JPH01215468A - Method for controlling bipolar arc welding - Google Patents

Method for controlling bipolar arc welding

Info

Publication number
JPH01215468A
JPH01215468A JP3854288A JP3854288A JPH01215468A JP H01215468 A JPH01215468 A JP H01215468A JP 3854288 A JP3854288 A JP 3854288A JP 3854288 A JP3854288 A JP 3854288A JP H01215468 A JPH01215468 A JP H01215468A
Authority
JP
Japan
Prior art keywords
polarity
welding
current
time
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3854288A
Other languages
Japanese (ja)
Other versions
JPH0464794B2 (en
Inventor
Tokuji Maruyama
徳治 丸山
Masashi Okada
雅志 岡田
Masahiro Honma
正浩 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3854288A priority Critical patent/JPH01215468A/en
Priority to DE3816238A priority patent/DE3816238A1/en
Priority to KR1019880005472A priority patent/KR910004997B1/en
Priority to US07/192,622 priority patent/US4877941A/en
Publication of JPH01215468A publication Critical patent/JPH01215468A/en
Publication of JPH0464794B2 publication Critical patent/JPH0464794B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize an AC arc and to perform welding at a high speed by reducing a welding current or the welding voltage for a prescribed period of time right before or right after a changeover at the time of changing over the polarity of the DC voltage impressed between a consumable electrode and base metal from the reversed polarity to the straight polarity. CONSTITUTION:At the time of changing over the polarity of the DC voltage impressed between the consumable electrode 3 and the base metal 5 from the reversed polarity to the straight polarity while an arc 4 being generated, a high current is carried suddenly to the straight polarity and an arc generating period of time and short-circuit period of time are extended. As a result, a decrease of the number of short circuits or an increase of its change takes place and deterioration of workability or an increase of a large-sized spatter right before the short circuit is caused. As a result, while a current decrease control circuit 16 executes the time integration of the reversed polarity welding by a polar signal from a polarity changeover control circuit 12, it determines the current decrease timing based on the set current decrease time and outputs a current decrease starting command signal, a set decrease current target value and a decrease current waveform to an output control circuit 18. By this method, when the changeover is executed to the straight polarity, the output of a DC power source 1 is controlled by the circuit 15 and the welding current at the time of changing over decreases.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、消耗電極と母材との間に印加する直流電圧の
極性を切り替えて正極性と逆極性とを繰り返す両極性ア
ーク溶接の制御方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the control of bipolar arc welding in which the polarity of a DC voltage applied between a consumable electrode and a base material is switched to repeat positive and reverse polarity. It is about the method.

[従来の技術] 溶接ワイヤ(消耗電極)を定速供給しつつ母材との間に
アークを発生させて溶接を行なう消耗電極式のアーク溶
接において、通常は、母材側がマイナス、溶接ワイヤ側
がプラスになるように直流電圧を印加する逆極性溶接が
行なわれている。
[Prior Art] In consumable electrode type arc welding, in which welding is performed by generating an arc between the welding wire (consumable electrode) and the base metal while supplying the welding wire (consumable electrode) at a constant speed, normally the base metal side is negative and the welding wire side is negative. Reverse polarity welding is performed by applying a positive DC voltage.

この逆極性溶接では、母材への入熱が大きいために溶込
み量が大きく、フラットなビードを得やすいという利点
があるが、母材が薄板で継手精度が悪くギャップが大き
くなる場合では、溶落ち現象が発生し易いという欠点が
ある。
This reverse polarity welding has the advantage that the heat input to the base metal is large, so the amount of penetration is large, and it is easy to obtain a flat bead. However, when the base metal is a thin plate and the joint accuracy is poor and the gap becomes large, There is a drawback that burn-through phenomenon tends to occur.

一方、母材側がプラス、溶接ワイヤ側がマイナスになる
ように直流電圧を印加する正極性溶接では、母材への入
熱量が少ないため、溶落ちには有効であるが、溶込み不
良が発生し易く、ビードが凸形状になる傾向にある。従
って、正極性単独溶接の適用範囲は狭い。
On the other hand, positive polarity welding, in which a DC voltage is applied so that the base metal side is positive and the welding wire side is negative, is effective for burn-through because the amount of heat input to the base metal is small, but it can cause poor penetration. The bead tends to have a convex shape. Therefore, the scope of application of positive polarity single welding is narrow.

そこで、本発明者が先に出願した特願昭62−2894
45号および特願昭62−329432号の発明におい
て、正極性と逆極性とを交互に繰り返し、且つその極性
比率を様々な継手形状に適合させるべく任意に可変とし
、両極性の特長を発揮させることのできる交流溶接法の
実用化が検討されている。
Therefore, the present inventor previously applied for patent application No. 62-2894.
In the inventions of No. 45 and Japanese Patent Application No. 62-329432, positive polarity and reverse polarity are alternately repeated, and the polarity ratio is arbitrarily varied to suit various joint shapes, thereby exhibiting the characteristics of bipolarity. The practical application of an AC welding method that can achieve this is being considered.

[発明が解決しようとする課題] しかしながら、このような交流溶接法では、アークが不
安定となったり、スパッタが増加するなどの作業性不良
が生じるほか、高速溶接では、大粒のスパッタが増加し
たり、スタビング現象やビードか細くくびれる箇所が発
生したりするなどの不具合が生じ、両極性溶接の特長を
十分に発揮できないという問題点がある。
[Problems to be Solved by the Invention] However, in this type of AC welding method, workability problems such as unstable arc and increased spatter occur, and high-speed welding also increases large spatter. However, there are problems such as the occurrence of stabbing phenomena and thin bead constrictions, and the advantages of bipolar welding cannot be fully demonstrated.

ところで、両極性のうちの片方である正極性溶接は、一
般に逆極性溶接に比べてアークがワイヤ先端の上方には
い上がりやすいので、適正溶接条件範囲が狭く、ややも
するとスパッタの大粒のものが発生しやすいという性質
がある。この観点から、特開昭56−109171号公
報に示される正極性パルスショートアーク法なるアーク
安定化方法等が提案されているものの、いずれも正極性
単独溶接のアーク安定化に効果があっても交流溶接には
効果がない。
By the way, in positive polarity welding, which is one of the two polarity welding types, the arc tends to rise above the wire tip more easily than in reverse polarity welding, so the range of appropriate welding conditions is narrower, and large particles of spatter may occur. It has the property of being easy to occur. From this point of view, arc stabilization methods such as the positive polarity pulsed short arc method shown in JP-A-56-109171 have been proposed, but none of them are effective in stabilizing the arc of positive polarity single welding. AC welding has no effect.

本発明は、上述のような課題を解決すべく、極性切替に
起因する作業性不良を解消しようとするもので、極性切
替時の消耗電極(溶接ワイヤ)の燃え上がりおよび溶滴
の異常成長を抑制し、その結果短絡回数の減少を防止す
ることにより、交流アークの安定化をはかるとともに高
速溶接を可能として、交流溶接のメリットを最大限に発
揮できるようにした両極性アーク溶接の制御方法を提供
することを目的とする。
In order to solve the above-mentioned problems, the present invention aims to eliminate the poor workability caused by polarity switching, and suppresses the burning of the consumable electrode (welding wire) and the abnormal growth of droplets during polarity switching. As a result, by preventing a decrease in the number of short circuits, we provide a control method for bipolar arc welding that stabilizes the AC arc and enables high-speed welding, thereby maximizing the benefits of AC welding. The purpose is to

[課題を解決するための手段] 上記目的を達成するために、本発明の両極性アーク溶接
の制御方法は、消耗電極と母材との間に印加する直流電
圧の極性を逆極性から正極性に切り替えるに際し、切替
の直前と直後のうち少なくとも一方にて溶接電流もしく
は溶接電圧のうち少なくとも一方の設定値を所定期間低
下させることを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the bipolar arc welding control method of the present invention changes the polarity of the DC voltage applied between the consumable electrode and the base material from reverse polarity to positive polarity. When switching to , the set value of at least one of the welding current and the welding voltage is lowered for a predetermined period at least one of immediately before and after the switching.

[作   用] 上述した本発明の両極性アーク溶接の制御方法では、消
耗電極と母材との間に印加する直流電圧の極性を逆極性
から正極性に切り替える際に、切替の直前と直後のうち
少なくとも一方にて溶接電流もしくは溶接電圧のうち少
なくとも一方が、所定期間低下されるので、極性反転後
、正極性溶接にとって高い電流が急激に流れず、反転直
後から正極性溶接に適した電流値の溶接電流が流れるよ
うになる。従って、消耗電極(溶接ワイヤ)の燃え上が
りや溶滴の異常成長が抑制されるとともに、短絡回数の
減少が防止され、極性切替に起因する作業性不良が解消
される。
[Function] In the bipolar arc welding control method of the present invention described above, when switching the polarity of the DC voltage applied between the consumable electrode and the base material from reverse polarity to positive polarity, At least one of the welding current and welding voltage is lowered for a predetermined period in at least one of them, so that after the polarity reversal, a current that is high for positive polarity welding does not flow suddenly, and the current value suitable for positive polarity welding is maintained immediately after the polarity reversal. Welding current starts to flow. Therefore, burning out of the consumable electrode (welding wire) and abnormal growth of droplets are suppressed, a reduction in the number of short circuits is prevented, and poor workability caused by polarity switching is eliminated.

[発明の実施例] 以下1図面により本発明の一実施例としての両極性アー
ク溶接の制御方法について説明すると、第1図は本方法
を適用する両極性アーク溶接の制御装置を示す全体構成
図であり、この第1図において、1は直流電源、2はパ
ワートランジスタTr1〜Tr4から構成されるインバ
ータ回路、3は溶接ワイヤ(消耗電極)、4はアーク、
5は母材、6はワイヤリール7から溶接部へ溶接ワイヤ
3を定速供給するためのワイヤ送給モータ、8は溶接電
流供給経路中のりアクドル、9は溶接電流を検出する電
流検出器、1oは溶接ワイヤ3と母材5との間の溶接電
圧を検出する電圧検出器である。
[Embodiments of the Invention] A control method for bipolar arc welding as an embodiment of the present invention will be explained below with reference to one drawing. Fig. 1 is an overall configuration diagram showing a control device for bipolar arc welding to which this method is applied. In FIG. 1, 1 is a DC power supply, 2 is an inverter circuit composed of power transistors Tr1 to Tr4, 3 is a welding wire (consumable electrode), 4 is an arc,
5 is a base material, 6 is a wire feed motor for feeding the welding wire 3 from the wire reel 7 to the welding area at a constant speed, 8 is a glue handle in the welding current supply path, 9 is a current detector for detecting the welding current, 1o is a voltage detector that detects the welding voltage between the welding wire 3 and the base material 5.

また、11はインバータ回路2におけるパワートランジ
スタTr1〜Tr4へオン/オフ信号を出力するトラン
ジスタドライバ、12は極性切替制御回路、13は正極
性と逆極性との通電時間設定回路、14は極性比率設定
器、15は電圧低減制御回路。
Further, 11 is a transistor driver that outputs on/off signals to the power transistors Tr1 to Tr4 in the inverter circuit 2, 12 is a polarity switching control circuit, 13 is a circuit for setting energization time for positive polarity and reverse polarity, and 14 is a polarity ratio setting circuit. 15 is a voltage reduction control circuit.

16は電流低減制御回路、17はワイヤ送給速度設定器
、18は直流電源1の出力を制御する8力制御回路であ
る。
16 is a current reduction control circuit, 17 is a wire feed speed setting device, and 18 is an 8-force control circuit for controlling the output of the DC power source 1.

次に上述した制御装置の動作について説明する。Next, the operation of the above-mentioned control device will be explained.

通電時間設定回路13は、極性比率設定器14にて設定
された比率設定値を取り込んで正極性と逆極性との通電
時間TSPy TRPを設定する。そして、極性切替制
御回路12は、通電時間設定回路13により設定された
通電時間TSP+ TRPを受けて時間積算を行ない、
逆極性期間にはHighレベル、正極性期間にはLow
レベルの極性信号をトランジスタドライバ11へ出力す
る。トランジスタドライバ11は、極性信号がHigh
レベルのときにはパワートランジスタTr1. Tr4
をオンかつTr、、 Tr、をオフとする一方、極性信
号がLowレベルのときにはT rl、 Tr4をオフ
かツTr2.Tr3をオンとする。ここで、パワートラ
ンジスタTr工。
The energization time setting circuit 13 takes in the ratio setting value set by the polarity ratio setting device 14 and sets the energization time TSPy TRP for positive polarity and reverse polarity. Then, the polarity switching control circuit 12 receives the energization time TSP+TRP set by the energization time setting circuit 13 and performs time integration,
High level during reverse polarity period, Low during positive polarity period
A level polarity signal is output to the transistor driver 11. The transistor driver 11 has a polarity signal of High
When the power transistor Tr1. Tr4
is turned on and Tr2., Tr2. Turn on Tr3. Here, power transistor Tr engineering.

Tr4がオン、Tr、、Tr3がオフのときには、直流
電源lからの電流は溶接ワイヤ3から母材5側へ流れ、
逆極性溶接が行なわれる一方、パワートランジスタTr
1. Tr4がオフ、Tr2. Tr、がオンのときに
は、直流電源1からの電流は母材5から溶接ワイヤ3側
へ流れ、正極性溶接が行なわれる。
When Tr4 is on and Tr, , Tr3 are off, the current from the DC power supply l flows from the welding wire 3 to the base metal 5 side,
While reverse polarity welding is performed, the power transistor Tr
1. Tr4 is off, Tr2. When Tr is on, the current from the DC power supply 1 flows from the base metal 5 to the welding wire 3 side, and positive polarity welding is performed.

ところで、アーク発生中に極性切替を行なう場合に第3
図(a)、(b)の溶接電圧および溶接電流の波形の一
例から逆極性でアーク発生中に正極性に極性反転される
と、それまで逆極性で流れていた電流値とほぼ同じ電流
が正極性アーク中に流れる〔第3図(b)のA部参照〕
。このため、正極性にとっては高い電流が急激に流れる
ので、既に逆極性で形成された溶滴が上方に押しやられ
溶滴がさらに形成される。その後、数m5ec後には正
規の電流に復帰するものの必然的にアーク期間が伸び。
By the way, when switching the polarity during arc generation, the third
An example of the welding voltage and welding current waveforms in Figures (a) and (b) shows that when the polarity is reversed to positive polarity while an arc is occurring, a current that is almost the same value as the current flowing with the opposite polarity until then will flow. Flows in the positive polarity arc [see part A in Figure 3 (b)]
. For this reason, a high current flows rapidly for positive polarity, and the droplets already formed with the opposite polarity are pushed upwards and more droplets are formed. After that, the current returned to normal after several m5ec, but the arcing period was inevitably extended.

溶滴が成長し続ける。The droplet continues to grow.

一方、溶滴が大きく成長したまま短絡が起きると、短絡
移行中の溶滴の温度が下がり、溶滴の粘度が大きくなっ
て短絡移行が妨げられ、溶滴をくびれさせるための時間
がかかり、場合によっては未溶融の溶接ワイヤが溶融池
に突っ込むいわゆるスタビング現象やビードがその部分
で細くなったり途切れたりするといったことが発生する
On the other hand, if a short circuit occurs while the droplet continues to grow large, the temperature of the droplet during the short-circuit transition decreases, the viscosity of the droplet increases, and the short-circuit transition is hindered, and it takes time to constrict the droplet. In some cases, a so-called stubbing phenomenon occurs in which unmelted welding wire plunges into the molten pool, or the bead becomes thinner or breaks at that portion.

このように、アーク発生期間と短絡期間とが伸びるため
、短絡回数が減少したり短絡回数の変動が大きくなった
りして1作業性の劣化につながる。
In this way, the arc generation period and the short circuit period are extended, so the number of short circuits decreases and the fluctuations in the number of short circuits increase, leading to deterioration of workability.

さらに、溶滴が大きく成長すると短絡直前のスパッタが
大粒化したり増加したりする。
Furthermore, when the droplets grow large, the spatter immediately before the short circuit becomes larger or increases in size.

このため、本実施例において、電流低減制御回路16は
、極性切替制御回路12からの極性信号を取り込んで逆
極性溶接の時間積算を行ないつつ、予め設定された電流
低下時間に基づき電流低下タイミングを決定し、電流低
下開始指令信号と、予め設定された低減電流目標値(逆
極性での通常溶接電流値よりも低い値)および電流低減
波形とを出力制御回路18へ出力するとともに、逆極性
から正極性への極性切替時点で電流低下動作を解除す葛
信号を出力制御回路18へ出力する。
Therefore, in this embodiment, the current reduction control circuit 16 takes in the polarity signal from the polarity switching control circuit 12, integrates the time of reverse polarity welding, and adjusts the current reduction timing based on the preset current reduction time. and outputs a current reduction start command signal, a preset reduction current target value (a value lower than the normal welding current value in reverse polarity), and a current reduction waveform to the output control circuit 18, and At the time of polarity switching to positive polarity, a signal for canceling the current lowering operation is output to the output control circuit 18.

さらに、電圧低減制御回路15は、逆極性から正極性へ
の極性切替時点に電圧低下開始信号と予め設定された切
替時初期電圧値とを出力制御回路18へ出力するととも
に、極性切替制御回路12からの極性信号を取り込んで
正極性溶接の時間積算を行ないつつ、予め設定された電
圧値の通常レベル復帰時間(逆極性から正極性への切替
時点より所定時間)に達すると、通常の電圧値レベルに
復帰するように電圧上昇波形を出力制御回路18へ出力
する。
Furthermore, the voltage reduction control circuit 15 outputs a voltage reduction start signal and a preset initial voltage value at the time of switching to the output control circuit 18 at the time of polarity switching from reverse polarity to positive polarity, and also outputs a voltage reduction start signal and a preset initial voltage value at switching to the output control circuit 18. While integrating the time of positive polarity welding by taking in the polarity signal from the A voltage increase waveform is output to the output control circuit 18 so as to return to the level.

そして、出力制御回路18は、電流検出器9゜電圧検出
器10およびワイヤ送給速度設定器17からの信号を受
けながら、溶接電圧および溶接電流が電圧低減制御回路
15および電流低減制御回路16からの出力に従うよう
に直流電源1の出力を制御する。
The output control circuit 18 receives signals from the current detector 9, the voltage detector 10, and the wire feed speed setting device 17, and controls the welding voltage and welding current from the voltage reduction control circuit 15 and the current reduction control circuit 16. The output of the DC power supply 1 is controlled to follow the output of the DC power supply 1.

なお、溶接電圧と溶接電流との低下時間や目標値、波形
は、実験結果に基づき予め固定してもよいし、例えば、
ワイヤ送給速度や切替周波数の関数あるいはアーク再発
生後の時間の関数として電圧低減制御回路15および電
流低減制御回路16に設定し、自動制御するようにして
もよい。
Note that the drop time, target value, and waveform of the welding voltage and welding current may be fixed in advance based on experimental results, or, for example,
It may be set in the voltage reduction control circuit 15 and the current reduction control circuit 16 as a function of the wire feeding speed or switching frequency or as a function of the time after arc reoccurrence for automatic control.

上述のような構成・動作を有する装置を使用することに
より、溶接ワイヤ3と母材5との間に印加する直流電圧
の極性を逆極性から正極性に切り替えるに際し、この切
替に先行して、電流低減制御回路16により、逆極性で
の溶接電流の設定値工。が通常溶接電流値よりも低く設
定され、これにより、正極性に切り替えると、出力制御
回路18により直流電源1の出力が制御されて、正極性
への切替時での溶接電流が低くなる。
By using a device having the configuration and operation described above, when switching the polarity of the DC voltage applied between the welding wire 3 and the base metal 5 from reverse polarity to positive polarity, prior to this switching, The current reduction control circuit 16 allows setting of the welding current with reverse polarity. is set lower than the normal welding current value, so that when switching to positive polarity, the output of the DC power supply 1 is controlled by the output control circuit 18, and the welding current at the time of switching to positive polarity is lowered.

例えば、第2図(a)、(b)に示すように、逆極性か
ら正極性への切替時点から所定時間前に、正極性溶接の
前準備としてそれまでの電流値よりも電流を低下させ始
め〔第2図(b)のB部参照〕、極性反転直後の溶接電
流工□が溶滴の増大を促進させない電流値、即ち反転直
後の電流値工、は、本来の正極性溶接時に流れるべき電
流値rsとほぼ同程度がそれ以下となるように〔第2図
(b)のC部参照〕直流電源1が出力制御する。
For example, as shown in Figures 2 (a) and (b), a predetermined time before switching from reverse polarity to positive polarity, the current is lowered than the previous current value as a preparation for positive polarity welding. At the beginning [see part B of Fig. 2 (b)], the current value at which the welding current □ does not promote the increase of droplets immediately after the polarity reversal, that is, the current value immediately after the polarity reversal, is the current value that flows during the original positive polarity welding. The DC power supply 1 controls the output so that the current value is approximately equal to or less than the power current value rs (see section C in FIG. 2(b)).

なお、極性反転直前の電流設定−値を低下させる代わり
に、図示しない電圧低減制御回路により電圧設定値を低
下させる制御を行なってもよいし、電流設定値および電
圧設定値を同時に低下させる制御を行なってもよい〔第
2図(a)、(b)参照〕。
Note that instead of reducing the current setting value immediately before polarity reversal, the voltage setting value may be reduced by a voltage reduction control circuit (not shown), or the current setting value and the voltage setting value may be reduced simultaneously. [See FIGS. 2(a) and (b)].

また、さらに好ましくは、逆極性から正極性に切り替わ
った時点から所定時間に亘って、電圧低減制御回路15
により本来の設定値よりも溶接電圧の設定値を低く設定
するか〔第2図(a)のD部参照〕、電圧の代わりに電
流または両方の設定値を低く設定する〔第2図(a)、
(b)参照〕。さらに、極性切替の直前および直後に上
述のような出力低下制御を行なってもよい〔第2図(a
)、(b)参照〕。
Furthermore, more preferably, the voltage reduction control circuit 15
Either set the welding voltage lower than the original setting value [see section D in Figure 2 (a)], or set the current or both settings lower instead of the voltage [Figure 2 (a)]. ),
(b)]. Furthermore, the output reduction control as described above may be performed immediately before and after the polarity switching [Fig. 2 (a)
), (b)].

さて、ここで、第1図に示した装置を実際に用いて、各
種の波形制御に基づき溶接を行なって得られた実験結果
を以下に示す。
Now, the experimental results obtained by actually using the apparatus shown in FIG. 1 and performing welding based on various waveform controls will be shown below.

■切替前に電流低下制御を行なった場合母材の板厚1 
、2m+++ 、ギャップ0.4mn+の横向重ね継手
において、溶接ワイヤ径1 、2mm 、シールドガス
CO,,ワイヤ送給速度4m/分、溶接速度0.8m/
分、極性比率(正極性比率)60%、切替周波数50H
zにて溶接を行なったところ、波形制御を行なわない場
合には、溶滴が大きく成長しアークが不安定となりスパ
ッタが多発するなど作業性不良が生じた。このときの短
絡回数は15〜25回/秒と少なかった。ところが、切
替前に電流低下の波形制御を行なうと〔第2図(b)の
D部参照〕、溶滴の成長が抑制され短絡回数も60回/
秒前後となり、アークが安定化した。
■If current reduction control is performed before switching, base material thickness 1
, 2 m+++, horizontal lap joint with gap 0.4 mn+, welding wire diameter 1, 2 mm, shielding gas CO, wire feeding speed 4 m/min, welding speed 0.8 m/min
minutes, polarity ratio (positive polarity ratio) 60%, switching frequency 50H
When welding was performed at z, without waveform control, the droplets grew large, the arc became unstable, and spatter occurred frequently, resulting in poor workability. The number of short circuits at this time was as small as 15 to 25 times/second. However, if the waveform control of the current reduction is performed before switching [see section D in Figure 2 (b)], droplet growth is suppressed and the number of short circuits is reduced to 60//.
After about a second, the arc stabilized.

■切替後に電圧低下制御を行なった場合母材の板厚1 
、2mm 、ギャップ0.4n+mの横向重ね継手にお
いて、溶接ワイヤ径1 、2mm 、シールドガスCO
,,ワイヤ送給速度6m/分、溶接速度1.2m/分、
極性比率50%、切替周波数100Hzにて溶接を行な
ったところ、波形制御を行なわない場合には、溶滴が大
きく成長しアークが不安定となりスパッタが多発するな
ど作業性不良が生じたほか、ビードに細くくびれが生じ
た。このときの短絡回数は20回1秒程度であった。と
ころが、1切替後に電圧低下の波形制御を行なうと〔第
2図(a)のD部参照〕、溶滴の成長が抑制され短絡回
数も50回1秒となり、アークが安定化した。また、ビ
ードも連続して良好な外観のものが得られた。
■When voltage drop control is performed after switching, the base metal plate thickness is 1
, 2mm, in a horizontal lap joint with a gap of 0.4n+m, welding wire diameter 1, 2mm, shielding gas CO
,, wire feeding speed 6 m/min, welding speed 1.2 m/min,
When welding was performed at a polarity ratio of 50% and a switching frequency of 100 Hz, we found that without waveform control, the droplets grew large, the arc became unstable, and spatter occurred frequently, resulting in poor workability. A thin constriction appeared on the skin. The number of short circuits at this time was about 20 times for 1 second. However, when the waveform control of the voltage drop was performed after one switching [see section D in FIG. 2(a)], droplet growth was suppressed, the number of short circuits was reduced to 50 times for 1 second, and the arc was stabilized. Furthermore, continuous beads with good appearance were obtained.

■切替前に電流低下制御および切替後に電圧低下制御を
行なった場合 母材の板厚1 、6mm 、ギャップ0.5mmの横向
重ね継手において、溶接ワイヤ径1 、2mm 、シー
ルドガスCO□、ワイヤ送給速度9.5m/分、溶接速
度1.5m/分、極性比率70%、切替周波数300 
Hzにて溶接を行なったところ、波形制御を行なわない
場合には、溶滴が異常に大きく成長しアークが不安定と
なって大粒のスパッタが多発し溶接ビードが途切れたり
くびれたり、さらにはスタビング現象が発生した。この
ときの短絡回数は10回/秒程度であった。ところが、
切替前に電流低下、切替後に電圧低下の波形制御を行な
うと〔第2図(b)のB部および第2図(a)のD部参
照〕、溶滴の成長が抑制され短絡回数も40〜45回/
秒となり、アークが安定化し大粒のスパッタも減少した
。そして、連続して安定したビードを得ることができた
■When current drop control is performed before switching and voltage drop control is performed after switching In a horizontal lap joint with base metal plate thicknesses of 1 and 6 mm and a gap of 0.5 mm, welding wire diameters of 1 and 2 mm, shielding gas CO□, wire feed Feeding speed 9.5 m/min, welding speed 1.5 m/min, polarity ratio 70%, switching frequency 300
When welding was carried out at Hz, if waveform control was not performed, the droplets would grow abnormally large, the arc would become unstable, large spatters would occur frequently, the weld bead would be interrupted or constricted, and even stubbing could occur. A phenomenon has occurred. The number of short circuits at this time was about 10 times/second. However,
If waveform control is performed to reduce the current before switching and to reduce the voltage after switching [see section B in Figure 2 (b) and section D in Figure 2 (a)], droplet growth is suppressed and the number of short circuits is also reduced to 40. ~45 times/
The arc stabilized and large spatter decreased. And, it was possible to obtain a continuous and stable bead.

なお、上述の溶接例は、ソリッドワイヤを用いたCO2
交流アーク溶接の場合について説明しているが、Ar−
Go□混合ガスシールド交流溶接や複合ワイヤを用いた
ノンガスシールド交流溶接などにも適用できる。
Note that the above welding example uses CO2 welding using solid wire.
Although the case of AC arc welding is explained, Ar-
Go□It can also be applied to mixed gas shield AC welding and non-gas shield AC welding using composite wire.

[発明の効果] 以上詳述したように1本発明の両極性アーク溶接の制御
方法によれば、消耗電極と母材との間に印加する直流電
圧の極性を逆極性から正極性に切り替えるに際し、切替
の直前と直後のうち少なく仁も一方にて溶接電流もしく
は溶接電圧のうち少なくとも一方の設定値を所定期間低
下させるようにしたので、極性切替時に消耗電極の燃え
上がりや溶滴の異常成長が抑制され、その結果、短絡回
数の減少および不規則化が防止され、交流アークの安定
化および高速溶接が実現される。これにより、極性切替
に起因する作業性不良が解消され、交流溶接のメリット
を最大限に発揮できる効果が得られる。
[Effects of the Invention] As detailed above, according to the bipolar arc welding control method of the present invention, when switching the polarity of the DC voltage applied between the consumable electrode and the base material from reverse polarity to positive polarity, Since the set value of at least one of the welding current and welding voltage is lowered for a predetermined period of time immediately before and after switching, the burnout of the consumable electrode and abnormal growth of droplets can be prevented when switching the polarity. As a result, the number of short circuits is reduced and irregularity is prevented, and AC arc stabilization and high-speed welding are realized. This eliminates poor workability caused by polarity switching, and provides the effect of maximizing the benefits of AC welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は本発明の一実施例としての両極性アーク溶
接の制御方法を示すもので、第1図は本方法の適用を受
けた両極性アーク溶接の制御装置を示す全体構成図、第
2図(a)、(b)はそれぞれ上記実施例の装置による
波形制御を行なった際の電圧波形および電流波形を示す
グラフであり、第3図(a)、(b)はそれぞれ従来の
波形制御を行なった際の電圧波形および電流波形を示す
グラフである。 1・−・直流電源、2−インバータ回路、3・−溶接ワ
イヤ(消耗電極)、4−・−アーク、5・−母材、6・
−ワイヤ送給モータ、7−ワイヤリール、8−リアクト
ル、9−電流検出器、1〇−電圧検出器、11−・−ト
ランジスタドライバ、12−極性切替制御回路、13・
−通電時間設定回路、14−極性比率設定器、15=・
電圧低減制御回路、16−電流低減制御回路、17−ワ
イヤ送給速度設定器、18−出力制御回路、Tr工〜T
r、−パワートランジスタ。 特許出願人 株式会社 神戸製鋼所
1 and 2 show a control method for bipolar arc welding as an embodiment of the present invention, and FIG. 1 is an overall configuration diagram showing a control device for bipolar arc welding to which this method is applied; FIGS. 2(a) and (b) are graphs showing the voltage and current waveforms when waveform control is performed by the device of the above embodiment, respectively, and FIGS. 3(a) and (b) are graphs showing the conventional waveform control, respectively. 5 is a graph showing voltage waveforms and current waveforms when waveform control is performed. 1--DC power supply, 2--inverter circuit, 3--welding wire (consumable electrode), 4--arc, 5--base material, 6-
- wire feeding motor, 7 - wire reel, 8 - reactor, 9 - current detector, 10 - voltage detector, 11 - transistor driver, 12 - polarity switching control circuit, 13.
- Energization time setting circuit, 14 - Polarity ratio setting device, 15 =.
Voltage reduction control circuit, 16-Current reduction control circuit, 17-Wire feed speed setting device, 18-Output control circuit, Tr engineering~T
r, - power transistor; Patent applicant: Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 消耗電極と母材との間に印加する直流電圧の極性をアー
ク発生中交互に繰り返して溶接する両極性アーク溶接の
制御方法において、上記の消耗電極と母材との間に印加
する直流電圧の極性を逆極性から正極性に切り替えるに
際し、切替の直前と直後のうち少なくとも一方にて溶接
電流もしくは溶接電圧のうち少なくとも一方の設定値を
所定期間低下させることを特徴とする両極性アーク溶接
の制御方法。
In the control method of bipolar arc welding, in which the polarity of the DC voltage applied between the consumable electrode and the base metal is alternately repeated during arc generation, the polarity of the DC voltage applied between the consumable electrode and the base metal is Control of bipolar arc welding, characterized in that when switching the polarity from reverse polarity to positive polarity, the set value of at least one of the welding current or the welding voltage is lowered for a predetermined period at least one of immediately before and after the switching. Method.
JP3854288A 1987-05-12 1988-02-23 Method for controlling bipolar arc welding Granted JPH01215468A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3854288A JPH01215468A (en) 1988-02-23 1988-02-23 Method for controlling bipolar arc welding
DE3816238A DE3816238A1 (en) 1987-05-12 1988-05-11 POWER SUPPLY SYSTEM FOR WELDING ELECTRIC ARC WELDING AND METHOD FOR CONTROLLING THE SAME
KR1019880005472A KR910004997B1 (en) 1987-05-12 1988-05-11 Arc welding power supply system
US07/192,622 US4877941A (en) 1987-05-12 1988-05-11 Power supply system for consumable electrode arc welding and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3854288A JPH01215468A (en) 1988-02-23 1988-02-23 Method for controlling bipolar arc welding

Publications (2)

Publication Number Publication Date
JPH01215468A true JPH01215468A (en) 1989-08-29
JPH0464794B2 JPH0464794B2 (en) 1992-10-16

Family

ID=12528175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3854288A Granted JPH01215468A (en) 1987-05-12 1988-02-23 Method for controlling bipolar arc welding

Country Status (1)

Country Link
JP (1) JPH01215468A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820947A (en) * 1981-07-29 1983-02-07 Mayekawa Mfg Co Ltd Starting system for internal-combustion engine for driving induction generator
JPS58209474A (en) * 1982-05-27 1983-12-06 Matsushita Electric Ind Co Ltd Arc welding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820947A (en) * 1981-07-29 1983-02-07 Mayekawa Mfg Co Ltd Starting system for internal-combustion engine for driving induction generator
JPS58209474A (en) * 1982-05-27 1983-12-06 Matsushita Electric Ind Co Ltd Arc welding machine

Also Published As

Publication number Publication date
JPH0464794B2 (en) 1992-10-16

Similar Documents

Publication Publication Date Title
US11638966B2 (en) Short arc welding system
US9895760B2 (en) Method and system to increase heat input to a weld during a short-circuit arc welding process
US4877941A (en) Power supply system for consumable electrode arc welding and method of controlling the same
US6207927B1 (en) Gas-shielded AC arc welding method and machine making use of consumable electrode
KR20050097448A (en) Electric arc pulse welder with short circuit control
US10195681B2 (en) Short arc welding system
US4497997A (en) Method and apparatus for metal arc welding with constant currents
JP4391877B2 (en) Heat input control DC arc welding / pulse arc welding switching welding method
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JPH0342997B2 (en)
JPH01215468A (en) Method for controlling bipolar arc welding
JPH10146673A (en) Alternating current self shield arc welding method
JPH0231630B2 (en)
JPS60223661A (en) Arc welding method
JP2873716B2 (en) Starting AC arc
JPS60223662A (en) Arc welding method
JPH0249828B2 (en)
JPS6255472B2 (en)
WO2021235210A1 (en) Direct current arc welding control method
JPS6313674A (en) Arc starting method for pulse arc welding
US20010035399A1 (en) Method and apparatus for improved arc initiation
SU1708559A1 (en) Arc welding technique
JPS61199581A (en) Arc welding method
JPH01299770A (en) Output control method for gas shielded arc welding power source
Hongjun et al. Solutions to problems of tiny spatter and arc interruption in AC Pulsed MIG arc welding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees