JPH01215776A - Surface-treated high-temperature superconductor and production thereof - Google Patents

Surface-treated high-temperature superconductor and production thereof

Info

Publication number
JPH01215776A
JPH01215776A JP63040079A JP4007988A JPH01215776A JP H01215776 A JPH01215776 A JP H01215776A JP 63040079 A JP63040079 A JP 63040079A JP 4007988 A JP4007988 A JP 4007988A JP H01215776 A JPH01215776 A JP H01215776A
Authority
JP
Japan
Prior art keywords
plasma
temperature superconductor
superconductor
temperature
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63040079A
Other languages
Japanese (ja)
Inventor
Shinichi Morohashi
信一 諸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63040079A priority Critical patent/JPH01215776A/en
Priority to US07/313,767 priority patent/US5079221A/en
Priority to DE1989611953 priority patent/DE68911953T2/en
Priority to EP19890103217 priority patent/EP0330211B1/en
Publication of JPH01215776A publication Critical patent/JPH01215776A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the title production process so designed that a protective film having CF2 group, CF3 group etc. is formed on the surface of a high- temperature superconductor, thereby ensuring said superconductor to be protected from deterioration with time due to moisture or temperature. CONSTITUTION:A high-temperature superconductor of LaSrCuO, Y1Ba2Cu3Ox, or Bi1Sr1Ca1Cu2Ox-base is put in a plasma treatment apparatus, which is then fed with a fluorine compound to carry out a plasma discharge treatment on the surface of the superconductor to form on the surface a protective film of a composition containing CF2 group and/or CF3 group made up of at least C and F, thus obtaining the objective surface-treated high-temperature superconductor. The fluorine compound is e.g., fluoromethane-, fluoroethane-based one, or fluorolefin-based one such as tetrafluoroethylene, or vinylidene fluoride or benzotrifluoride.

Description

【発明の詳細な説明】 〔発明の概要〕 表面に保護膜を形成した表面処理高温超伝導体およびそ
の保護膜の製造方法に関し、 高温超伝導体の湿気あるいは温度等の影響による経時変
化を防止することを目的とし、少なくとも炭素(C)、
フッ素(F)元素の結合からなり、これら炭素が少なく
ともCF2基、CF3基として存在する組成の保護膜を
表面に備えるように構成するとともに、 高温超伝導体をプラズマ処理内に設置し、この装置内に
フッ素化合物、たとえば、フルオロメタン系または、フ
ルオロエタン系、あるいは、テトラフルオロエチレン、
ヘキサフルオロプロピレンなどリアルオロオレフィン系
、あるいはフッ化ビニリデン、あるいはフッ化ビニル、
あるいは、ベンゾトリフルオリドなどの芳香族フッ素化
炭化水素を流入して高温超伝導体表面にプラズマ放電処
理を行なうようにして構成する。
[Detailed Description of the Invention] [Summary of the Invention] Regarding a surface-treated high temperature superconductor having a protective film formed on its surface and a method for manufacturing the protective film, the present invention relates to a surface-treated high temperature superconductor having a protective film formed thereon and a method for manufacturing the protective film, which prevents the high temperature superconductor from deteriorating over time due to the influence of moisture, temperature, etc. At least carbon (C),
The device is constructed so that the surface is provided with a protective film consisting of bonds of the element fluorine (F) and has a composition in which these carbons exist as at least CF2 groups and CF3 groups, and a high-temperature superconductor is installed within the plasma treatment. Fluorine compounds such as fluoromethane, fluoroethane, or tetrafluoroethylene,
Real olefins such as hexafluoropropylene, vinylidene fluoride, or vinyl fluoride,
Alternatively, an aromatic fluorinated hydrocarbon such as benzotrifluoride may be introduced to perform plasma discharge treatment on the surface of the high temperature superconductor.

〔産業上の利用分野〕[Industrial application field]

本発明は、表面に保護膜を形成した表面処理高温超伝導
体およびその保護膜の製造方法に関する。
The present invention relates to a surface-treated high temperature superconductor having a protective film formed on its surface and a method for manufacturing the protective film.

現在高い転移温度を示す高温超伝導体としてはLa5r
CuO系、Y1Ba2Cu30x系あるいはBi、 5
r1Ca1Cu20.系等が提示されており、前記La
5rCuO系のものは転移温度(Tc)が40Kを示し
、Y1Ba2Cu30x系のものは転移温度が90Kを
示し、またB115r1Ca1Cu20x系のものは転
゛移温度が105Kを示す、そして、転移温度のより高
い超伝導体について各種の研究が行なわれている。
Currently, La5r is a high-temperature superconductor that exhibits a high transition temperature.
CuO system, Y1Ba2Cu30x system or Bi, 5
r1Ca1Cu20. system etc. have been proposed, and the above La
The 5rCuO series exhibits a transition temperature (Tc) of 40K, the Y1Ba2Cu30x series exhibits a transition temperature of 90K, and the B115r1Ca1Cu20x series exhibits a transition temperature of 105K. Various studies are being conducted on conductors.

〔従来の技術〕[Conventional technology]

これら高温超伝導体のうち、Y1Ba2Cu30x系の
ものが比較的容易に作成されており、その作成方法は種
々存在し、例えばラバープレス法等によってバルクとし
て製造したり、EB蒸着法、スパッタリング法あるいは
MBE法等により基板(5rTiO、八j 203 、
Hg’O’j上に薄膜として形成する方法がある。
Among these high-temperature superconductors, Y1Ba2Cu30x-based ones are relatively easily produced, and there are various methods for producing them. A substrate (5rTiO, 8j 203,
There is a method of forming a thin film on Hg'O'j.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の各種高温超伝導体は、一般に、バルク状のもの又
は薄膜状のいづれのものも製造直後はそれぞれの転移温
度(Tc)を有していても、製造後−定期間経過すると
転移温度の低下および室温での電気抵抗値の増加等の経
時変化が起こり実用化の大きな障害となっていた。特に
、高温超伝導体が湿気あるいは温度の影響を受けるとそ
の経時変化が大きくこれらの影響に対する対策が望まれ
ていた。
In general, the various high-temperature superconductors mentioned above, whether in bulk form or thin film form, have their respective transition temperatures (Tc) immediately after manufacture, but the transition temperature changes after a certain period of time after manufacture. Changes over time, such as a decrease in electrical resistance and an increase in electrical resistance at room temperature, have been a major obstacle to practical application. In particular, when high-temperature superconductors are affected by humidity or temperature, their changes over time are significant, and countermeasures against these effects have been desired.

本発明は、かかる点に鑑み、水分あるいは温度等の影響
による経時変化を防止するような表面処理を施した表面
処理高温超伝導体およびそのための保護膜の製造方法を
提供することを目的とする。
In view of the above, an object of the present invention is to provide a surface-treated high-temperature superconductor that is surface-treated to prevent changes over time due to the influence of moisture, temperature, etc., and a method for producing a protective film therefor. .

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、少なくとも炭素(C)、フッ素(F)の2
元素の結合からなり、これら炭素が少なくともCF  
基、CF3基として存在する組成の保護膜を表面に備え
るようにしたことおよび高温超伝導体をプラズマ処理内
に設置し、この装置内にフッ素化合物、たとえば、°フ
ルオロメタン系または、フルオロエタン系、あるいは、
テトラフルオロエチレン、ヘキサフルオロプロピレンな
どのフルオロオレフィン系、あるいはフッ化ビニリデン
、あるいはフッ化ビニル、あるいは、ペンゾトリフルオ
リドなどの芳香族フッ素化炭化水素を流入して高温超伝
導体表面にプラズマ放電処理を行なうようにして達成さ
れる。
The above problem is solved by at least two types of carbon (C) and fluorine (F).
It consists of a bond of elements, and these carbons are at least CF
In addition, the high temperature superconductor is provided with a protective film having a composition that exists as a group or a CF3 group on the surface, and the high temperature superconductor is placed in a plasma treatment chamber, and a fluorine compound, such as a fluoromethane-based or fluoroethane-based ,or,
Plasma discharge treatment is applied to the surface of a high-temperature superconductor by flowing fluoroolefins such as tetrafluoroethylene and hexafluoropropylene, vinylidene fluoride, vinyl fluoride, or aromatic fluorinated hydrocarbons such as penzotrifluoride. This is achieved by doing the following.

〔作用〕[Effect]

La5rCuO系、Y1Ba2Cu30x系又はBi、
 5r1Ca、 Cu2ox系等の高い転移温度を示す
高温超伝導体の表面に少なくともC,Fの2元素からな
るCF  基、CF3基として存在する組成の保護膜を
形成すると、この保護膜が空気中の湿気および高温に対
して超伝導特性を保護し耐水性、耐熱性が向上し経時変
化を防止して転移温度の低下および電気抵抗の増加が有
効に防止される。
La5rCuO system, Y1Ba2Cu30x system or Bi,
When a protective film is formed on the surface of a high-temperature superconductor exhibiting a high transition temperature such as 5r1Ca or Cu2ox based, the composition of which is present as a CF group or a CF3 group consisting of at least two elements, C and F, will cause this protective film to absorb It protects superconducting properties against humidity and high temperatures, improves water resistance and heat resistance, and prevents deterioration over time, effectively preventing a decrease in transition temperature and an increase in electrical resistance.

また、前記保護膜はバルク状又は薄膜状の高温超伝導体
をプラズマ装置内に設置し、このプラズマ重合膜に例え
ばフッ素化合物、たとえば、フルオロメタン系または、
フルオロエタン系、あるいは、テトラフルオロエチレン
、ヘキサフルオロプロピレンなどのフルオロオレフィン
系、あるいはフッ化ビニリデン、あるいはフッ化ビニル
、あるいは、ベンゾトリフルオリドなどの芳香族フッ素
化炭化水素を流入してプラズマ放電させれば、容易に形
成され得る。このプラズマ放電処理は超伝導特性に影響
を与えないし、しかもプラズマ装置内の圧力、印加電力
および印加時間を調整すれば保護膜としてのプラズマ重
合膜の厚さを容易に形成できる。
The protective film may be formed by installing a high-temperature superconductor in the form of a bulk or a thin film in a plasma device, and adding a fluorine compound such as a fluoromethane-based or
Fluoroethane, fluoroolefins such as tetrafluoroethylene and hexafluoropropylene, vinylidene fluoride, vinyl fluoride, or aromatic fluorinated hydrocarbons such as benzotrifluoride are introduced to generate a plasma discharge. If so, it can be easily formed. This plasma discharge treatment does not affect the superconducting properties, and the thickness of the plasma polymerized film as a protective film can be easily formed by adjusting the pressure within the plasma apparatus, the applied power, and the application time.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は、公知のプラズマ装置の概略構成図である。す
なわち、第1図は平行平板型プラズマ装置Mを示し、こ
のプラズマ装rItMはゲージング1を有し、このゲー
ジング−内には相対向する平板2.3が設けられ、下方
の平板3には第3図に示すよような試料4が載置されて
いる。
FIG. 1 is a schematic diagram of a known plasma device. That is, FIG. 1 shows a parallel plate type plasma device M, which has a gauging 1, in which opposing flat plates 2.3 are provided, and the lower flat plate 3 has a gauging 1. A sample 4 as shown in FIG. 3 is placed.

そして、前記両手板2.3には高周波が印加されるよう
になっており、ケーシング−内にはガス流入口5から処
理ガスが流入されるとともに処理後のガスは排出口6か
ら排出される。
A high frequency is applied to the both hand plates 2.3, and processing gas flows into the casing from the gas inlet 5, and the processed gas is discharged from the exhaust port 6. .

第2図は前記試料4の断面図を示し、符号7はS+Ti
O、Aj203又はHQOノ基板であり、この基板7上
にBB法、スパッタリング法又はMBE法により高温超
伝導体8(Y1Ba2Cu30x、La5rCuO又は
811S「1Ca1Cu20x)の薄膜が形成されてい
る。この薄膜上にはプラズマ処理によってプラズマ重合
1fi9が付着されている。
FIG. 2 shows a cross-sectional view of the sample 4, where 7 is S+Ti.
A thin film of a high temperature superconductor 8 (Y1Ba2Cu30x, La5rCuO or 811S "1Ca1Cu20x") is formed on this substrate 7 by the BB method, sputtering method or MBE method. Plasma polymerized 1fi9 is attached by plasma treatment.

前記プラズマ重合膜9の形成のためには前記プラズマ装
置M内に流入されるガスとしてはフッ素化合物、たとえ
ば、フルオロメタン系または、フルオロエタン系、ある
いは、テトラフルオロエチレン、ヘキサフルオロプロピ
レンなどのフルオロオレフィン系、あるいはフッ化ビニ
リデン、あるいはフッ化ビニル、あるいは、ベンゾトリ
フルオリドなどの芳香族フッ素化炭化水素が好ましく、
例えばフルオロメタン系ではCHF3ガスのみ、02F
4ガスのみ又はCF4と112との混合ガスが好ましい
、フロン系のガスであってもCF4ガスのみおよびCF
 ガスと 02ガスとの混合ガスではプラズマ重合膜は
形成されないばかりでなく超伝導特性も劣化されるので
好ましくなく、02ガスのみでも好ましくない、一般に
、フッ素(F)の性質は超伝導体の表面をエツチングす
る性質があり、フッ素が余り多いと好ましくない、そこ
で、フッ素の作用を水素(11)で弱めるようにしてい
る。
In order to form the plasma polymerized film 9, the gas introduced into the plasma device M is a fluorine compound, for example, a fluoromethane type, a fluoroethane type, or a fluoroolefin such as tetrafluoroethylene or hexafluoropropylene. or aromatic fluorinated hydrocarbons such as vinylidene fluoride, vinyl fluoride, or benzotrifluoride,
For example, in the case of fluoromethane, only CHF3 gas, 02F
4 gas only or a mixed gas of CF4 and 112 is preferable. Even if it is a fluorocarbon gas, only CF4 gas and CF
A mixed gas of 02 gas and 02 gas not only does not form a plasma-polymerized film but also deteriorates the superconducting properties, so it is undesirable, and 02 gas alone is also undesirable.In general, the properties of fluorine (F) affect the surface of superconductors. Since fluorine has the property of etching, too much fluorine is undesirable, so hydrogen (11) is used to weaken the effect of fluorine.

第3図は、基板上にY1Ba2Cu30xからなる高温
超伝導体を形成した試料に対して4種のガスを使用した
場合において、プラズマ重合膜を形成した処理後の転移
温度と、室温20℃における処理後の電気抵抗(R)と
処理前の抵抗(Ro)との比(R/ Ro)がどのよう
に変化するかを示したものである。すなわち、横軸はケ
ーシング−内の圧力を示しく0.1〜1.5 Torr
) 、左縦軸ハa抗比(Ft/R6)を、右編軸は転移
温度(Tc)を示す。
Figure 3 shows the transition temperature after treatment to form a plasma polymerized film and the treatment at room temperature 20°C when four types of gas were used for a sample in which a high-temperature superconductor made of Y1Ba2Cu30x was formed on a substrate. It shows how the ratio (R/Ro) between the electrical resistance (R) after treatment and the resistance (Ro) before treatment changes. That is, the horizontal axis indicates the pressure inside the casing, which is 0.1 to 1.5 Torr.
), the left vertical axis shows the resistance ratio (Ft/R6), and the right axis shows the transition temperature (Tc).

CHF3ガスのみ、Cf4+02の混合ガス又はCF4
ガスのみの湯釜は印加電力を50Wとし、02ガスの場
合は250Wとし、印加時間は全て10分間とした。な
お、印加電力を200W以上では超伝導体表面が劣化し
て好ましくないので200W以下とする必要がある。こ
の実験で用いた装置は平行平板型プラズマ装置でカソー
ド電極の面積は3001であり、単位面積当りの印加電
力は上記印加電力をこの面積で割れば求まる。
CHF3 gas only, Cf4+02 mixed gas or CF4
The applied power was 50 W for the gas-only kettle, and 250 W for the 02 gas, and the application time was all 10 minutes. Note that if the applied power is 200 W or more, the surface of the superconductor will deteriorate, which is undesirable, so it is necessary to keep the applied power at 200 W or less. The device used in this experiment was a parallel plate type plasma device, and the area of the cathode electrode was 3001, and the applied power per unit area was found by dividing the above applied power by this area.

また、平行平板型でなく、円筒形型プラズマ装置等プラ
ズマ重合がおきる装置であれば、その種類は限定されな
い。
Moreover, the type is not limited as long as it is an apparatus that can cause plasma polymerization, such as a cylindrical type plasma apparatus instead of a parallel plate type.

第3図の実験結果によれば、ClIF5ガスの場合には
、その転移温度(Tc)が各ガス圧の変化に拘らず約8
0にであり全んど処理前後において転移温度に変化が見
られなかった。しかしながら、前記抵抗比(R/ Ro
)は0.5又は1.5 Torrではほぼ1であり処理
前後で全んど変化はなかったが0.2又は1.OTor
rでは1より若干大きくなった。
According to the experimental results shown in Figure 3, in the case of ClIF5 gas, its transition temperature (Tc) is approximately 8
0, and no change was observed in the transition temperature before and after the treatment. However, the resistance ratio (R/Ro
) was almost 1 at 0.5 or 1.5 Torr, and there was no change at all before and after the treatment, but at 0.2 or 1. OTor
For r, it was slightly larger than 1.

また、C[4+02の混合ガスの場合は1.0 Tor
rで転移温度は81Kから78.5にと2.5にだけ処
理前より下がり、抵抗比は1より若干大きくなった。
In addition, in the case of a mixed gas of C[4+02, 1.0 Tor
At r, the transition temperature decreased from 81 K to 78.5, which was only 2.5 points lower than before the treatment, and the resistance ratio became slightly larger than 1.

更に、CF4ガスの場合は1.OTorrで転移温度は
81Kから78.5にと2.5にだけ処理後に下降した
。・そして、02ガスの場合は転移温度は81Kから7
7にと4に程下降し、抵抗比はほぼ1であった。
Furthermore, in the case of CF4 gas, 1. At OTorr, the transition temperature decreased from 81 K to 78.5 by only 2.5 after treatment.・And in the case of 02 gas, the transition temperature is 81K to 7
The resistance ratio decreased to 7 and 4, and the resistance ratio was approximately 1.

したがって、CHF3ガスを使用して、かつ、圧力0.
1〜1.5 Torr、印加電力200W以下、印加時
間10〜60分の条件でプラズマ放電処理を行なえば、
特に転移温度が処理前後において全く変化しないことが
判明した。
Therefore, using CHF3 gas and at a pressure of 0.
If plasma discharge treatment is performed under the conditions of 1 to 1.5 Torr, applied power of 200 W or less, and application time of 10 to 60 minutes,
In particular, it was found that the transition temperature did not change at all before and after the treatment.

また、かかる条件の下において、プラズマ処理をしたら
超伝導体表面の色が黒から緑色に変化しその表面にプラ
ズマ重合膜が形成されていることが明らかとなり、その
成分をX線分析(X−raV photoelectr
on 5pectroscopy (XPS))および
赤外線反射スペクトル(XR)で検査したところ、第4
図および第5図のようになった。
In addition, under these conditions, when plasma treatment was performed, the color of the superconductor surface changed from black to green, and it became clear that a plasma polymerized film was formed on the surface, and its components were analyzed by X-ray analysis (X-ray analysis). raV photoelectr
On 5 pectroscopy (XPS)) and infrared reflectance spectroscopy (XR), the fourth
It became as shown in Figure and Figure 5.

第4図はXPSによる検出結果であり、曲線のA部分は
CF3、CF 2− CFH、CF2基の存在、B部分
はCHF −CF2、CFO、CFH、CF2− C1
2基の存在、C部分は−CM20H,CFH−CH,、
基の存在を意味している。
Figure 4 shows the detection results by XPS, where part A of the curve indicates the presence of CF3, CF2-CFH, and CF2 groups, and part B indicates the presence of CHF-CF2, CFO, CFH, and CF2-C1.
Existence of two groups, C moiety is -CM20H, CFH-CH,
It means the existence of a group.

第5図は金/シリコンウェハの上にプラズマ重合膜を付
着させて赤外線反射スペクトラムの結果を示したもので
あり、この測定結果によれば、曲線のD部分はC−H基
、E部分はC=0 、CH2=示している0両測定結果
を結合すれば、前記プラズマ重合膜はC,Fの元素から
なりたっており、それが主としてCF  基、CF3基
又はCH基として存在していることが判明した。CH基
あるいはHとの結合基は、重合後、膜中に残存するラジ
カルと空気中の酸素および水素との反応によって形成さ
れたものであり、本質的ではない。
Figure 5 shows the results of the infrared reflection spectrum of a plasma polymerized film deposited on a gold/silicon wafer. According to the measurement results, the D part of the curve is a C-H group, and the E part is a C-H group. Combining the measurement results showing C=0 and CH2=0, the plasma polymerized film is composed of elements C and F, which exist mainly as CF groups, CF groups, or CH groups. There was found. The CH group or the bonding group with H is formed by the reaction between the radicals remaining in the film after polymerization and oxygen and hydrogen in the air, and is not essential.

さらに、xpsによって、高温超伝導体表面と、プラズ
マ重合膜との界面を調べた。第6図は、プラズマ重合膜
をつけていない、Y18a2Cu30x膜表面のY(イ
ツトリウム)の3dスペクトラム、第7図は、プラズマ
重合膜をつけた Y1Ba2Cu3 oxII!表面のYの3dスペクト
ラムの結果である。第6図の155.8 eVのピーク
はY−Iletal、157.7 eVのピークはY 
−oxideのピークである。これに対して、第7図で
は155.8 eVのY−metal、15g、2 e
VのY−oxideのピークの外に、16G、 2eV
のピークがみられる。このピークはYフッ化物のピーク
である。Ba、CuのXPSスペクトラムも同じくプラ
ズマ重合膜後、Baのフッカ物、Cuのフッカ物のピー
クがみられる。プラズマ重合によって、Y1Ba2Cu
30xIg!表面とプラズマ重合膜との界面に反応があ
ることを示している。この反応自体は、後で述べるよう
に、 Y1Ba2Cu30xMの超伝導特性に悪い影響を及ぼ
ずことはなく、更に第8図以後で述べる水への耐性向上
の原因となる。つまり、超伝導膜と重合膜が密着してい
ることを示している。
Furthermore, the interface between the high temperature superconductor surface and the plasma polymerized film was investigated using XPS. Figure 6 shows the 3D spectrum of Y (yttrium) on the surface of the Y18a2Cu30x film without the plasma polymerized film, and Figure 7 shows the Y1Ba2Cu3 oxII! film with the plasma polymerized film. This is the result of the 3D spectrum of Y on the surface. The peak at 155.8 eV in Figure 6 is Y-Iletal, and the peak at 157.7 eV is Y-Iletal.
-oxide peak. On the other hand, in Fig. 7, Y-metal of 155.8 eV, 15g, 2e
Outside the Y-oxide peak of V, 16G, 2eV
A peak is seen. This peak is the peak of Y fluoride. Similarly, the XPS spectra of Ba and Cu also show peaks of Ba fluoride and Cu fluoride after plasma polymerization. By plasma polymerization, Y1Ba2Cu
30xIg! This shows that there is a reaction at the interface between the surface and the plasma polymerized film. This reaction itself does not adversely affect the superconducting properties of Y1Ba2Cu30xM, as will be described later, and is also responsible for improving the resistance to water, which will be described in Figures 8 onwards. In other words, this shows that the superconducting film and polymer film are in close contact with each other.

次に、プラズマ放電処理をした高温超伝導体の経時変化
を調べるためにプラズマ重合膜を有するものと有しない
ものを同時に室温の水に60分漬けて取出してみると、
プラズマ重合膜を有するものは、第8図に示すように転
移温度は80にで処理前と全く変化ないばかりでなく、
各温度における電気抵抗値にも全んど変化がなかった。
Next, in order to investigate the changes over time in high-temperature superconductors that had been subjected to plasma discharge treatment, we immersed them in water at room temperature for 60 minutes and then took them out.
As shown in Figure 8, the plasma-polymerized film has a transition temperature of 80°C, which is not at all different from before the treatment.
There was no change in the electrical resistance value at each temperature.

ところが、プラズマ処理しない同成分の高温超伝導体に
おいては、第9図に示すように全体として電な抵抗が上
昇してしまいIOKにおいても電気抵抗は0とならず、
超伝導特性が全くなくなってしまった。このことから、
前記プラズマ重合膜は耐水性の保護膜としての性格を有
していることが判る。
However, in a high-temperature superconductor with the same composition that is not subjected to plasma treatment, the electrical resistance increases as a whole as shown in Figure 9, and the electrical resistance does not become zero even at IOK.
Superconducting properties have completely disappeared. From this,
It can be seen that the plasma polymerized film has the characteristics of a water-resistant protective film.

また、プラズマ処理した高温超伝導体を90℃の温水に
10分間浸漬せしめたときの性質の変化を第10図に示
す、第10図の実験結果によれば、処理前後において転
移温度は80にと全く変化はないが、80に以上の温度
における電気抵抗値は処理前のものに比較して増大して
いることが判明した。また、プラズマ処理を施していな
いものは、図示はしていないが、超伝導特性を全く有し
てい−ないことが判明した。
Figure 10 shows the change in properties when a plasma-treated high-temperature superconductor is immersed in hot water at 90°C for 10 minutes.According to the experimental results shown in Figure 10, the transition temperature is 80°C before and after the treatment. Although there was no change at all, it was found that the electrical resistance value at temperatures above 80°C increased compared to that before treatment. Further, although not shown in the figure, it was found that the material not subjected to plasma treatment had no superconducting properties at all.

また、プラズマ重合膜を付けた試料を大気中、オープン
で100℃、150℃、200℃で30分間、それぞれ
加熱してもそのグラフは第6図のグラフとほぼ同様とな
り、転移温度の変化は見られなかった。
Furthermore, even if the sample with the plasma polymerized film is heated in the open air at 100°C, 150°C, and 200°C for 30 minutes, the graph will be almost the same as the graph in Figure 6, and the transition temperature will change. I couldn't see it.

これら耐熱性を調べるための実験結果から、本発明に係
るプラズマ重合膜は耐熱性を有し、かつ高温超伝導体を
大気、特にその中の窒素の影響から膜を防護しているこ
とが判明した0重合膜をっけない超伝導膜では、大気中
で熱処理を行なうと、その超伝導特性が劣化する。これ
は、大気中の窒素の影響であることが知られている。
From these experimental results to investigate heat resistance, it was found that the plasma polymerized film according to the present invention has heat resistance and protects the high temperature superconductor from the influence of the atmosphere, especially the nitrogen contained therein. If a superconducting film without a zero-polymer film is subjected to heat treatment in the atmosphere, its superconducting properties will deteriorate. This is known to be an effect of nitrogen in the atmosphere.

以上の実験例はY、8a2Cu30x系の超伝導体につ
いて行なったものであるが、 B115「1Ca1Cu20x系の超伝導体についても
同様にしてプラズマ処理を行なってみた。
The above experimental examples were conducted on Y, 8a2Cu30x-based superconductors, but plasma treatment was also performed on B115'1Ca1Cu20x-based superconductors in the same manner.

すなわち、スパヅタリング法で B115r1Ca1Cu20x系の超伝導膜を基板上に
形成し、ClIF5ガスで、装置内の圧力をI Tor
r、印加電力50W、印加時間10分間の条件でプラズ
マ処理を行なった゛ところ、第11図の1−v特性グラ
フに示すプラズマ処理前の室温での抵抗値(直線Aの傾
き)と第12図の1−v特性グラフに示すプラズマ処理
後の室温での抵抗値(直線Bの傾き)とは全く同一とな
り、プラズマ処理前後における抵抗値の変化がないこと
が確認された。
That is, a B115r1Ca1Cu20x superconducting film is formed on a substrate by the sputtering method, and the pressure inside the device is reduced to I Tor with ClIF5 gas.
When plasma processing was performed under the conditions of r, applied power of 50 W, and application time of 10 minutes, the resistance value (slope of straight line A) at room temperature before plasma processing shown in the 1-v characteristic graph of Fig. 11 and Fig. 12 The resistance value (the slope of straight line B) at room temperature after the plasma treatment shown in the 1-v characteristic graph was completely the same, and it was confirmed that there was no change in the resistance value before and after the plasma treatment.

また、He温度(4,2K)での B115r1Ca、 Cu20x系の超伝導膜のプラズ
マ処理前の超伝導特性を示す第11図のI−■特性C曲
線と第12図のプラズマ処理後の1−v特性り曲線とは
同一となり、He温度での超伝導特性にも全く変化がな
いことも確認された。
In addition, the I-■ characteristic C curve in Figure 11 showing the superconducting characteristics of B115r1Ca and Cu20x-based superconducting films before plasma treatment at He temperature (4.2K) and the 1- characteristic curve after plasma treatment in Figure 12. It was also confirmed that the v-characteristic curve was the same as that of the superconducting characteristic at He temperature.

なお、第13.14図の1−v特性グラフは非線形型性
を有し、それらの曲線部分Sが超伝導特性を示すもので
ある。
Note that the 1-v characteristic graphs in FIGS. 13 and 14 have nonlinear characteristics, and their curved portion S indicates superconducting characteristics.

更に、プラズマ処理後のこの系の超伝導体表面の色は前
述の実験例と同じように処理前の表面の色とは異なって
おり、この点からもプラズマ重合膜の存在が確認された
Furthermore, the color of the surface of this superconductor after plasma treatment was different from the color of the surface before treatment, as in the previous experimental example, and from this point as well, the existence of a plasma polymerized film was confirmed.

なお、プラズマ重合膜は、プラズマ装置内の圧力、印加
電力および印加時間等の作成条件を変化させれば、その
厚さを数オングストロームから1ミクロン程度まで調整
できるが、通常5000A程度である。
The thickness of the plasma polymerized film can be adjusted from several angstroms to about 1 micron by changing the production conditions such as the pressure inside the plasma device, the applied power, and the application time, but the thickness is usually about 5000 A.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、高温超伝導体の表面にCF2基、
CF3基およびCO基等が存在する保護膜を形成すれば
、耐水性および耐熱性が向上し、湿気や熱および窒素に
よって高温超伝導体特性特に転移温度の経時変化が起こ
ることを有効に防止できる。また、前記保護膜は例えば
CHF3ガスを使用してプラズマ処理すれば容易に形成
でき、このプラズマ処理によれば超伝導特性に変化を与
えることなく前記保護膜を形成できる。
As explained above, CF2 groups on the surface of the high-temperature superconductor,
If a protective film containing CF3 groups and CO groups is formed, water resistance and heat resistance will be improved, and it will be possible to effectively prevent changes in high-temperature superconductor properties, especially transition temperature, due to moisture, heat, and nitrogen over time. . Further, the protective film can be easily formed by plasma treatment using, for example, CHF3 gas, and by this plasma treatment, the protective film can be formed without changing the superconducting properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例におけるプラズマ処理装置
の概略構成図、 第2図は、プラズマ保護膜を有する薄膜状高温超伝導体
の断面図、 第3図は、プラズマ処理前後における超伝導体特性の比
較グラフ、 第4図はプラズマ重合膜のXPS解析グラフ、第5図は
プラズマ重合膜の赤外線反射スペクトラム、 第6図はプラズマ重合していない Y1Ba2Cu30xのYのxpsスペクトラム、第7
図はプラズマ重合したY1Ba2Cu30xのYのXP
Sスペクトラム、 第8図はプラズマ処理後の高温超伝導体を水に浸漬した
場合の超伝導特性グラフ、 第9図はプラズマ処理前の高温超伝導体を水に浸漬した
場合の超伝導特性グラフ、 第10図はプラズマ処理後の高温超伝導体を温水に浸漬
した場合の超伝導特性グラフ、第11図は他の高温超伝
導体のプラズマ処理前の1−v特性グラフ、 第12図は他の高温超伝導体のプラズマ処理後のニーV
特性グラフ、 第13図は他の高温超伝導体のプラズマ処理前のI−v
特性グラフ、 第14図は他の高温超伝導体のプラズマ処理後の1−v
特性グラフである。 1・・・ケーシング、 2・・・平板、 3・・・平板、 4・・・試料。 プラズマ処理辰Iの才既略構成図 第1図 試料の断面図 P(Torr) スペクトル強度 N(E)/E スペクトル強度N(El/E 濁度(K) 第8図 温度TKI 第9図 温度(Kl 第11図 〜     −0−〜
FIG. 1 is a schematic configuration diagram of a plasma processing apparatus in an embodiment of the present invention, FIG. 2 is a cross-sectional view of a thin film-like high temperature superconductor having a plasma protective film, and FIG. 3 is a superconductor before and after plasma treatment. Comparison graph of conductor properties. Figure 4 is an XPS analysis graph of the plasma polymerized film. Figure 5 is the infrared reflection spectrum of the plasma polymerized film. Figure 6 is the xps spectrum of Y of Y1Ba2Cu30x which is not plasma polymerized. Figure 7 is the XPS analysis graph of the plasma polymerized film.
The figure shows the XP of plasma-polymerized Y1Ba2Cu30x.
S spectrum, Figure 8 is a graph of superconductivity properties when a high temperature superconductor is immersed in water after plasma treatment, Figure 9 is a graph of superconductivity properties when a high temperature superconductor is immersed in water before plasma treatment. , Figure 10 is a superconductivity characteristic graph when a high temperature superconductor after plasma treatment is immersed in hot water, Figure 11 is a 1-v characteristic graph of other high temperature superconductors before plasma treatment, and Figure 12 is Knee V after plasma treatment of other high temperature superconductors
Characteristic graph, Figure 13 shows I-v of other high temperature superconductors before plasma treatment.
Characteristic graph, Figure 14 shows the 1-v characteristics of other high-temperature superconductors after plasma treatment.
This is a characteristic graph. 1... Casing, 2... Flat plate, 3... Flat plate, 4... Sample. Schematic diagram of the plasma-treated Dragon I Fig. 1 Cross-sectional view of the sample P (Torr) Spectral intensity N (E)/E Spectral intensity N (El/E Turbidity (K) Fig. 8 Temperature TKI Fig. 9 Temperature (Kl Figure 11~ -0-~

Claims (1)

【特許請求の範囲】 1、(特定発明) 少なくとも炭素(C)、フッ素(F)の2元素の結合か
らなり、これら炭素が少なくともCF_2基、CF_3
基として存在する組成の保護膜を表面に備えた表面処理
高温超伝導体。 2、(37条3号の関連発明) 高温超伝導体をプラズマ処理装置内に設置し、この装置
内にフッ素化合物、たとえば、フルオロメタン系または
、フルオロエタン系、あるいは、テトラフルオロエチレ
ン、ヘキサフルオロプロピレンなどのフルオロオレフィ
ン系、あるいはフッ化ビニリデン、あるいはフッ化ビニ
ル、あるいは、ベンゾトリフルオリドなどの芳香族フッ
素化炭化水素を流入して高温超伝導体表面にプラズマ放
電処理を行なうようにしたことを特徴とする表面処理高
温超伝導体の製造方法。
[Claims] 1. (Specific invention) Consists of a bond of at least two elements, carbon (C) and fluorine (F), and these carbons are at least CF_2 group, CF_3 group
A surface-treated high-temperature superconductor with a protective film on its surface having the same composition as the base. 2. (Related invention of Article 37, item 3) A high temperature superconductor is installed in a plasma processing device, and a fluorine compound such as fluoromethane, fluoroethane, tetrafluoroethylene, hexafluoro A plasma discharge treatment is performed on the surface of a high-temperature superconductor by flowing fluoroolefins such as propylene, vinylidene fluoride, vinyl fluoride, or aromatic fluorinated hydrocarbons such as benzotrifluoride. A method for producing a surface-treated high-temperature superconductor.
JP63040079A 1988-02-23 1988-02-23 Surface-treated high-temperature superconductor and production thereof Pending JPH01215776A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63040079A JPH01215776A (en) 1988-02-23 1988-02-23 Surface-treated high-temperature superconductor and production thereof
US07/313,767 US5079221A (en) 1988-02-23 1989-02-22 Superconductor passivated by an organic film and a method for forming the organic film
DE1989611953 DE68911953T2 (en) 1988-02-23 1989-02-23 Polymerized organic passivation layer for superconductors.
EP19890103217 EP0330211B1 (en) 1988-02-23 1989-02-23 Polymerised organic passivation film for a superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040079A JPH01215776A (en) 1988-02-23 1988-02-23 Surface-treated high-temperature superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01215776A true JPH01215776A (en) 1989-08-29

Family

ID=12570906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040079A Pending JPH01215776A (en) 1988-02-23 1988-02-23 Surface-treated high-temperature superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01215776A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075284A (en) * 1987-08-27 1991-12-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing superconducting ceramics and the products thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445011A (en) * 1987-08-13 1989-02-17 Tdk Corp Superconductive oxide ceramic material
JPS6465005A (en) * 1987-07-27 1989-03-10 Ovonic Synthetic Materials Stabilization of high critical temperature superconductive material and stabilized material
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6465005A (en) * 1987-07-27 1989-03-10 Ovonic Synthetic Materials Stabilization of high critical temperature superconductive material and stabilized material
JPS6445011A (en) * 1987-08-13 1989-02-17 Tdk Corp Superconductive oxide ceramic material
JPH0196082A (en) * 1987-10-06 1989-04-14 Mitsubishi Electric Corp Oxide superconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075284A (en) * 1987-08-27 1991-12-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing superconducting ceramics and the products thereof

Similar Documents

Publication Publication Date Title
JPS60115677A (en) Adhesive mixture and article bonded therewith
Cioffi et al. Analysis of the surface chemical composition and morphological structure of vapor-sensing gold− fluoropolymer nanocomposites
KR100721731B1 (en) Hydrogenating a layer of an antireflection coating
JPH01215776A (en) Surface-treated high-temperature superconductor and production thereof
EP3557644A1 (en) Composition, organic optoelectronic element, and production method therefor
Ou et al. Optical properties of electrochemically deposited CdTe films
US5079221A (en) Superconductor passivated by an organic film and a method for forming the organic film
Iwasaki et al. Electron Spin Resonance of γ‐Irradiated Tetrafluoroethylene—Hexafluoropropylene Copolymers
EP0405875A1 (en) Method for deposition of zinc sulfide films
Zhang et al. Characterization of fluoropolymer films deposited by magnetron sputtering of poly (tetrafluoroethylene) and plasma polymerization of heptadecafluoro‐1‐decene (HDFD) on (100)‐oriented single‐crystal silicon substrates
JPH02192775A (en) Josephson junction element and its manufacture
KR20180020484A (en) Method of Metal Film Formation on Surface of Teflon
Baker et al. Characterization of Vapor‐Deposited Paraxylylene Coatings
Clark et al. ESCA applied to polymers. XXI. Investigation of sample‐charging phenomena
JPH0196082A (en) Oxide superconductor
Angood et al. Effect of nonrandom polymer chain orientation in the thickness direction on infrared absorption measurements
JP7278959B2 (en) the film
JPH10227902A (en) Wide-band antireflection film
JPH02192778A (en) Pattern forming method of high temperature superconducting film
JPS6051262B2 (en) semiconductor equipment
Stewart et al. FTIR and XPS studies of polyimide/metal interface formation
JPH02192402A (en) Formation of protective film for oxide superconducting material
Dobierzewska-Mozrzymas et al. The fractal structure of discontinuous metal films: copper films on glass substrates
Aziz et al. The Effect of Incident Atomic Velocity on the Structure of Evaporated Silver Films
JPH0292884A (en) Method for treating surface of high-temperature superconductive thin film