JPH01215791A - Apparatus for pulling up single crystal - Google Patents

Apparatus for pulling up single crystal

Info

Publication number
JPH01215791A
JPH01215791A JP4164388A JP4164388A JPH01215791A JP H01215791 A JPH01215791 A JP H01215791A JP 4164388 A JP4164388 A JP 4164388A JP 4164388 A JP4164388 A JP 4164388A JP H01215791 A JPH01215791 A JP H01215791A
Authority
JP
Japan
Prior art keywords
heater
current
single crystal
supplied
ripple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4164388A
Other languages
Japanese (ja)
Other versions
JPH0631195B2 (en
Inventor
Tomoaki Nishio
西尾 智明
Sadao Asanuma
浅沼 貞郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP4164388A priority Critical patent/JPH0631195B2/en
Publication of JPH01215791A publication Critical patent/JPH01215791A/en
Publication of JPH0631195B2 publication Critical patent/JPH0631195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To suppress vibration of a heater and grow a high-quality single crystal, by providing a phase-shifting means, shifting a phase difference of currents supplied to the heater and an exciting coil and enabling both the currents to offset electromagnetic forces thereof. CONSTITUTION:This apparatus for pulling up a single crystal is formed of a heater 2, an exciting coil (1a), a phase-shifting means for providing a phase difference of ripples of DC current supplied to the exciting coil and heater 2 and a filter. The above-mentioned heater 2 is arranged around a vessel 5 for containing a melt (L) of a semiconductor. The afore-mentioned coil (1a) is supplied with a DC current containing ripples for generating a magnetic field across opposite magnetic poles positioned at places sandwiching the above- mentioned heater 2 and vessel 5. Furthermore, the afore-mentioned filter is capable of converting the wave form of both the above-mentioned ripples into since waves.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体の単結晶を得るために広く用いられてい
る単結晶引上装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single crystal pulling apparatus that is widely used to obtain a semiconductor single crystal.

〔従来技術〕[Prior art]

半導体の単結晶を得ようとする場合、例えば第2図に示
す如き単結晶引上装置、即ち半導体の融液りを収容する
ための石英るつぼ等からなる容器5の周囲に配され、直
流電流が供給されるヒータ2と、該ヒータ2及び容器5
を挾む位置に配された対向磁極N、S間に磁場を発生さ
せるため直流電流が供給される励磁コイル1aとを備え
た単結晶引上装置が用いられる。そしてヒータ2へ前記
直流電流を供給することによって加熱された前記融液り
に、引上チャック4にて上端側がチャックされた単結晶
シードAの先端部を浸漬した後、該単結晶シードAを所
定の引上速度にて引き上げることにより、半導体の単結
晶を育成する。
When a single crystal of a semiconductor is to be obtained, for example, a single crystal pulling apparatus as shown in FIG. a heater 2 to which is supplied; the heater 2 and a container 5;
A single crystal pulling apparatus is used which is equipped with an excitation coil 1a to which a direct current is supplied to generate a magnetic field between opposing magnetic poles N and S that are placed between them. Then, the tip of the single crystal seed A whose upper end side has been chucked by the pulling chuck 4 is immersed in the melt pool heated by supplying the DC current to the heater 2, and then the single crystal seed A is By pulling at a predetermined pulling speed, a semiconductor single crystal is grown.

ところで、前記融液りの液面の振動及びその液中の熱対
流が上述の如く育成される単結晶の品質に対して大きな
影響を与えることが知られているが、その影響を可及的
に少なくする方策としては、前記励磁コイル1aへ前記
直流電流を供給することによって前記対向磁iN、S間
に磁場を発生させ、該磁場中にて上述の操作を行うこと
により、前記融液りの実効的粘性を高め、それによって
前記振動及び熱対流を抑制することが行われている。
By the way, it is known that the vibration of the liquid surface of the melt and the thermal convection in the liquid have a large effect on the quality of the single crystal grown as described above, but it is necessary to minimize this effect. As a measure to reduce the amount of melt, a magnetic field is generated between the opposing magnets iN and S by supplying the DC current to the excitation coil 1a, and the above-mentioned operation is performed in the magnetic field. efforts are being made to increase the effective viscosity of the material, thereby suppressing the vibrations and thermal convection.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

而して前記ヒータ2及び励磁コイル1aへ供給する直流
電流は交流を整流して得られるが、整流回路出力は直流
ではなく不可避的にリップルを含んでいる。
Although the DC current supplied to the heater 2 and the excitation coil 1a is obtained by rectifying alternating current, the output of the rectifying circuit is not direct current and inevitably contains ripples.

従って磁界内を流れるヒータ中の電流のリップルによっ
てこれが振動し、これに伴い容器5内の融液りが振動し
、更に磁界にもリップルの影響があるので、これによる
振動が重畳されることになる。
Therefore, ripples in the current in the heater flowing within the magnetic field cause it to vibrate, which causes the melt in the container 5 to vibrate, and since the ripple also has an effect on the magnetic field, the vibrations caused by this are superimposed. Become.

これに対しては、ヒータ2ヘリツプル分の含有率を一定
数値以下とした直流電流を供給することにより、前記ヒ
ータ2の振動を抑制するという方法が提案されている(
特公昭58−50951号)。
To deal with this, a method has been proposed in which the vibrations of the heater 2 are suppressed by supplying a DC current whose content rate for the heater 2 helix is below a certain value (
Special Publication No. 58-50951).

然るに、実際的なヒータ2の振動は、ヒータ2の構造1
強度、取付方法、ヒータ2周辺の磁場の方向2強さ等が
複雑に関係し合って顕著となることもあり、ヒータ2へ
供給される直流電流にリップル分が含まれる限り、ヒー
タ2の振動が十分に抑制されず、それが顕著となること
もあるという事情があった。
However, the actual vibration of the heater 2 is caused by the structure 1 of the heater 2.
The strength, installation method, direction and strength of the magnetic field around the heater 2, etc. may be complexly related and become noticeable, so as long as the ripple component is included in the DC current supplied to the heater 2, the vibration of the heater 2 will be reduced. There were circumstances in which this was not sufficiently suppressed, and it sometimes became noticeable.

本発明はかかる事情に鑑みてなされたものであり、その
目的とするところは、上述の問題をより確実に解消し得
る手段を提供する点にある。
The present invention has been made in view of such circumstances, and its purpose is to provide a means that can more reliably solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る単結晶引上装置は、半導体の融液を収容す
る容器の周囲に配され、リップル分が含まれる直流電流
が供給されるヒータと、該ヒータ及び容器を挾む位置に
配された対向磁極間に磁場を発生させるため、リップル
分が含まれる直流電流が供給される励磁コイルとを備え
た単結晶引上装置において、前記ヒータへ供給される直
流電流のリップル分と前記励磁コイルへ供給される直流
電流のリップル分との位相差を180°となす移相手段
と、前記両リップル分の波形を正弦波にするためのフィ
ルタとを具備することを特徴とする。
A single crystal pulling apparatus according to the present invention includes a heater arranged around a container containing a semiconductor melt and to which a direct current including ripple is supplied, and a heater arranged in a position sandwiching the heater and the container. In order to generate a magnetic field between opposing magnetic poles, the single crystal pulling apparatus is equipped with an excitation coil to which a DC current including a ripple component is supplied, in order to generate a magnetic field between opposing magnetic poles. The present invention is characterized by comprising a phase shift means for making a phase difference of 180° from the ripple portion of the DC current supplied to the DC current, and a filter for making the waveform of both the ripple portions into a sine wave.

〔作用〕[Effect]

かかる本発明装置を用いる場合は、前記移相手段によっ
て前記両リップル分の位相差を180°だけずらせると
共に前記フィルタによって前記両リップル分の波形を正
弦波にすることができるため、ヒータへ供給される直流
電流のリップル分による電磁的な力と電磁石の励磁コイ
ルへ供給される直流電流のリップル分による電磁的な力
とを互いに相殺することが可能となる。従って前記両型
磁的な力を相殺してヒータに振動を与える電気的要因即
ち前記直流電流のリップル分の影響を抑え、ヒータの振
動を確実に抑制することができる。
When using such a device of the present invention, the phase difference between the two ripples can be shifted by 180° by the phase shifting means, and the waveform of the two ripples can be made into a sine wave by the filter. It becomes possible to cancel each other out the electromagnetic force due to the ripple portion of the DC current supplied to the excitation coil of the electromagnet and the electromagnetic force due to the ripple portion of the DC current supplied to the excitation coil of the electromagnet. Therefore, it is possible to cancel out the magnetic forces of both types, thereby suppressing the influence of the electric factor that causes vibrations in the heater, that is, the ripple component of the DC current, and reliably suppressing the vibrations of the heater.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて説明する
The present invention will be described below based on drawings showing embodiments thereof.

第2図は本発明に係る単結晶引上装置(以下単に本発明
装置という)の概略構成図である。
FIG. 2 is a schematic diagram of a single crystal pulling apparatus according to the present invention (hereinafter simply referred to as the apparatus of the present invention).

図中2は、半導体の融液りを収容するための石英るつぼ
等からなる容器5の周囲に配されたヒータである。また
1は、ヒータ2及び容器5を挾む位置に配された対向磁
極N、S間に磁場を発生させるための励磁コイル1aを
有する電磁石である。
In the figure, 2 is a heater arranged around a container 5 made of a quartz crucible or the like for containing a semiconductor melt. Reference numeral 1 denotes an electromagnet having an excitation coil 1a for generating a magnetic field between opposing magnetic poles N and S placed between the heater 2 and the container 5.

即ち、該電磁石1は、上部が開放された矩形状のヨーク
1bの開放側両端部に励磁コイル1aを夫々巻着し、該
励磁コイルlaに通電することによって前記両端部を対
向磁極N、Sとなすように構成されたものであり、前記
ヨーク1bの上部の開放部分には前記ヒータ2及び容器
5が配置されている。
That is, the electromagnet 1 has an excitation coil 1a wound around each open end of a rectangular yoke 1b with an open top, and by energizing the excitation coil la, the two ends are connected to opposing magnetic poles N and S. The heater 2 and the container 5 are arranged in the open upper part of the yoke 1b.

そして、前記ヒータ2へ直流電流を供給することによっ
て加熱された前記融液りに、引上チャック4にて上端側
がチャックされた単結晶シードAの先端部を浸漬した後
、該単結晶シードAを所定の引上速度にて引き上げるこ
とにより、半導体の単結晶が育成されるようになってい
る。また前記励磁コイルlaへ直流電流を供給すること
によって前記対向磁極N、S間に磁場を発生させ、該磁
場中にて上述の操作を行うことにより、融液りの実効的
粘性を高め、それによって融液りの液面の振動及びその
液中の熱対流を抑制することができるようになっている
Then, after immersing the tip of the single crystal seed A whose upper end side has been chucked by the pulling chuck 4 in the melt pool heated by supplying a direct current to the heater 2, the single crystal seed A By pulling at a predetermined pulling speed, a semiconductor single crystal is grown. Further, by supplying a DC current to the excitation coil la, a magnetic field is generated between the opposing magnetic poles N and S, and by performing the above-mentioned operation in the magnetic field, the effective viscosity of the melt is increased. This makes it possible to suppress vibrations in the liquid surface of the melt and thermal convection within the liquid.

第1図は前述の励磁コイル1a及びヒータ2へ直流電流
を夫々供給する電源部を示す回路図である。
FIG. 1 is a circuit diagram showing a power supply section that supplies direct current to the excitation coil 1a and heater 2, respectively.

図中11.21は励磁コイルla側の回路、ヒータ2側
の回路に夫々設けられた変圧器であり、その1次巻線は
、変圧器11においてデルタ結線とされ、変圧器21に
おいて亀甲結線とされており、両度圧器11.21とも
3相電源10に接続されている。またその2次巻線はい
ずれの変圧器11.21においてもデルタ結線及びスタ
ー結線の組合わせとされており、その2次巻線は、サイ
リスタ群よりなる整流回路12.22の入力側つまり各
サイリスクのアノード側に夫々接続されている。
In the figure, 11.21 is a transformer installed in the circuit on the excitation coil la side and the circuit on the heater 2 side, and the primary winding thereof is a delta connection in the transformer 11, and a hexagonal connection in the transformer 21. Both pressure regulators 11 and 21 are connected to the three-phase power supply 10. In addition, the secondary winding of each transformer 11.21 is a combination of delta connection and star connection, and the secondary winding is connected to the input side of the rectifier circuit 12.22 consisting of a group of thyristors, that is, each Each is connected to the anode side of the cyrisk.

前記整流回路12.22の出力側つまり各サイリスクの
カソード側は両回路12.22毎に一括接続され、リア
クトル及びコンデンサよりなるフィルタ13.23の入
力端に夫々接続されている。そして該フィルタ13.2
3の出力側は電流検出器14.24を介して前記電磁石
lの励磁コイルlaの接続端子15.ヒータ2の接続端
子25に夫々接続されている。そして前記電流検出器1
4.24の出力は電流設定器16.26の出力と共に減
算器17へ入力され、該減算器17にて減算処理が行わ
れ、その差に関する出力がサイリスク点弧回路18.2
8へ入力されるようになっている。サイリスク点弧回路
18.28は電流設定器16.26出力と電流検出器1
4.24出力との差を零とすべき導通位相でトリガ信号
を発し、これを整流回路12゜22のゲートへ与える。
The output side of the rectifier circuit 12.22, that is, the cathode side of each sirisk, is connected together for each circuit 12.22, and is respectively connected to the input end of a filter 13.23 consisting of a reactor and a capacitor. and the filter 13.2
3 is connected to the connection terminal 15.3 of the excitation coil la of the electromagnet l via a current detector 14.24. They are connected to connection terminals 25 of the heater 2, respectively. and the current detector 1
The output of 4.24 is input to the subtracter 17 together with the output of the current setting device 16.26, a subtraction process is performed in the subtracter 17, and the output related to the difference is sent to the Cyrisk ignition circuit 18.2.
8. Cyrisk ignition circuit 18.28 has current setting device 16.26 output and current detector 1
4.24 A trigger signal is generated at the conduction phase in which the difference with the output should be zero, and this is applied to the gate of the rectifier circuit 12.22.

かかる本発明装置を用いる場合、変圧器11.21及び
整流回路12.22が、ヒータへ供給される直流・電流
のリップル分と電磁石の励磁コイルへ供給される直流電
流のリップル分との位相差を180@となす移相手段と
なる。即ち、変圧器11及び変圧器21の結線方式の相
違に基づいてその2次巻線の電圧ベクトルが15″だけ
ずれることとなり、しかも整流回路12.22にて12
相整流されることでその出力電流のリップル分の位相は
180 ’ (π)だけずれることとなる。しかも該リ
ップル分はフィルタ13.23を通過することによって
その波形が正弦波とされる。
When using such a device of the present invention, the transformer 11.21 and the rectifier circuit 12.22 adjust the phase difference between the ripple component of the DC/current supplied to the heater and the ripple component of the DC current supplied to the excitation coil of the electromagnet. becomes 180@. That is, due to the difference in the wiring system of transformer 11 and transformer 21, the voltage vector of the secondary winding will be shifted by 15", and furthermore, the voltage vector of the secondary winding will be shifted by 15" in the rectifier circuit 12.22.
Due to the phase rectification, the phase of the output current corresponding to the ripple is shifted by 180' (π). Furthermore, the ripple component passes through the filter 13.23, so that its waveform becomes a sine wave.

従って、ヒータへ供給される直流電流のリップル分によ
る電磁的な力と電磁石の励磁コイルへ供給される直流電
流のリップル分による電磁的な力とは互いに相殺され得
る。
Therefore, the electromagnetic force due to the ripple of the DC current supplied to the heater and the electromagnetic force due to the ripple of the DC current supplied to the excitation coil of the electromagnet can cancel each other out.

この関係を数式を用いて具体的に説明する。This relationship will be specifically explained using a mathematical formula.

前記直流電流が供給されることでヒータに与えられる電
磁的な力Fは下記(11式のように表現できる。
The electromagnetic force F given to the heater by supplying the DC current can be expressed as shown below (Equation 11).

F’:BI  Hsin θ −K I、 ’IN  sinθ   ・(1)但し、 ■、:ヒータ電流(ヒータへ供給される直流電流) 1.4:励磁コイル電流(電磁石の励磁コイルへ供給さ
れる直流電流) B :励磁コイル電流による磁場の強さK :励磁コイ
ル、電磁石ギャップ等によって定まる定数 θ :磁場とヒータとが交差する角度 更にリップル電流分を考慮すると下記(2)式のように
なる。
F': BI Hsin θ -K I, 'IN sin θ ・(1) However, ■,: Heater current (DC current supplied to the heater) 1.4: Excitation coil current (DC current supplied to the excitation coil of the electromagnet (Current) B: Strength of magnetic field due to excitation coil current K: Constant determined by excitation coil, electromagnet gap, etc. θ: Angle at which the magnetic field and heater intersect Taking into account the ripple current component, the following equation (2) is obtained.

FcCK(1)4  +ΔIN  sin(ilt)(
IM +ΔIHsin(ωt +π))sinθ”  
N141)l +l14 ΔIN 5in(ωt  +
 1+1.  ΔIN  sinωを 十Δ1.ΔIHsinωt 5in(ωt +7り )
  sinθ・・・(2) 但し、 Δ1.sinωt:励磁コイル電流のリップル分ΔIH
sin(ω(+π);ヒータ電流のリップル分(両リッ
プル分は前記移相手段によって位相が180 @(π)
だけずらされている)前記(2)式において、第1項は
直流分のみであり、例えばIHの変化がヒータに与える
電磁的な力は■□の変化分のみで振動的とはならない。
FcCK(1)4 +ΔIN sin(ilt)(
IM +ΔIHsin(ωt +π))sinθ”
N141)l +l14 ΔIN 5in(ωt +
1+1. ΔIN sinω is 10Δ1. ΔIH sinωt 5in (ωt +7ri)
sinθ...(2) However, Δ1. sinωt: ripple component ΔIH of exciting coil current
sin(ω(+π); ripple component of heater current (both ripple components have a phase of 180 @(π) due to the phase shifting means)
In equation (2) above, the first term is only a direct current component, and for example, the electromagnetic force exerted on the heater due to a change in IH is only a change in ■□ and is not vibrational.

また第2項、第3項及び第4項は周波数「 (−ω/2
π)の基本波が電気的、要因となる振動的な力となるが
、第2項には5in(ω【+π)が含まれ第3項にはs
inωtが含まれるため、第2項が増加すれば第3項が
減少し、逆に第2項が減少すれば第3項が増加するので
、下記(3)式が成立するように電磁石の励磁コイルの
巻数を設計すれば、前記(2)式の第2項及び第3項の
和はほぼ一定となる。
Also, the second, third, and fourth terms are the frequency “(−ω/2
The fundamental wave of π) becomes the electrical and oscillatory force, but the second term includes 5in(ω[+π) and the third term includes s
Since inωt is included, if the second term increases, the third term decreases, and conversely, if the second term decreases, the third term increases, so the excitation of the electromagnet is adjusted so that the following equation (3) holds true. If the number of turns of the coil is designed, the sum of the second and third terms in equation (2) becomes approximately constant.

1、ΔIH#INΔ■9   ・・・(3)なお、電磁
石の励磁コイルの巻数は、要求される対向磁極間距離及
びその中心点における磁束が指定されれば容易に設計で
きる。また前記(2)式の第4項は、sinω【と5i
n(ωt+π)との積を含んでおり、Δ■イの増減とΔ
■□の増減とが逆となって相殺される上、Δ■9Δ■8
が本来的に微小量であるので、前記(2)式の第1項〜
第2項の加算値に比して極めて微小となって無視できる
1, ΔIH#INΔ■9 (3) The number of turns of the excitation coil of the electromagnet can be easily designed if the required distance between opposing magnetic poles and the magnetic flux at the center point thereof are specified. Furthermore, the fourth term in equation (2) above is sinω[and 5i
It includes the product of n(ωt+π), and the increase/decrease of Δ■i and Δ
■□ increases and decreases are reversed and offset, and Δ■9Δ■8
is essentially a minute amount, so the first term ~ in equation (2) above
It is extremely small compared to the added value of the second term and can be ignored.

次に、磁場とヒータとが交差する角度θは相対的にOか
ら2πまで連続して存在するが、sinθ=1となる点
即ち磁場とヒータとが直交する点で最大となり他の点で
1以下となり平行する点で0となるが、前記ヒータに与
えられる電磁的な力Fにおける振動要素に上述の相殺効
果を与えることにより、ヒータの磁場に対する位置に関
係なく、ヒータの振動を抑制することが可能となる。
Next, the angle θ at which the magnetic field and the heater intersect exists relatively continuously from O to 2π, but it is maximum at the point where sin θ = 1, that is, the point where the magnetic field and the heater are perpendicular to each other, and becomes 1 at other points. The following becomes 0 at the parallel point, but by giving the above-mentioned canceling effect to the vibration element in the electromagnetic force F applied to the heater, the vibration of the heater can be suppressed regardless of the position of the heater with respect to the magnetic field. becomes possible.

なお、本発明装置は上述の実施例に限定されるものでな
いのはいうまでもない。例えば、変圧器11.21の結
線方式、整流回路12.22の構成等は第1図に示すも
のに限定されるものでなく、また単結晶引上方式は第2
図にて示した方式に限定されるものでない。
It goes without saying that the apparatus of the present invention is not limited to the above embodiments. For example, the wiring system of the transformer 11.21, the configuration of the rectifier circuit 12.22, etc. are not limited to those shown in FIG.
The method is not limited to the method shown in the figure.

〔効果〕〔effect〕

以上詳述した如く、本発明によれば単結晶引上装置にお
けるヒータの電気的要因による振動を確実に抑制するこ
とができる。従って、本発明装置を用いることによって
高品質の単結晶を育成することが可能となる。
As described in detail above, according to the present invention, it is possible to reliably suppress vibrations caused by electrical factors of the heater in a single crystal pulling apparatus. Therefore, by using the apparatus of the present invention, it is possible to grow high quality single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置におけるヒータ及び励磁コイルへ直
流電流を夫々供給する電源部を示す回路図、第2図は単
結晶引上装置の概略構成図である。 la・・・励磁コイル 2・・・ヒータ 5・・・容器
 L・・・半導体の融液 N、S・・・磁極 特 許 出願人 大阪チタニウム製造株式会社代理人 
弁理士 河  野  登  夫蓼 1  図 娯 2  図
FIG. 1 is a circuit diagram showing a power supply section that supplies direct current to the heater and excitation coil, respectively, in the apparatus of the present invention, and FIG. 2 is a schematic configuration diagram of the single crystal pulling apparatus. la: Excitation coil 2: Heater 5: Container L: Semiconductor melt N, S: Magnetic pole patent Applicant: Agent for Osaka Titanium Manufacturing Co., Ltd.
Patent Attorney Noboru Kono 1 Illustration 2 Illustration

Claims (1)

【特許請求の範囲】 1、半導体の融液を収容する容器の周囲に配され、リッ
プル分が含まれる直流電流が供給されるヒータと、該ヒ
ータ及び容器を挾む位置に配された対向磁極間に磁場を
発生させるため、リップル分が含まれる直流電流が供給
される励磁コイルとを備えた単結晶引上装置において、 前記ヒータへ供給される直流電流のリップ ル分と前記励磁コイルへ供給される直流電流のリップル
分との位相差を180°となす移相手段と、 前記両リップル分の波形を正弦波にするた めのフィルタとを具備することを特徴とする単結晶引上
装置。
[Claims] 1. A heater arranged around a container containing a semiconductor melt and to which a direct current including ripple is supplied, and opposing magnetic poles arranged at positions sandwiching the heater and the container. In a single crystal pulling apparatus equipped with an excitation coil to which a DC current including a ripple component is supplied in order to generate a magnetic field between the ripple component of the DC current supplied to the heater and the ripple component of the DC current supplied to the excitation coil. A single crystal pulling device comprising: a phase shifter that makes a phase difference of 180° from a ripple component of a direct current; and a filter that makes the waveform of both ripple components a sine wave.
JP4164388A 1988-02-23 1988-02-23 Single crystal pulling device Expired - Lifetime JPH0631195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4164388A JPH0631195B2 (en) 1988-02-23 1988-02-23 Single crystal pulling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4164388A JPH0631195B2 (en) 1988-02-23 1988-02-23 Single crystal pulling device

Publications (2)

Publication Number Publication Date
JPH01215791A true JPH01215791A (en) 1989-08-29
JPH0631195B2 JPH0631195B2 (en) 1994-04-27

Family

ID=12614015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4164388A Expired - Lifetime JPH0631195B2 (en) 1988-02-23 1988-02-23 Single crystal pulling device

Country Status (1)

Country Link
JP (1) JPH0631195B2 (en)

Also Published As

Publication number Publication date
JPH0631195B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
KR100981194B1 (en) Controllable transformer
KR890005966A (en) Control device of induction machine
JPH01215791A (en) Apparatus for pulling up single crystal
RU2328051C2 (en) Transformer
GB2278251A (en) Loudspeaker including magnetic flux cancellation coil
JPH01215787A (en) Apparatus for pulling up single crystal
JPH08285929A (en) Magnetometer
Walker Bridgman crystal growth with a strong, low-frequency, rotating magnetic field
JP2002222718A (en) Transformer, transformer core, and method of manufacturing the same
KR970007427B1 (en) Crystal growing method
JP5182458B2 (en) Transformer and arc electrical discharge machine
JPH06178449A (en) Reactive power compensator
JPS61161942A (en) Voltage compensating circuit of synchronous generator
JP3083214B2 (en) Transformer excitation current detection device
JP2752182B2 (en) Demagnetization prevention circuit for CVCF transformer
CN111953213B (en) Uniform power control method of cascaded H-bridge solid-state transformer
JP2004015879A (en) Motor drive
Della Flora et al. Vibration acceleration control of an ac power source-fed electrodynamic shaker
Vendan et al. Power sources and challenges for different arc welding processes
JP4387604B2 (en) Evaporation source device
JP2848180B2 (en) Demagnetization correction control device for converter output transformer
JP2615978B2 (en) Operating method of transformer
Cubilla et al. Magnetics materials characterization with application in low and high frequency drives and machines
JPS637872B2 (en)
JP2001060521A (en) Method for reducing iron loss of laminated core transformer and low iron-loss laminated core transformer