene sulfide (hereinafter abbreviated as PPS)-based molded products useful as fibers, films, and other molded products. Regarding.

(従来の技術) PPSは耐熱性、耐候性、耐薬品性、難燃性等において
優れた性質を有し、しかも溶融成形が可能であるという
メリットが生かされて、近年、とくに繊維、フィルムそ
の他の成形品の分野で注目され、市場開拓が進められて
いる。
(Prior art) PPS has excellent properties in terms of heat resistance, weather resistance, chemical resistance, flame retardancy, etc., and can be melt-molded. It has attracted attention in the field of molded products, and market development is progressing.

ppsの耐熱性が高いのは、比較的高融点であること(
通常280〜290℃)によることは勿論のことであり
、ポリエステル(ポリエチレンテレフタレート)等に比
して高温領域での使用を可能ならしめている。
The reason why pps has high heat resistance is that it has a relatively high melting point (
Of course, the temperature is 280 to 290°C), which makes it possible to use it in a high temperature range compared to polyester (polyethylene terephthalate) and the like.

しかしながら、その耐熱性も高温フィルター。However, its heat resistance is also high temperature filter.

FPC,コンデンサー等の分野では、まだ不十分である
といわれており、より高温での使用に耐えられる製品の
実用化が望まれているのが実情である。
In the fields of FPCs, capacitors, etc., it is said that this is still insufficient, and the reality is that there is a desire to put into practical use products that can withstand use at higher temperatures.

これに対する対策として、ppsが酸素の存在下での加
熱処理によって、硬化反応(分子鎖延長や橋かけ等)を
起こし見掛は上の耐熱性が向上する現象を利用すること
が提案されているCD、G。
As a countermeasure against this, it has been proposed to take advantage of the phenomenon in which heat treatment of pps in the presence of oxygen causes a curing reaction (molecular chain extension, crosslinking, etc.), which apparently improves heat resistance. C.D., G.

Brady;J、八pp1.Po1ymer、sci、
、20.2541(1976)  )  。
Brady; J, 8pp1. Polymer, sci.
, 20.2541 (1976)).

(発明が解決しようとする課題) しかしながら、この方法のように、溶融成形した成形品
を200″C以上でかつPPSの融点以下の温度で加熱
硬化する方法では、そのような高温でPPSの熱による
寸法変化が大きく、また寸法変化を少なくしようとして
処理温度を下げると期待される硬化の程度が低下してし
まうという問題があった。
(Problem to be Solved by the Invention) However, in this method, in which a melt-molded molded product is heated and cured at a temperature of 200"C or higher and below the melting point of PPS, the heat of PPS is There was a problem in that the dimensional change caused by the dimensional change was large, and if the processing temperature was lowered in an attempt to reduce the dimensional change, the expected degree of hardening would be reduced.

本発明は、比較的低温でPPS系成形品の耐熱性を改良
し得る方法を提供することを目的とするものである。
An object of the present invention is to provide a method that can improve the heat resistance of PPS molded products at relatively low temperatures.

(課題を解決するための手段) 本発明者らは、上記のごとき問題のないPPS系成形品
の耐熱性を改良する方法を提供すべく鋭意研究を重ねた
結果、一般に芳香族系のポリマーは放射線に対して鈍感
であるという従来の知見に反して、PPS系成形品の耐
熱性は電離性放射線の照射によって著しく向上すること
及びその効果の発現にはPPS系ポリマーのガラス転移
点以上の温度での照射で十分であることを見出し1本発
明に到達した。
(Means for Solving the Problems) The present inventors have conducted intensive research to provide a method for improving the heat resistance of PPS molded products that does not have the above-mentioned problems. Contrary to the conventional knowledge that PPS-based molded products are insensitive to radiation, the heat resistance of PPS-based molded products is significantly improved by irradiation with ionizing radiation, and the effect is achieved only at temperatures above the glass transition point of PPS-based polymers. The present invention was achieved by discovering that irradiation at 100° C. is sufficient.

すなわち9本発明は、PPSを主成分とするポリマーか
らなり、該ポリマーのガラス転移点以上の温度を有する
成形品に電離性放射線を照射することを特徴とする耐熱
性PPS系成形品の製造方法を要旨とするものである。
That is, the present invention provides a method for producing a heat-resistant PPS molded article, which comprises irradiating ionizing radiation to a molded article that is made of a polymer whose main component is PPS and has a temperature equal to or higher than the glass transition point of the polymer. The main points are as follows.

本発明においてPPSを主成分とするポリマーからなる
成形品とは、pps成分を主たる繰り返し単位とするポ
リマー、好ましくは80モル%以上、とくに好ま、シ<
は90モル%以上がPPs成分で占められているポリマ
ーからなる繊維、フィルムその他の成形品を意味するが
9本発明の目的を阻害しない範囲で他のポリマー、例え
ば、ポリエチレン、ポリプロピレン、ポリアミド、ポリ
エステル、ボリアリレート、ポリスチレン、ポリカーボ
ネート、ポリフェニレンオキシド、ポリイミド、ポリア
ミドイミド、ポリエーテルエーテルケトン、ポリエーテ
ルケトン、ポリスルホン、ポリエーテルスルホン等を含
むものや、あるいは例えば、酸化防止剤、スリップ剤、
つや消し剤、顔料。
In the present invention, a molded article made of a polymer whose main component is PPS is a polymer whose main repeating unit is a pps component, preferably 80 mol% or more, particularly preferred,
means fibers, films, and other molded products made of a polymer in which 90 mol% or more is occupied by a PPs component, but other polymers, such as polyethylene, polypropylene, polyamide, polyester, may be used within the range that does not impede the purpose of the present invention. , polyarylate, polystyrene, polycarbonate, polyphenylene oxide, polyimide, polyamideimide, polyetheretherketone, polyetherketone, polysulfone, polyethersulfone, etc., or, for example, antioxidants, slip agents,
Matting agents, pigments.

ガラス繊維等の添加剤を含むものであっても差し支えな
い。
It may also contain additives such as glass fiber.

PPSが他の共重合成分を含む場合、共重合成分として
は9例えば、3官能成分、スルホン成分。
When PPS contains other copolymerization components, the copolymerization components include 9, for example, a trifunctional component and a sulfone component.

エーテル成分、ケトン成分、メタ結合成分、ビフェニル
結合成分、置換スルフィド成分等があげられる。
Examples include an ether component, a ketone component, a meta bond component, a biphenyl bond component, a substituted sulfide component, and the like.

これらのPPSもしくはこれを主成分とする共重合PP
Sは1例えば、米国特許第3,354,129号明細書
に記載されているP−ジクロルベンゼンと硫化ソーダを
極性溶媒中で反応させる方法等従来公知の方法で合成す
ることができる。
These PPS or copolymerized PP mainly composed of these PPS
S can be synthesized by a conventionally known method, such as the method described in US Pat. No. 3,354,129, in which P-dichlorobenzene and sodium sulfide are reacted in a polar solvent.

本発明にq)いられる成形品は、従来公知の溶融成形方
法で析望される形状に成形することができる。その場・
)、ポリマーの溶融温度としては290〜330 ’l
が好ましく、繊維やフィルムの場合には必要に贋じて延
伸が施される。
The molded article included in q) of the present invention can be molded into a desired shape by a conventionally known melt molding method. The spot/
), the melting temperature of the polymer is 290-330'l
is preferable, and in the case of fibers and films, stretching is performed if necessary.

本発明に。ってPPS系成形品の耐熱性を改良するには
、Fl)S系ポリマーのガラス転移点以上の温度を有す
る成形品に電離性放射線を照射する。
To the present invention. Therefore, in order to improve the heat resistance of PPS-based molded articles, ionizing radiation is irradiated to the molded article having a temperature equal to or higher than the glass transition point of the Fl)S-based polymer.

電離性放射線としては1例えば、電子線やγ線があげら
るが、と(に電子線が好ましく用いられる。
Examples of ionizing radiation include electron beams and gamma rays, with electron beams being preferably used.

放射線量としては、5〜100Mrad、  とくに1
0〜100Mradが好ましい。あまり線量が多過ぎる
と成形品の物性を低下させることがあるので好ましくな
い。また、電子線を用いる場合、電子線の到達深度は加
速電圧に比例して直線的に増加するので、成形品の厚み
に応じて加速電圧を増すことが好ましい。加速電圧は、
10〜100OOKV。
The radiation dose is 5 to 100 Mrad, especially 1
0 to 100 Mrad is preferred. If the dose is too large, the physical properties of the molded article may deteriorate, which is not preferable. Furthermore, when using an electron beam, the depth that the electron beam reaches increases linearly in proportion to the accelerating voltage, so it is preferable to increase the accelerating voltage in accordance with the thickness of the molded product. The acceleration voltage is
10~100OOKV.

とくに50〜5000KVの範囲が好ましい。照射時の
成形品の温度は、pps系ポリマーのガラス転移点以上
であることが要求される。その温度がガラス転移点より
低い場合は、耐熱性の改良効果が低下する。PPS系ポ
リマーのガラス転移点は1通常、80〜95℃であるの
でこの温度領域より高温での処理が要求されるが、実用
的な温度は100〜200℃である。温度が高いほど照
射に要する時間は短くてもよいが、あまり高温になると
成形品の寸法変化が起こり得るので、200°C以下が
好ましい。照射雰囲気としては、空気中。
A range of 50 to 5000 KV is particularly preferred. The temperature of the molded article during irradiation is required to be higher than the glass transition point of the pps polymer. If the temperature is lower than the glass transition point, the effect of improving heat resistance will be reduced. Since the glass transition point of PPS polymer is usually 80 to 95°C, processing at a higher temperature than this temperature range is required, but the practical temperature is 100 to 200°C. The higher the temperature, the shorter the time required for irradiation, but if the temperature is too high, dimensional changes may occur in the molded product, so the temperature is preferably 200°C or less. The irradiation atmosphere is in the air.

不活性ガス(窒素、アルゴン等)中あるいは真空中等が
通常選ばれるが、空気中で照射するのが最も実用的であ
る。
Irradiation in an inert gas (nitrogen, argon, etc.) or vacuum is usually selected, but irradiation in air is most practical.

(実施例) 以下実施例により本発明をさらに具体的に説明する。(Example) The present invention will be explained in more detail below using Examples.

なお、耐熱性の評価はフィルムを260℃又は270℃
のハンダ浴中に10秒間浸漬した後のフィルムの変形の
程度を肉眼で判定して行った。
In addition, the heat resistance evaluation was performed at 260°C or 270°C.
The degree of deformation of the film after being immersed in a solder bath for 10 seconds was determined visually.

実施例1〜4.比較例1〜3 PPSのペレットを、300℃でTダイから溶融押出し
して未延伸フィルムを得た。得られた未延伸フィルムを
100℃の雰囲気中でタテ3.0倍。
Examples 1-4. Comparative Examples 1 to 3 PPS pellets were melt-extruded from a T-die at 300°C to obtain unstretched films. The obtained unstretched film was stretched 3.0 times in length in an atmosphere at 100°C.

ヨコ3.0倍の倍率で同時2軸延伸して厚さが10μの
延伸フィルムを得た。このフィルムの融点は285°C
,ガラス転移点は85°Cであった。
A stretched film having a thickness of 10 μm was obtained by simultaneous biaxial stretching at a magnification of 3.0 times in the horizontal direction. The melting point of this film is 285°C
, the glass transition point was 85°C.

この延伸フィルムに、加速電圧が750KVの電子線照
射装置を用いて、第1表に示す種々の温度及び線量で電
子線の照射を行い(1砂崩たりの吸収線量はI Mra
d) 、得られたフィルムの耐熱性を測定して、第1表
に示す結果を得た。
This stretched film was irradiated with electron beams using an electron beam irradiation device with an accelerating voltage of 750 KV at various temperatures and doses shown in Table 1 (the absorbed dose per sandstone was I Mra
d) The heat resistance of the obtained film was measured and the results shown in Table 1 were obtained.

第1表から、照射時の温度が極めて重要であることが明
らかである。
From Table 1 it is clear that the temperature during irradiation is extremely important.

第1表 注)◎:変形なし、○:殆ど変形なし ×:変形大 (発明の効果) 本発明によれば、PPS系成形品の寸法変化を起こすこ
となく、その耐熱性を効率良く改良することができる。
Table 1 Note: ◎: No deformation, ○: Almost no deformation ×: Large deformation (Effect of the invention) According to the present invention, the heat resistance of PPS molded products can be efficiently improved without causing any dimensional changes. be able to.

特許出願人  ユ=亭力株式会社Patent applicant: Yu-Tei Riki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリP−フェニレンスルフィドを主成分とするポ
リマーからなり、該ポリマーのガラス転移点以上の温度
を有する成形品に電離性放射線を照射することを特徴と
する耐熱性ポリP−フェニレンスルフィド系成形品の製
造方法。
(1) A heat-resistant polyP-phenylene sulfide system consisting of a polymer whose main component is polyP-phenylene sulfide, characterized by irradiating ionizing radiation to a molded article having a temperature equal to or higher than the glass transition point of the polymer. Method of manufacturing molded products.
JP4309088A 1988-02-24 1988-02-24 Production of poly-p-phenylene sulfide molding Pending JPH01215833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4309088A JPH01215833A (en) 1988-02-24 1988-02-24 Production of poly-p-phenylene sulfide molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309088A JPH01215833A (en) 1988-02-24 1988-02-24 Production of poly-p-phenylene sulfide molding

Publications (1)

Publication Number Publication Date
JPH01215833A true JPH01215833A (en) 1989-08-29

Family

ID=12654142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309088A Pending JPH01215833A (en) 1988-02-24 1988-02-24 Production of poly-p-phenylene sulfide molding

Country Status (1)

Country Link
JP (1) JPH01215833A (en)

Similar Documents

Publication Publication Date Title
US3886056A (en) Process for producing a high melting temperature polyethylene employing irradiation and orienting
JP5454726B2 (en) Modified fluorine-containing copolymer, fluororesin molded product, and method for producing fluororesin molded product
CA1284709C (en) Process for producing a crosslinked and oriented polyethylene film
Jin et al. Crosslinking of poly (L‐lactide) by γ‐irradiation
EP0288308B1 (en) Preparation of a thermoformed polyarylene sulfide container
CN109337188B (en) Irradiation crosslinking high-temperature-resistant heat-shrinkable sleeve and production method thereof
JPH01215833A (en) Production of poly-p-phenylene sulfide molding
US5492761A (en) Heat-resistant coated electrically conductive wire
US3377261A (en) Water-soluble biaxially oriented poly(ethylene oxide) film
JPH01283127A (en) Polyether ether ketone film and its manufacture
JPH0480030A (en) Laminated film and manufacture thereof
JPH02255710A (en) Heat-resistant molded polymer product and production thereof
JPH08120145A (en) Fluoroelastomer molded form, insulated electric wire and insulated tube
JP2620357B2 (en) Heat-resistant bridge wire
JPH01100802A (en) Ultraviolet setting type insulation cable
JPS61244526A (en) Polycyanoaryl ether oriented film
JPH0345634A (en) Preparation of high-modulus polyarylene sulfide
JPH0364322A (en) Production of heat-resistant polyamide molding
JPH03241613A (en) Heat-proof cross-linking electric wire
JPS61285228A (en) Modified polyether sulfone resin
JPS62115051A (en) Flame-retardant, transparent and heat-shrinkable tube
JPH02301419A (en) Heat resistant biaxially oriented polyester film and manufacture thereof
KR100467029B1 (en) Manufacturing method of polyester high strength yarn
JPS6195015A (en) Resin composition and its molded article
JPS6215250A (en) Fluororesin composition crosslinkable by irradiation