JPH02255710A - Heat-resistant molded polymer product and production thereof - Google Patents

Heat-resistant molded polymer product and production thereof

Info

Publication number
JPH02255710A
JPH02255710A JP7770189A JP7770189A JPH02255710A JP H02255710 A JPH02255710 A JP H02255710A JP 7770189 A JP7770189 A JP 7770189A JP 7770189 A JP7770189 A JP 7770189A JP H02255710 A JPH02255710 A JP H02255710A
Authority
JP
Japan
Prior art keywords
component
polyester
polyolefin component
molded product
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7770189A
Other languages
Japanese (ja)
Inventor
Osami Shinonome
東雲 修身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7770189A priority Critical patent/JPH02255710A/en
Publication of JPH02255710A publication Critical patent/JPH02255710A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain the subject molded product improved in heat resistance and dimensional stability by exposing a molded product consisting of a graft copolymer containing a polyester component as a backbone chain and a polyolefin component as branched chains to radiation and crosslinking the polyolefin component. CONSTITUTION:The objective molded product obtained by exposing a molded product consisting of a graft copolymer containing a polyester component (e.g. polyethylene terephthalate) as a backbone chain and a polyolefin component (e.g. polymethylene chain or polypropylene chain) as branched chains is exposed to radiation (preferably electron rays at 5-80Mrad irradiation dose) and at least partially crosslinking the polyolefin component.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性や寸法安定性が改善されたポリエステ
ル系の高分子成形品及びその製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a polyester polymer molded article with improved heat resistance and dimensional stability, and a method for producing the same.

(従来の技術) ポリエチレンテレフタレート、ポリブチレンテレフタレ
ート等のポリエステル及びこれらを主成分とした各種共
重合ポリエステルは物理的特性あるいは化学的特性に優
れているので、繊維、フィルム、容器等の成形品として
多くの分野に使われている。
(Prior art) Polyesters such as polyethylene terephthalate and polybutylene terephthalate, as well as various copolyesters based on these polyesters, have excellent physical and chemical properties, so they are often used as molded products such as fibers, films, and containers. It is used in the field of

ところが近年、電気・電子機器産業、自動車産業、航空
機産業等の発展にともなって耐熱性や寸法安定性のより
優れたものが要求されるようになってきた。
However, in recent years, with the development of the electric/electronic equipment industry, the automobile industry, the aircraft industry, etc., there has been a demand for materials with better heat resistance and dimensional stability.

ポリエステル系高分子成形品の耐熱性や寸法安定性を向
上させる有効な手段の一つとして、ポリエステルを架橋
させる方法があり1次に述べるような方法がある。
One of the effective means for improving the heat resistance and dimensional stability of polyester polymer molded articles is a method of crosslinking polyester, as described below.

■ポリエステルにイソシアネート、エポキシ。■Isocyanate and epoxy on polyester.

メチロール等の反応性の基を有する化合物を配合してお
き、ポリエステル末端のヒドロキシル基やカルボキシル
基とこれらの基を反応させて架橋させる。■あらかじめ
不飽和基(二重結合)を分子中に導入しておき、成形以
降の任意の段階でこの不飽和基を熱、光、触媒、放射線
などによって付塊重合させる。(高分子刊行会発行:「
接着」31巻538〜548頁、同32巻11〜20頁
、同32巻61〜69頁。
A compound having a reactive group such as methylol is blended in advance, and these groups are reacted with the hydroxyl group or carboxyl group at the end of the polyester to cause crosslinking. ■An unsaturated group (double bond) is introduced into the molecule in advance, and the unsaturated group is subjected to bulk polymerization using heat, light, catalyst, radiation, etc. at any stage after molding. (Published by Kobunshi Publishing Association: “
Adhesion, Vol. 31, pp. 538-548, Vol. 32, pp. 11-20, Vol. 32, pp. 61-69.

特公昭61−57850号公報、特公昭61−5785
1号公報。
Special Publication No. Sho 61-57850, Special Publication No. Sho 61-5785
Publication No. 1.

特公昭6i −57852号公報、特公昭62−434
59号公II)。
Special Publication No. 6i-57852, Special Publication No. 62-434
No. 59 Public II).

ところが、前記■、■の方法を採用する場合。However, when the methods ① and ② above are adopted.

繊維やフィルムとして有用で、融点(軟化点)や結晶性
の高い熱可塑性ポリエステルにおいては次のような問題
が生じる。
Thermoplastic polyesters that are useful as fibers and films and have high melting points (softening points) and crystallinity have the following problems.

すなわち、■の場合、一般にイソシアネート。That is, in the case of ■, generally isocyanate.

エポキシ、メチロール等の基を持つ化合物(架橋剤)は
、ポリエステルを溶融成形する時に加えられるが、これ
らの基は反応性に富むので繊維やフィルム等に加工する
際、成形温度が高(なるため成形機の中で架橋反応が起
こってしまい、ゲル化あるいは難流動化し、成形加工性
を著しく低下させる。■の不飽和基を有する化合物をあ
らかじめポリエステルに導入しておく場合も、ポリエス
テルを生成(重縮合)する時は250℃以上のような高
温であるため、この重縮合の段階で不飽和基の付加重合
が起こってしまい、この場合も■と同様にゲル化あるい
は難流動化し、成形加工性を著しく低下させる。また、
■、■のいずれの場合も。
Compounds (crosslinking agents) with groups such as epoxy and methylol are added when polyester is melt-molded, but these groups are highly reactive, so when processing them into fibers, films, etc., the molding temperature is high. A cross-linking reaction occurs in the molding machine, resulting in gelation or difficulty in fluidizing, which significantly reduces molding processability. Polycondensation) is carried out at a high temperature of 250°C or higher, so addition polymerization of unsaturated groups occurs during this polycondensation stage, and in this case as well, it gels or becomes difficult to flow, making it difficult to form and process. Significantly reduce sexual performance.Also,
In both cases of ■ and ■.

繊維やフィルムの製造にとって重要な工程である延伸を
困難にする。
It makes it difficult to stretch, which is an important step in the production of fibers and films.

このような問題を避けるには低温で実施できる溶液重縮
合法や溶液成形法を採用すればよいのであるが、工程の
複雑化や製造コストアップ等の問題が生ずる。
In order to avoid such problems, it is possible to adopt a solution polycondensation method or a solution molding method that can be carried out at low temperatures, but problems such as complication of the process and increase in manufacturing costs arise.

(発明が解決しようとする課題) このように分子間の架橋を利用する方法は、低融点のポ
リエステルにしか適用され得ないのが実状であり、繊維
、フィルム及びその他の成形品として有用な高融点ある
いは高結晶性のポリエステルに対しては適用できないの
が実状である。
(Problems to be Solved by the Invention) In reality, the method that utilizes intermolecular crosslinking as described above can only be applied to polyesters with low melting points, and is useful for polyesters that are useful as fibers, films, and other molded products. The reality is that it cannot be applied to polyesters with high melting points or high crystallinity.

そこで2本発明は、耐熱性2寸法安定性がより改善され
た高融点あるいは高結晶性のポリエステル系高分子成形
品と、該成形品を容易に製造することができる方法を提
供することを主たる課題とするものである。
Therefore, the main object of the present invention is to provide a high melting point or highly crystalline polyester polymer molded product with improved heat resistance and two-dimensional stability, and a method for easily producing the molded product. This is an issue to be addressed.

(課題を解決するための手段) 本発明者等は、ポリエステル、特に高融点あるいは高結
晶性のポリエステルにおいても耐熱性。
(Means for Solving the Problems) The present inventors have discovered that polyesters, especially polyesters with high melting points or high crystallinity, also have heat resistance.

寸法安定性がより改善された成形品を得るために種々検
討した。その結果、ポリエステル成分を主鎖とし、ポリ
オレフィン成分を分枝鎖とするグラフト共重合体からな
る成形品に1放射線を照射してポリオレフィン成分の少
なくとも一部を架橋してやると、ポリオレフィン成分は
ポリエステル重縮合時の高温に耐え、しかも放射線によ
って比較的容易に架橋するので、前記目的に適う成形品
が生産性良く得られることを見出し2本発明に到った。
Various studies were conducted to obtain a molded product with improved dimensional stability. As a result, when a molded article made of a graft copolymer having a polyester component as a main chain and a polyolefin component as a branched chain is irradiated with one radiation to crosslink at least a portion of the polyolefin component, the polyolefin component becomes polyester polycondensed. The present inventors have discovered that molded articles meeting the above objectives can be obtained with good productivity because they can withstand high temperatures during the process and are crosslinked relatively easily by radiation, leading to the present invention.

すなわち1本発明の要旨は次の通りである。That is, the gist of the present invention is as follows.

(1)ポリエステル成分を主鎖とし、ポリオレフィン成
分を分枝鎖とするグラフト共重合体からなり。
(1) Consists of a graft copolymer with a polyester component as the main chain and a polyolefin component as a branched chain.

ポリオレフィン成分の少なくとも一部が架橋しているこ
とを特徴とする耐熱性高分子成形品。
A heat-resistant polymer molded article characterized in that at least a portion of the polyolefin component is crosslinked.

(2)  ポリエステル成分を主鎖とし、ポリオレフィ
ン成分を分枝鎖とするグラフト共重合体からなる成形品
に、放射線を照射してポリオレフィン成分の少なくとも
一部を架橋させることを特徴とする耐熱性高分子成形品
の製造法。
(2) A molded article made of a graft copolymer having a polyester component as a main chain and a polyolefin component as a branched chain is irradiated with radiation to crosslink at least a portion of the polyolefin component. Method for manufacturing molecular molded products.

以下1本発明の詳細な説明する。Hereinafter, one aspect of the present invention will be explained in detail.

本発明において「ポリエステル成分」のポリエステルと
は溶融成形可能な熱可塑性ポリエステルを意味し、この
ようなポリエステルは、テレフタル酸、イ゛ンフタル酸
、アジピン酸、グルタル酸。
In the present invention, the polyester of the "polyester component" means a thermoplastic polyester that can be melt-molded, and such polyesters include terephthalic acid, ymphthalic acid, adipic acid, and glutaric acid.

アゼライン酸、セバシン酸、ナフタレンジカルボン酸、
シクロヘキサンジカルボン酸、ジフェニルスルホンジカ
ルボン酸等のジカルボン酸成分とエチレングリコール、
ジエチレングリコール、ポリエチレングリコール、トリ
メチレングリコール。
azelaic acid, sebacic acid, naphthalene dicarboxylic acid,
Dicarboxylic acid components such as cyclohexanedicarboxylic acid and diphenylsulfonedicarboxylic acid and ethylene glycol,
Diethylene glycol, polyethylene glycol, trimethylene glycol.

プロピレングリコール、1,4−ブタンジオール、1゜
5−ベンタンジオール、1.6−ヘキサンジオール。
Propylene glycol, 1,4-butanediol, 1°5-bentanediol, 1,6-hexanediol.

ネオペンチルグリコール、キシリレングリコール。Neopentyl glycol, xylylene glycol.

シクロヘキサンジメタツール、ビス(β−ヒドロキシエ
トキシフェニル)プロパン、ビス(β−ヒドロキシエト
キシフェニル)スルホン等のグリコール成分とから得ら
れるものであり、さらには上記ジカルボン酸成分とグリ
コール成分に加えて。
It is obtained from glycol components such as cyclohexane dimetatool, bis(β-hydroxyethoxyphenyl)propane, and bis(β-hydroxyethoxyphenyl)sulfone, and in addition to the above-mentioned dicarboxylic acid components and glycol components.

ε−ヒドロキシカプロン酸、β−ヒドロキシエトキシ安
息香酸、ヒドロキシ安息香酸等のヒドロキシカルボン酸
成分、場合によってはトリメリット酸、トリメシン酸、
とロメリット酸、トリメチロールプロパン、ペンタエリ
スリトール等の3以上の官能基を有する成分を適宜組み
合せて得られるものである。好ましい具体的なポリエス
テルとしては、ポリエチレンテレフタレート、ポリブチ
レンテレフタレート、ポリ−1,4−シクロヘキシレン
ジメチレンテレフタレート、ポリエチレン−2゜6−ナ
フタレートポリ−p−エチレンオキシベンゾエート及び
これらを主成分とするポリエステルが挙げられる。これ
らは比較的高融点で高結晶性ポリエステルであり1本発
明の趣旨が特に生かせるものである。いうまでもなく、
比較的低融点のポリエステル、例えば前記したアジピン
酸やセバシン酸のような脂肪酸ジカルボン酸成分を多く
含むポリエステルに対しても本発明は適用可能であり、
同様な効果を有する。
Hydroxycarboxylic acid components such as ε-hydroxycaproic acid, β-hydroxyethoxybenzoic acid, hydroxybenzoic acid, and in some cases trimellitic acid, trimesic acid,
It is obtained by appropriately combining components having three or more functional groups such as romellitic acid, trimethylolpropane, and pentaerythritol. Preferred specific polyesters include polyethylene terephthalate, polybutylene terephthalate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene-2゜6-naphthalate poly-p-ethyleneoxybenzoate, and polyesters containing these as main components. can be mentioned. These are polyesters with relatively high melting points and high crystallinity, and the purpose of the present invention is particularly useful. Needless to say,
The present invention is also applicable to polyesters with a relatively low melting point, for example, polyesters containing a large amount of fatty acid dicarboxylic acid components such as the above-mentioned adipic acid and sebacic acid.
It has a similar effect.

「ポリオレフィン成分」のポリオレフィンとはポリメチ
レン鎖、ポリプロピレン鎖等のように飽和炭化水素系ポ
リマー鎖で表わされる構造単位よりなる高分子の総称で
あって、ラジカル的な付加反応に対して不安定な炭素−
炭素二重結合や三重結合を実質的に持たぬものをいい、
したがってベンゼン環やナフタレン環のような安定な基
を置換基として一部有していても差し支えない。そして
このポリオレフィン鎖は直鎖状0分枝鎖状いずれでもよ
い。ポリオレフィン鎖部分の炭素原子数は一般的には5
〜200.好ましくは8〜100であることがよい。
Polyolefin, which is a "polyolefin component," is a general term for polymers consisting of structural units represented by saturated hydrocarbon polymer chains, such as polymethylene chains and polypropylene chains. −
Refers to substances that have virtually no carbon double bonds or triple bonds,
Therefore, there is no problem even if some of them have a stable group such as a benzene ring or a naphthalene ring as a substituent. This polyolefin chain may be either linear or branched. The number of carbon atoms in the polyolefin chain is generally 5.
~200. Preferably it is 8-100.

本発明の成形品を構成する高分子は、上記ポリエステル
成分を主鎖とし、ポリオレフィン成分を分枝鎖とするグ
ラフト共重合体からなり、ポリオレフィン成分はポリエ
ステルの製造時、任意の段階で、エステル形成性の官能
基をもつポリオレフィンを添加し、ポリエステルと共重
合させて製造することができる。
The polymer constituting the molded article of the present invention is a graft copolymer having the above-mentioned polyester component as the main chain and the polyolefin component as a branched chain, and the polyolefin component is formed into an ester at any stage during the production of the polyester. It can be produced by adding a polyolefin having a specific functional group and copolymerizing it with a polyester.

ポリオレフィン成分におけるエステル形成性の官能基と
してはヒドロキシル基、カルボキシル基。
Ester-forming functional groups in the polyolefin component include hydroxyl groups and carboxyl groups.

アルコキシカルボニル基等の1官能性基及びエポキシ基
のような2官能性基が挙げられ、2官能ポリオレフイン
が好ましい。
Examples include monofunctional groups such as alkoxycarbonyl groups and difunctional groups such as epoxy groups, and difunctional polyolefins are preferred.

そして、ポリエステル成分とポリオレフィン成分の割合
は重量で99〜70:1〜30.より好ましくは98〜
80:2〜20とすることが成形性(加工性)や放射線
照射による架橋効果という点で好ましい。
The ratio of the polyester component to the polyolefin component is 99-70:1-30. More preferably 98~
A ratio of 80:2 to 20 is preferable in terms of moldability (processability) and crosslinking effect due to radiation irradiation.

本発明の高分子成形品は、ポリオレフィン成分の少なく
とも一部が架橋した構造となっていればよく、必ずしも
不溶不融の状態にまで架橋して高分子が網目状の構造を
とる必要はない。つまりフィルムや繊維を構成する高分
子のうちのポリオレフィン成分の少なくとも一部が架橋
していれば。
The polymer molded article of the present invention only needs to have a structure in which at least a portion of the polyolefin component is crosslinked, and the polymer does not necessarily need to be crosslinked to an insoluble and infusible state so that the polymer has a network structure. In other words, if at least a portion of the polyolefin component of the polymer that makes up the film or fiber is crosslinked.

得られる成形品は耐熱性と寸法安定性が向上するからで
ある。
This is because the resulting molded product has improved heat resistance and dimensional stability.

本発明の高分子成形品は、ポリエステル成分とポリオレ
フィン成分とのグラフト共重合体からなる成形品に、放
射線を照射する方法によって容易に製造することができ
る。
The polymer molded article of the present invention can be easily produced by a method of irradiating a molded article made of a graft copolymer of a polyester component and a polyolefin component with radiation.

放射線としては電子線、アルファ線、ガンマ線等が挙げ
られ、特に電子線が好ましく用いられる。
Examples of radiation include electron beams, alpha rays, gamma rays, etc., and electron beams are particularly preferably used.

これらの放射線の照射線量としては3〜100Mrad
The irradiation dose of these radiations is 3 to 100 Mrad.
.

特に5〜80Mradが好ましい。照射線量が多すぎる
と成形品の物性が却って低下することがあるので好まし
くない。また、特に電子線を用いる場合。
Particularly preferred is 5 to 80 Mrad. If the irradiation dose is too large, the physical properties of the molded article may deteriorate, which is not preferable. Also, especially when using an electron beam.

電子線の到達深度は加速電圧に比例して直線的に増加す
るので、成形品の厚さや太さに応じて加速電圧を調節す
ることが好ましく、200μm以下の厚さや太さのもの
には加速電圧を10〜10,000 KV、好ましくは
50〜5.000 KVとするのがよい。照射時の温度
は、成形品を構成する高分子のガラス転移温度によって
変わるが、ガラス転移温度より20℃程度低い温度から
ガラス転移温度より60℃程度高い温度までの領域で行
うのがよい。実用的な温度は30〜150℃である。温
度が高いほど照射に要する時間は短かくてよいが、あま
り高温になると架橋が十分に進んでいない段階では成形
品の寸法変化が起こったり、結晶化が進みすぎたりして
好ましくない。
Since the depth that the electron beam reaches increases linearly in proportion to the accelerating voltage, it is preferable to adjust the accelerating voltage according to the thickness and thickness of the molded product. The voltage is preferably between 10 and 10,000 KV, preferably between 50 and 5,000 KV. The temperature at the time of irradiation varies depending on the glass transition temperature of the polymer constituting the molded article, but is preferably carried out in the range from about 20° C. lower than the glass transition temperature to about 60° C. higher than the glass transition temperature. Practical temperatures are 30-150°C. The higher the temperature, the shorter the time required for irradiation, but if the temperature is too high, dimensional changes may occur in the molded product before crosslinking has sufficiently progressed, or crystallization may proceed too much, which is not preferable.

照射は空気中、窒素やアルゴン等の不活性ガス中あるい
は真空中で行うことができるが、空気中で行うのが実用
的である。
Irradiation can be performed in air, in an inert gas such as nitrogen or argon, or in vacuum, but it is practical to perform it in air.

(実施例) 以下2本発明を実施例によりさらに具体的に説明する。(Example) The present invention will be explained in more detail below using two examples.

実施例1〜4及び比較例1〜5 テレフタル酸とエチレングリコールをエステル化して得
られたビス(β−ヒドロキシエチル)テレフタレートの
オリゴマー(数平均重合度5)に1.2−テトラデカン
ジオールを第1表に示す各割合で配合し、さらに、エチ
レングリコールに溶解した三酸化アンチモンをテレフタ
ル酸成分1モルにつき2XIO−’モルを加え、ポリエ
ステル重縮合用バッチ式反応器に仕込んだ。次いで内温
を275℃に保ちつつ、常圧で0.5時間、常圧から最
高減圧0.1トルに至るまで減圧しながら0.5時間、
さらに、この最高減圧下において3時間重縮合反応を行
った。
Examples 1 to 4 and Comparative Examples 1 to 5 1,2-tetradecanediol was first added to an oligomer (number average degree of polymerization of 5) of bis(β-hydroxyethyl) terephthalate obtained by esterifying terephthalic acid and ethylene glycol. The mixtures were blended in the proportions shown in the table, and 2XIO-' mol of antimony trioxide dissolved in ethylene glycol was added per 1 mol of the terephthalic acid component, and the mixture was charged into a batch reactor for polyester polycondensation. Next, while maintaining the internal temperature at 275 ° C., at normal pressure for 0.5 hours, and while reducing the pressure from normal pressure to a maximum vacuum of 0.1 Torr, for 0.5 hours,
Furthermore, a polycondensation reaction was carried out for 3 hours under this maximum reduced pressure.

得られたほぼ白色のポリエステルチップをエクストルー
ダー型溶融押出機に供給し、280℃でリップrj+ 
200mm、  リップ間隔Q 、 3 niのTダイ
から押出し、押出した熔融膜状物を20℃に保ったキャ
スティングローラで冷却固化して未延伸フィルムを得た
。次いでテンタ一方式の同時2軸延伸装置を用いて95
℃で縦・横それぞれ3.1倍に延伸し、さらに235℃
で縦、横ともに弛緩率3%で熱処理した後、トリミング
して20m/minの速度で巻き取り、厚さlOIIm
+  巾300關の延伸フィルムを得た。
The almost white polyester chips obtained were fed to an extruder-type melt extruder and heated to lip rj+ at 280°C.
It was extruded from a T die of 200 mm, lip spacing Q, and 3 ni, and the extruded molten film was cooled and solidified using a casting roller kept at 20° C. to obtain an unstretched film. Next, using a tenter-type simultaneous biaxial stretching device, 95
Stretched 3.1 times lengthwise and horizontally at ℃, then further stretched at 235℃
After heat treatment with a relaxation rate of 3% both lengthwise and horizontally, it was trimmed and wound at a speed of 20m/min to a thickness of lOIIm.
+ A stretched film with a width of 300 mm was obtained.

これらの製膜・延伸操作において切断の問題はなく、操
業性は良好であった。また、延伸フィルムは良好な外観
を示した。
There were no cutting problems in these film forming and stretching operations, and the operability was good. Moreover, the stretched film showed good appearance.

次いで得られた延伸フィルムに、照射温度120℃で、
加速電圧750KVの電子線を照射した(1秒当たりの
吸収線量はI Mradであった)。照射線量とフィル
ムの長さ方向の乾熱収縮率(160℃×15分処理)と
の関係を第1表に示す。なお9本発明で規制した以外の
ものを比較例とした。
Next, the obtained stretched film was irradiated at a temperature of 120°C.
It was irradiated with an electron beam with an accelerating voltage of 750 KV (absorbed dose per second was I Mrad). Table 1 shows the relationship between the irradiation dose and the dry heat shrinkage rate in the longitudinal direction of the film (processed at 160° C. for 15 minutes). Note that 9 samples other than those regulated by the present invention were used as comparative examples.

第 表 第1表から明らかなように1本発明の成形品は乾熱収縮
率が低く、耐熱性及び寸法安定性に優れていることが分
かる。
As is clear from Table 1, the molded articles of the present invention have a low dry heat shrinkage rate and are excellent in heat resistance and dimensional stability.

(発明の効果) 本発明によれば、耐熱性に優れており1寸法安定性の良
いポリエステル系高分子成形品が提供される。
(Effects of the Invention) According to the present invention, a polyester polymer molded article having excellent heat resistance and good one-dimensional stability is provided.

また1本発明の方法によれば、上記成形品を生産性良く
容易に得ることができる。
Furthermore, according to the method of the present invention, the above-mentioned molded product can be easily obtained with good productivity.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリエステル成分を主鎖とし、ポリオレフィン成
分を分枝鎖とするグラフト共重合体からなり、ポリオレ
フィン成分の少なくとも一部が架橋していることを特徴
とする耐熱性高分子成形品。
(1) A heat-resistant polymer molded article comprising a graft copolymer having a polyester component as a main chain and a polyolefin component as a branched chain, wherein at least a portion of the polyolefin component is crosslinked.
(2)ポリエステル成分を主鎖とし、ポリオレフィン成
分を分枝鎖とするグラフト共重合体からなる成形品に、
放射線を照射してポリオレフィン成分の少なくとも一部
を架橋させることを特徴とする耐熱性高分子成形品の製
造法。
(2) A molded product made of a graft copolymer with a polyester component as the main chain and a polyolefin component as a branch chain,
A method for producing a heat-resistant polymer molded article, which comprises crosslinking at least a portion of a polyolefin component by irradiating it with radiation.
JP7770189A 1989-03-28 1989-03-28 Heat-resistant molded polymer product and production thereof Pending JPH02255710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7770189A JPH02255710A (en) 1989-03-28 1989-03-28 Heat-resistant molded polymer product and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7770189A JPH02255710A (en) 1989-03-28 1989-03-28 Heat-resistant molded polymer product and production thereof

Publications (1)

Publication Number Publication Date
JPH02255710A true JPH02255710A (en) 1990-10-16

Family

ID=13641203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7770189A Pending JPH02255710A (en) 1989-03-28 1989-03-28 Heat-resistant molded polymer product and production thereof

Country Status (1)

Country Link
JP (1) JPH02255710A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987260A (en) * 2017-12-14 2018-05-04 江苏恒力化纤股份有限公司 Modified poly ester and preparation method thereof
CN108048939A (en) * 2017-12-14 2018-05-18 江苏恒力化纤股份有限公司 One step spins elastic force composite filament and preparation method thereof
CN108130610A (en) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 A kind of superelevation strong type polyester industrial fiber and preparation method thereof
CN108130611A (en) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 It is a kind of high to stretch low-shrinkage type polyester industrial fiber and preparation method thereof
CN108385194A (en) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 A kind of metachromia polyester FDY fiber and preparation method thereof
CN108385195A (en) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 A kind of polyester DTY fiber and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987260A (en) * 2017-12-14 2018-05-04 江苏恒力化纤股份有限公司 Modified poly ester and preparation method thereof
CN108048939A (en) * 2017-12-14 2018-05-18 江苏恒力化纤股份有限公司 One step spins elastic force composite filament and preparation method thereof
CN108130610A (en) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 A kind of superelevation strong type polyester industrial fiber and preparation method thereof
CN108130611A (en) * 2017-12-14 2018-06-08 江苏恒力化纤股份有限公司 It is a kind of high to stretch low-shrinkage type polyester industrial fiber and preparation method thereof
CN108385194A (en) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 A kind of metachromia polyester FDY fiber and preparation method thereof
CN108385195A (en) * 2017-12-14 2018-08-10 江苏恒力化纤股份有限公司 A kind of polyester DTY fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100733652B1 (en) Polyester resin and molded article
DE69829378T3 (en) LARGE POLYESTER CONTAINERS AND METHOD FOR THE PRODUCTION THEREOF
CA2773285C (en) Hydrolysis resistant polyester films
US3852177A (en) Method of radiation cross-linking olefin polymers containing acrylate cross-linking promoters
GB2193682A (en) Shrinkable polyester film for packaging
US3683060A (en) Method of preparing biaxially oriented polyethylene 2,6-naphthalate film
US3673144A (en) Thermoplastic molding compositions containing polyesters
JPH0753737A (en) Shrinkable polyester film
JPH02255710A (en) Heat-resistant molded polymer product and production thereof
WO2000029470A1 (en) Increasing the melt viscosities of a polyester resin
JPH02208325A (en) Heat-resistant polymer molding and its production
JPH08187777A (en) Production of heat-resistant polyester film
JPH0625519A (en) Polyethylene terephthalate composition, method for producing its molded product and method for using the same
GB1585671A (en) Stabilised cured or uncured linear aromatic polyester composition and process for preparation thereof
JP3474306B2 (en) Improved polyester film or sheet and processed product thereof
JPH05254015A (en) Polyester-based shrink film
US20010047063A1 (en) Polyester resin composition and film using the same
JP2851436B2 (en) Molded product made of polyester resin
JPH01272659A (en) Production of polyester composition and molded article
US3952125A (en) Electrically insulating material
JP2000017159A (en) Polyester composition and polyester film therefrom
US3386961A (en) Copolyester resins
JPH02301419A (en) Heat resistant biaxially oriented polyester film and manufacture thereof
JPH01144424A (en) Oriented polyester alloy film
JPH02202928A (en) Heat-resistant polymer molding and its production