JPH01299770A - Output control method for gas shielded arc welding power source - Google Patents

Output control method for gas shielded arc welding power source

Info

Publication number
JPH01299770A
JPH01299770A JP12679388A JP12679388A JPH01299770A JP H01299770 A JPH01299770 A JP H01299770A JP 12679388 A JP12679388 A JP 12679388A JP 12679388 A JP12679388 A JP 12679388A JP H01299770 A JPH01299770 A JP H01299770A
Authority
JP
Japan
Prior art keywords
arc
welding
droplet
decreased
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12679388A
Other languages
Japanese (ja)
Inventor
Masahiro Aoyama
雅洋 青山
Haruo Moriguchi
森口 晴雄
Kunio Kano
国男 狩野
Jun Okada
順 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP12679388A priority Critical patent/JPH01299770A/en
Publication of JPH01299770A publication Critical patent/JPH01299770A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize an arc at the early stage of arc generation and to prevent a droplet from being floated and scattered at the last stage of the arc by holding a welding current at a low level and then, increasing it to a high level during a short-circuit period of time and decreasing the welding voltage during an arc period of time. CONSTITUTION:During the arc period of time, since the welding voltage is controlled so as to be decreased, blazing-up of a consumable electrode immediately after the arc is generated is suppressed and the arc is stabilized by decreasing of the welding voltage and during the last stage of the arc, arc length is gradually shortened and the grown droplet is prevented from being floated and while the occurrence of spatters being suppressed, the transfer to the next short-circuit state is facilitated. Further, since the welding current is decreased from the set high level at the last stage of a short circuit by the decreasing rate determined inevitably by the decreased welding voltage and arc length, a flicker phenomenon is not generated and at the early stage of arc generation, the sufficient heat input is carried out on the consumable electrode and base metal to be welded by a high current value and the growth of the droplet and ununiformity of a weld base are solved and besides, the current value before and after the short-circuit transfer of the droplet is decreased and the droplet is prevented from being scattered and the occurrence of spatters is suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分骨〕 本発明は、シールドガスによりシールドされた消耗電極
と溶接母材との間で、短絡とアークとが交互に発生する
ように、ガスシールドアーク溶接用電源の出力を制御す
るガスシールドアーク溶接用電源の出力制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention uses a gas shield to alternately generate a short circuit and an arc between a consumable electrode shielded by a shield gas and a welding base material. The present invention relates to an output control method for a gas shielded arc welding power source that controls the output of an arc welding power source.

〔従来の技術〕[Conventional technology]

一般に、ガスシールドアーク溶接では、第3図(a)〜
(f)に示す過程が繰り返されており、まず第3図(a
)に示す短絡初期過程では、消耗電極(W)の先端に成
長した溶滴(G)が母材の溶融池CM)に接触して短絡
状態となり、同図(1))に示す短絡中期過程では、溶
滴(G)と溶融池CM)とが確実に接触し、同図(C)
に示す短絡終期過程では、溶滴(G)が溶融池((5)
側へ移行して溶滴(G)にくびれが生じる。
Generally, in gas shielded arc welding, Fig. 3(a) -
The process shown in (f) is repeated, first in Figure 3 (a).
), the droplet (G) grown at the tip of the consumable electrode (W) comes into contact with the molten pool CM) of the base metal, resulting in a short-circuit state, and the intermediate short-circuit process shown in (1)) of the same figure occurs. In this case, the droplet (G) and the molten pool CM) are surely in contact, and the same figure (C)
In the short-circuit final stage shown in Figure 2, the droplet (G) forms a molten pool ((5)
As the droplet (G) moves to the side, a constriction occurs in the droplet (G).

さらに、第3図(山に示すように、溶滴(G)が引きち
ぎられてアークが発生し始め、同図(e)に示すアーク
発生中期過程で、電極(W)の先端に再び溶滴(G)が
成長し、同図(f>に示すように、十分に成長した溶滴
(G)が溶融池(M)側に引っ張られて再び短絡状態と
なる。
Furthermore, as shown in the peaks in Figure 3, the droplet (G) is torn off and an arc begins to occur, and in the middle stage of arc generation, as shown in Figure (e), the droplet reappears at the tip of the electrode (W). (G) grows, and as shown in FIG.

ところで、このような短絡移行型ガスシールドアーク溶
接では、従来溶接電源として定電圧特性を有する電源が
用いられ、この種の従来の溶接電源を用いた場合、溶接
電流波形は、通常第4図に示すようになり、溶接ワイヤ
先端に形成された溶滴が溶融池と接触し短絡した瞬間か
ら、電源の回路時定数により定まる増加率でアークが再
発生するまで溶接電流は増加し続け、溶接アークが再発
生した後は時定数によって定まる減少率で再び短絡する
まで溶接電流は減少する。
By the way, in such short-circuit transition type gas-shielded arc welding, a power source with constant voltage characteristics is conventionally used as the welding power source, and when this type of conventional welding power source is used, the welding current waveform is usually as shown in Figure 4. From the moment the droplet formed at the tip of the welding wire contacts the molten pool and short-circuits, the welding current continues to increase until the arc is generated again at an increase rate determined by the circuit time constant of the power supply, and the welding arc After this occurs again, the welding current decreases at a rate determined by the time constant until short circuit occurs again.

ところで、前記した短絡移行型ガスシールドアーク溶接
では、溶滴が大きく成長して母材の溶融池と短絡しよう
とする瞬間にスパッタの発生量が多く、このときの電流
が高い場合には特に多くなることがよく知られている。
By the way, in the short-circuit transition type gas-shielded arc welding described above, a large amount of spatter is generated at the moment when the droplet grows large and tries to short-circuit with the molten pool of the base metal, and especially when the current at this time is high, a large amount of spatter is generated. It is well known that

そこで、このようなスパッタの発生量を抑制するために
、たとえば特開昭60−183977号公報(B28K
 9106)に記載のように、溶滴が溶融池に短絡移行
する前後における平均溶接電流を低くし、アークの反発
エネルギにより溶滴が吹き飛ばされないようfζ、電源
の出力制御を行うことが考えられている。
Therefore, in order to suppress the amount of spatter generated, for example, Japanese Patent Laid-Open No. 60-183977 (B28K
As described in 9106), it has been considered to lower the average welding current before and after the short-circuit transfer of the droplet to the molten pool, and to control the output of the power supply fζ so that the droplet is not blown away by the repulsive energy of the arc. There is.

即ち、この場合の溶接電流波形は、第5図又は第6図に
示すようになり、短絡からアークが再発生した後、消耗
Fi!極の先端に溶滴を形成すると共に、溶接母材の溶
は込みを確保するための高電流期間Tpが設けられ、こ
の高電流期間後9次の短絡までに、アークの反発力によ
り溶滴が吹き飛ばされることを防止するための低電流期
間Tbが設けられている。
That is, the welding current waveform in this case becomes as shown in FIG. 5 or FIG. 6, and after the arc re-occurs from the short circuit, the consumption Fi! A high current period Tp is provided to form a droplet at the tip of the pole and to ensure penetration of the weld base metal. After this high current period, by the 9th short circuit, the droplet is A low current period Tb is provided to prevent the current from being blown away.

なお、第5図は高1流期間Tpの電流値をIpに定電流
制御する場合の電流波形であり、第6図は高電流期間T
pの電圧値をVpに定電圧制御する場合の電流波形であ
り、@5図及び第6図共に、低電流期間′rbの電流値
をIb (<Ip)に定電流制御している。
In addition, FIG. 5 shows the current waveform when the current value in the high current period Tp is constant current controlled to Ip, and FIG. 6 shows the current waveform in the high current period Tp.
This is a current waveform when the voltage value of p is constant voltage controlled to Vp, and in both Figures 5 and 6, the current value in the low current period 'rb is constant current controlled to Ib (<Ip).

〔発明が解決しようとする課厘〕[The problem that the invention attempts to solve]

しかし、この場合、溶接対象が変って消耗電極、溶接母
材、シールドガスが変った場合には、アーク期間が変動
し、高電流期間中に短絡が生じ、アークが不安定になる
と共に、スパッタの発生量が増加し、あるいは低電流期
間が長くなりすぎて溶接ビードの形状が不均一になると
いう不都合が生じ、特に溶接母材の溶接部の状態の変動
によるアーク長の変動によって、消耗電極の溶融速度が
変動し、前記した不都合の発生が助長されるという問題
点がある。
However, in this case, if the welding target changes and the consumable electrode, welding base material, and shielding gas change, the arc period will fluctuate, causing a short circuit during the high current period, making the arc unstable, and spatter. This may increase the amount of arc generated, or the low current period may become too long, resulting in an uneven weld bead shape.In particular, fluctuations in the arc length due to changes in the condition of the weld zone in the welding base metal may cause the consumable electrode There is a problem in that the melting rate of the resin fluctuates, which promotes the occurrence of the above-mentioned disadvantages.

また、高電流期間と低電流期間との電流値の差によるア
ーク光のフリッカ現象によって、溶接ビードが不均一に
なり、この不均一な溶接ビードの修正のための後処理が
必要になり、作業能率の低下を招く。
In addition, the flickering phenomenon of the arc light due to the difference in current value between the high current period and the low current period causes the weld bead to become uneven, which requires post-processing to correct the uneven weld bead. This results in a decrease in efficiency.

そこで、本発明は前記の点に留意してなされ、スパッタ
の発生量を低減し、美麗で良好な溶接ビードを形成でき
るようにすることを目的とする。
Therefore, the present invention has been made with the above-mentioned points in mind, and an object of the present invention is to reduce the amount of spatter generated and to form a beautiful and good weld bead.

〔課題を解決するための手段〕[Means to solve the problem]

つぎに、前記目的を達成するために、消耗電極及び溶接
母材に通流する溶接電流、及び前記消耗電極、前記母材
間の溶接電圧を制御し、シールドガスによりシールドさ
れた前記消耗電極と前記母材との間で短絡とアークを交
互に発生させるガスシールドアーク溶接用電源の出力制
御方法において、本発明は、 短絡期間に、当初前記溶接電流を低レベルに保持したの
ち、高レベルに増大し、 アーク期間に、前記溶接電圧を減少することを特徴とし
ている。
Next, in order to achieve the above object, the welding current flowing through the consumable electrode and the welding base metal, and the welding voltage between the consumable electrode and the base metal are controlled, and the welding voltage between the consumable electrode and the welding base metal shielded by a shielding gas is controlled. In the output control method of a gas-shielded arc welding power source that alternately generates a short circuit and an arc with the base metal, the present invention provides a method for controlling the output of a power source for gas shielded arc welding that alternately generates a short circuit and an arc with the base metal, wherein the welding current is initially maintained at a low level during the short circuit period, and then increased to a high level. The welding voltage is increased and during the arcing period, the welding voltage is decreased.

また、アーク期間に、溶接電圧を、当初第1の変化率で
減少したのち、前記第1の変化率より大きな第2の変化
率で減少するようにしてもよい。
Further, during the arc period, the welding voltage may be initially decreased at a first rate of change, and then decreased at a second rate of change that is greater than the first rate of change.

〔作用〕[Effect]

従って、本発明によると、アーク期間に、溶接電圧が減
少するように制御されるため、溶接電圧の減少によって
、アーク発生直後の消耗電極の燃え上がりが抑制され、
アークの安定化が図れ、アーク終期には、アーク長を徐
々に縮めて成長した溶滴の遊動を防止し、スパッタの発
生を抑制しつつ9次の短絡状態への移行が容易に行える
Therefore, according to the present invention, since the welding voltage is controlled to decrease during the arc period, the reduction in the welding voltage suppresses the burning of the consumable electrode immediately after the arc occurs.
The arc is stabilized, and at the end of the arc, the arc length is gradually shortened to prevent the grown droplets from floating, and the transition to the 9th order short circuit state can be easily achieved while suppressing the occurrence of spatter.

さらに、減少される溶接電圧と、アーク長とで必然的に
定まる減少率で、溶接電流が、短絡終期に設定された高
レベルから減少するため、フリッカ現象の発生がなく、
アーク発生初期には・高い電流値によって消耗電極及び
溶接母材に十分な入熱が行え、溶滴の成長と、溶接ビー
ドの不均一が解消され、しかも溶滴の短絡移行の前後に
おける電流値を低くして、溶滴の飛散を防止し、スパッ
タの発生が抑制される。
Furthermore, since the welding current decreases from the high level set at the end of the short circuit at a rate of decrease that is inevitably determined by the welding voltage to be decreased and the arc length, there is no flicker phenomenon.
At the beginning of arc generation, the high current value allows sufficient heat input to the consumable electrode and the welding base metal, eliminating droplet growth and non-uniformity of the weld bead, and the current value before and after the short-circuit transition of the droplet By lowering the temperature, the scattering of droplets is prevented, and the generation of spatter is suppressed.

また、アーク期間に、溶接電圧を第1の変化率で減少さ
せたのち、第1の変化率よりも大きい第2の変化率で減
少させると、前記したアーク発生初期におけるアークの
安定化、溶接ビードの均一化、及びアーク終期における
スパッタの発生量の抑制の各作用がよりいっそう顕著に
なり、消耗電極、溶接母材、シールドガスなどが変って
も、従来に比べ、スパッタの発生量が低減され、美麗で
良好な溶接ビードが得られる。
In addition, during the arc period, if the welding voltage is decreased at a first rate of change and then decreased at a second rate of change that is greater than the first rate of change, the stabilization of the arc at the early stage of arc generation, and the welding The effects of making the bead uniform and suppressing the amount of spatter generated at the end of the arc are even more pronounced, and even if the consumable electrode, welding base material, shielding gas, etc. change, the amount of spatter generated is reduced compared to the conventional method. A beautiful and good quality weld bead can be obtained.

〔実施例〕〔Example〕

つぎに、本発明を、そのl実施例を示した第1図及び第
2図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 and 2 showing an embodiment thereof.

まず、ガスシールドアーク溶接用電源の制御回路のブロ
ック構成を示す第1図において、(1月よ交流電源に接
続された入力側整流部、(2)は整流部(1)の整流出
力を平滑する平滑部、(3)は平滑部(2)に接続され
平滑部(2)の出力直流を交流に変換するスイッチング
素子からなる高周波インバータ部、(4)jtインバー
タ部(3)の出力電圧を変圧する変圧器、(5)は変圧
器(4)の2次側の出力交流を整流する出力側整流部、
(6)は整流部(5)の一方の出力端子に接読された給
電チップ、(7)は給電チップ(6)を介して通電され
所定速度で送給される溶接ワイヤからなる消耗電極、(
8月よ直流検出器(9)を介して整流部(5)の他方の
出力端子に接続された溶接母材、σqはアーク屯圧検出
器であり、給電チップ(6)、母材(8)間の電圧を検
出する。
First, in Figure 1 showing the block configuration of the control circuit of a power supply for gas shielded arc welding, (2) smoothes the rectified output of the rectifier (1). (3) is a high frequency inverter section which is connected to the smoothing section (2) and consists of a switching element that converts the output DC of the smoothing section (2) into AC; (4) the output voltage of the JT inverter section (3) is A transformer that transforms, (5) an output side rectifier that rectifies the output AC on the secondary side of the transformer (4),
(6) is a power supply tip connected to one output terminal of the rectifier (5); (7) is a consumable electrode made of a welding wire that is energized through the power supply chip (6) and fed at a predetermined speed; (
The welding base metal connected to the other output terminal of the rectifier (5) via the DC detector (9), σq is an arc pressure detector, and the power supply tip (6) and the base metal (8 ) is detected.

α旧よ電流設定器、(2)は電圧設定器、曽は電流検出
器(9)による電流検出値と電流設定器αηによる電流
設定値との差を導出する誤差増幅器、α4は電圧検1出
器叫による電圧検出値と電圧設定器(2)による電圧設
定値との差を導出する誤差項@器、α9は電圧検出器O
Qによる検出電圧から消耗電極(7)と溶接母材(8)
との間の短絡、アークの発生を弁別する弁別器、OQは
短絡発生直後からTa時間作動する第1タイマ、αηは
アーク発生直後からTa時間作動する第2タイマ、(至
)はMPU、α燵はインバータ駆動部であり、MPUに
)により、両誤差増福器(13、α4の出力信号に基づ
く制御信号が入力され、インバータ部(3)のスイッチ
ング素子にスイッチング信号を出力し、インバータ部(
3)を駆動すると共に、インバータ部(3)の出力を制
御する。
α is the current setting device, (2) is the voltage setting device, Z is the error amplifier that derives the difference between the current detected value by the current detector (9) and the current setting value by the current setting device αη, and α4 is the voltage detector 1 An error term for deriving the difference between the voltage detected by the output device and the voltage setting value by the voltage setter (2), α9 is the voltage detector O
The consumable electrode (7) and the welding base material (8) are determined from the detected voltage by Q.
OQ is the first timer that operates for Ta time immediately after the occurrence of the short circuit, αη is the second timer that operates for Ta time immediately after the occurrence of the arc, (to) is the MPU, α A control signal based on the output signal of both error amplifiers (13, α4) is inputted to the inverter drive unit (MPU), and a switching signal is output to the switching element of the inverter unit (3). (
3) and also controls the output of the inverter section (3).

いま、弁別器α9により短絡が発生したと判別されると
、弁別器α9の出力信号により、第1タイマaeが作動
して短絡発生からTa時間がカウントされ、第2図(a
)に示す如く、前記Ta時間、 MPU(l窄こより電
極(7)、母材(8)間を流れる溶接電流が低レベルの
Idになるように、MPU(至)によりインバータ駆動
部0呻が制御されてインバータ部(3)の出力が制御さ
れ、前記Ta時間の経過後、同図(a)に示すように、
前記溶接電流が高レベルのIaになるように、MPU(
至)によりインバータ駆動部α呻が制御される。
Now, when it is determined by the discriminator α9 that a short circuit has occurred, the first timer ae is activated by the output signal of the discriminator α9 to count the time Ta from the occurrence of the short circuit,
), during the above Ta time, the MPU (to) controls the inverter drive unit so that the welding current flowing between the narrow electrode (7) and the base metal (8) is at a low level Id. The output of the inverter section (3) is controlled, and after the Ta time has elapsed, as shown in FIG.
The MPU (
(to) controls the inverter drive unit α.

このとき、短絡終期において、溶接電流が低レベルのI
dから高レベルのIaに増大されることにより、母材(
8)に接触している電極(7)の先端の溶滴に十分なエ
ネルギが与えられ、スパッタを発生することなく、溶滴
が確実に母材(8)に移行し、電極(7)と母材(8)
との短絡が破れてアークが再発生する。
At this time, at the end of the short circuit, the welding current is at a low level I
d to a high level of Ia, the base metal (
Sufficient energy is given to the droplet at the tip of the electrode (7) that is in contact with the electrode (7), and the droplet is reliably transferred to the base material (8) without causing spatter, and the droplet is connected to the electrode (7). Base material (8)
The short circuit is broken and the arc re-occurs.

一方、短絡初期には、電極(7)、母材(8)間の溶接
電圧はほぼゼロになり、第2図(1))に示すように、
短絡中期から溶接電圧がわずかに増加するように、 M
PUQ$によりインバータ駆動部0窃が制御されると共
に、前記Ta時間の経過後同図(b)に示すように、前
記溶接電圧が高レベルVaになるように、MPU(至)
によりインバータ駆動部α呻が制御される。
On the other hand, at the beginning of the short circuit, the welding voltage between the electrode (7) and the base metal (8) becomes almost zero, as shown in Fig. 2 (1)).
M so that the welding voltage increases slightly from the middle of the short circuit.
PUQ$ controls the inverter drive unit 0 theft, and after the Ta time has elapsed, the MPU (to)
The inverter drive unit α is controlled by.

つぎに、電極(7)の先端の溶滴が母材(8)に移行し
、電極(7)、母材(8)間で再びアークが発生し、弁
別器a9によりアークが発生したと判別されると、弁別
器α9の出力信号により、第2タイマαηが作動してア
ーク発生からTa時間がカウントされ、第2図(b)に
示す如く、前記Ta時間、前記溶接電圧が高しベルVa
から第1の変化率θlで減少するように、MPU(ト)
によりインバータ駆動部0りが制御されたのち、前記T
a時間経過後9次の短絡までの間、前記溶接電圧が第1
の変化率θlより大きな第2の変化率θ2で減少するよ
うに、MPU(至)によりインバータ駆動部Oeが制御
される。
Next, the droplet at the tip of the electrode (7) transfers to the base metal (8), an arc is generated again between the electrode (7) and the base metal (8), and the discriminator a9 determines that an arc has occurred. Then, in response to the output signal of the discriminator α9, the second timer αη is activated to count Ta time from the arc occurrence, and as shown in FIG. Va
MPU(t) decreases at a first rate of change θl from
After the inverter drive unit is controlled by
After a period of time elapses and until the ninth short circuit, the welding voltage remains at the first
The inverter drive unit Oe is controlled by the MPU (to) so that the inverter drive unit Oe is decreased at a second rate of change θ2 that is larger than the rate of change θl.

このとき、アーク発生後、 Ta時間、溶接電圧を、定
電圧に制御せずに第1の変化率θlで減少させることに
より、電極(7)の燃え上がりを抑えてアーク長が長く
なることを抑制でき、アーク長を早期に正常化してアー
クの安定化を図ることができ、しかも前記Ta時間経過
後、溶接電圧を第2の変化率θ2(〉θ1)で減少させ
ることにより、アーク期間から次の短絡期間へ移る際に
、アーク長を徐々に縮めて成長した溶滴の遊動を防止で
き、容易に次の短絡状態に移行することが可能になる。
At this time, after the arc is generated, the welding voltage is decreased at the first rate of change θl without controlling it to a constant voltage for Ta time, thereby suppressing the burning of the electrode (7) and suppressing the arc length from increasing. This makes it possible to normalize the arc length early and stabilize the arc. Moreover, by decreasing the welding voltage at the second rate of change θ2 (>θ1) after the Ta time has elapsed, the arc length can be normalized at an early stage. When moving to the next short circuit period, the arc length can be gradually shortened to prevent the grown droplets from drifting, making it possible to easily transition to the next short circuit state.

また、アーク発生後、前記Ta時間、第2図(a)に示
す如く、溶接電流が高レベルIaに保持されるように、
MPU(1119によりインバータ駆動部a1が制御さ
れたのち、前記Ta時間経過後9次の短絡までの間、主
として第2の変化率θ2による溶接電圧の減少によって
生じる溶接電流の減少作用により、溶接電流を減少させ
る。
In addition, after the arc is generated, the welding current is maintained at a high level Ia for the time Ta as shown in FIG. 2(a).
After the inverter drive unit a1 is controlled by the MPU (1119), after the Ta time elapses and until the 9th short circuit, the welding current decreases mainly due to the welding current reduction effect caused by the decrease in the welding voltage due to the second rate of change θ2. decrease.

なお、前記Ta時間経過後9次の短絡までの間、前記趨
接電圧の減少による溶接rtt’%の減少作用と併せて
、MPU(至)により変化率θ3で溶接直流を減少する
制御を行ってもよい。
In addition, after the Ta time elapses and until the 9th short circuit, in addition to reducing the welding rtt'% due to the decrease in the cross-contact voltage, the MPU (to) performs control to reduce the welding DC at a rate of change θ3. You can.

このとき、アーク発生後、 Ta時間、溶接電流を高レ
ベルのIaに保持することにより、消耗電極(7ン及び
母材(8)への十分な入熱を確保することができ、電極
(7)の先端の溶滴を十分に成長させることができると
ともに、母材(8)の溶は込み不足を防止し、溶融池の
対流を発生させて溶着金属内部の不純物を浮上放出させ
ることができ、美麗な溶接ビードを得ることが可能にな
る。
At this time, by maintaining the welding current at a high level Ia for Ta time after arc generation, sufficient heat input to the consumable electrode (7) and the base metal (8) can be ensured, and ), it is possible to sufficiently grow the droplet at the tip of the weld metal (8), prevent insufficient penetration of the base metal (8), and generate convection in the molten pool to float and release impurities inside the weld metal. , it becomes possible to obtain a beautiful weld bead.

さらに、溶滴が母材(8)に短絡移行する前後における
溶接電流を低くすることにより、アークの反発力により
溶滴が吹き飛ばされることを防止でき、スパッタの発生
を抑制することができる。
Furthermore, by lowering the welding current before and after the droplet short-circuits and transfers to the base metal (8), it is possible to prevent the droplet from being blown away by the repulsive force of the arc, and to suppress the occurrence of spatter.

そして、消耗電極として、JIS Z 8812による
YGW12の直径1.2mmのワイヤを使用し、ワイヤ
送給速度を8m/分とし、シールドガスとしての炭酸ガ
スを2017@の流量で通流し、このような溶接条件下
で、溶接電流及び溶接電圧の波形パラメータそれぞれを
、td=50A、 Ia=40OA、Va=27V、 
Id =1.5m5ec、Ta==LQmsec 、O
l =0−04 V/ms e c eθ2=0、17
V/m5ec 、θ3=0として溶接を行った場合、ス
パッタ発生量は1 、2 g/分となり、従来の定電圧
出力特性を有する溶接電源を用い、前記と同じ溶接条件
下で溶接を行った°場合のスパッタ発生fi7.2g/
分に比べ、スパッタ発生量は大幅に減少し、均一で美麗
な溶接ビードが得られた。
Then, as a consumable electrode, a YGW12 wire with a diameter of 1.2 mm according to JIS Z 8812 was used, the wire feeding speed was 8 m/min, and carbon dioxide gas was passed as a shielding gas at a flow rate of 2017 @. Under welding conditions, the waveform parameters of welding current and welding voltage are td = 50A, Ia = 40OA, Va = 27V, respectively.
Id=1.5m5ec, Ta==LQmsec, O
l = 0-04 V/ms e θ2 = 0, 17
When welding was performed with V/m5ec and θ3=0, the amount of spatter generated was 1.2 g/min, and welding was performed under the same welding conditions as above using a conventional welding power source with constant voltage output characteristics. ° Spatter generation fi7.2g/
The amount of spatter generated was significantly reduced compared to the previous model, and a uniform and beautiful weld bead was obtained.

従って、前記実施例によると、アーク期間に、溶接電圧
を第1の変化率θ1でTa時間減少させたのち、第1の
変化率θ1よりも大きな第2の変化率θ2で減少させた
ため、アーク発生初期において、アークの安定化及び溶
接ビードの均一化を図ることができ、アーク終期には、
溶滴の遊動及び溶滴の飛散を防止でき、従来に比べ、ス
パッタ発生量を大幅lζ低減することができると共に、
美麗で良好な溶接ビードを形成することができる。
Therefore, according to the above embodiment, during the arc period, the welding voltage is decreased for Ta time at the first rate of change θ1, and then decreased at the second rate of change θ2, which is larger than the first rate of change θ1. At the beginning of the arc, it is possible to stabilize the arc and make the weld bead uniform, and at the end of the arc,
It is possible to prevent the floating of droplets and the scattering of droplets, and it is possible to significantly reduce the amount of spatter generated compared to the conventional method.
A beautiful and good weld bead can be formed.

なお、他の実施例として、アーク期間における溶接電圧
を一定の変化率で減少させるように制御してもよく、こ
の場合、前記実施例における溶接条件のうち、ワイヤ送
給速度を4m/分とし、波形パラメータそれぞれを、I
d =5 OA、 I a=800A 、 Va=19
V、Td=1 、5m5ec 、 Ta=0 、01=
o *θ2=0.17V/m5ec、θB=0として溶
接を行ったところ、スパッタ発生量はO,’1g1分と
なり、従来の定電圧特性を有する溶接電源を用いた場合
のスパッタ発生量1 、 OgZ分に比べ、スパッタ量
は減少し、溶接ビードも均一で美麗であった。
In addition, as another example, the welding voltage during the arc period may be controlled to decrease at a constant rate of change, and in this case, among the welding conditions in the above example, the wire feeding speed is 4 m/min. , each waveform parameter is I
d = 5 OA, I a = 800A, Va = 19
V, Td=1, 5m5ec, Ta=0, 01=
o * When welding was performed with θ2 = 0.17 V/m5ec and θB = 0, the amount of spatter generated was O,'1g1 min, which is the amount of spatter generated when using a welding power source with conventional constant voltage characteristics. Compared to the OgZ component, the amount of spatter was reduced, and the weld bead was uniform and beautiful.

また、前記した溶接電圧の変化率θ1及びθ2の最適値
を、実際の溶接結果から求めたところ、01Ei O〜
0.15V /1nsec 、θ2は0 、025〜l
 QV/m5ecが適当であり、溶接状二元に応じ、O
l、θ2をこれらの範囲内で適宜選定すればよい。
In addition, when the optimum values of the above-mentioned welding voltage change rates θ1 and θ2 were found from actual welding results, 01Ei O~
0.15V/1nsec, θ2 is 0, 025~l
QV/m5ec is appropriate, and O
l and θ2 may be appropriately selected within these ranges.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

ガスシールドアーク溶接において、アーク期間に、溶接
電圧を減少させるため、アーク発生初期には、アークの
安定化及び溶接ビードの均一化を図ることができ、アー
ク終期には、溶滴の遊動及び溶滴の飛散を防止でき、従
来に比べ、スパッタの発生量を大幅に低減することがで
きると共に、美麗で良好な溶接ビードを形成することが
できる。
In gas-shielded arc welding, by reducing the welding voltage during the arc period, it is possible to stabilize the arc and make the weld bead uniform at the beginning of the arc, and at the end of the arc, it is possible to stabilize the arc and make the weld bead uniform. The scattering of droplets can be prevented, the amount of spatter generated can be significantly reduced compared to the conventional method, and a beautiful and good quality weld bead can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明のガスシールドアーク溶接用
電源の出力制御方法の1実施例を示し、第1図は電源制
御回路のブロック図、第2図(a)。 (b)はそれぞれ溶接電流及び溶接電圧の波形図、第3
図(a)〜(f)はガスシールドアーク溶接における溶
滴の形成、移行の過程を示す図、第4図ないし第6図は
それぞれ従来例の溶接電流の波形図である。 (7)・・・消耗電極、(8)・・・溶接母材。
1 and 2 show an embodiment of the output control method of the power source for gas shielded arc welding according to the present invention, FIG. 1 is a block diagram of the power source control circuit, and FIG. 2(a) is a block diagram of the power source control circuit. (b) is a waveform diagram of welding current and welding voltage, respectively.
Figures (a) to (f) are diagrams showing the process of droplet formation and transfer in gas-shielded arc welding, and Figures 4 to 6 are waveform diagrams of welding current in conventional examples, respectively. (7)...Consumable electrode, (8)...Welding base material.

Claims (2)

【特許請求の範囲】[Claims] (1)消耗電極及び溶接母材に通流する溶接電流、及び
前記消耗電極、前記母材間の溶接電圧を制御し、シール
ドガスによりシールドされた前記消耗電極と前記母材と
の間で短絡とアークを交互に発生させるガスシールドア
ーク溶接用電源の出力制御方法において、 短絡期間に、当初前記溶接電流を低レベルに保持したの
ち、高レベルに増大し、 アーク期間に、前記溶接電圧を減少することを特徴とす
るガスシールドアーク溶接用電源の出力制御方法。
(1) The welding current flowing through the consumable electrode and the welding base metal and the welding voltage between the consumable electrode and the base metal are controlled, and a short circuit occurs between the consumable electrode and the base metal that are shielded by shielding gas. In the output control method of a gas-shielded arc welding power source that alternately generates an arc and an arc, the welding current is initially held at a low level during the short circuit period, and then increased to a high level, and during the arc period, the welding voltage is decreased. A method for controlling the output of a power source for gas shielded arc welding, characterized in that:
(2)アーク期間に、溶接電圧を、当初第1の変化率で
減少したのち、前記第1の変化率より大きな第2の変化
率で減少することを特徴とする請求項1記載のガスシー
ルドアーク溶接用電源の出力制御方法。
(2) The gas shield according to claim 1, wherein during the arc period, the welding voltage is initially decreased at a first rate of change, and then decreased at a second rate of change that is greater than the first rate of change. Output control method for arc welding power source.
JP12679388A 1988-05-24 1988-05-24 Output control method for gas shielded arc welding power source Pending JPH01299770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12679388A JPH01299770A (en) 1988-05-24 1988-05-24 Output control method for gas shielded arc welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12679388A JPH01299770A (en) 1988-05-24 1988-05-24 Output control method for gas shielded arc welding power source

Publications (1)

Publication Number Publication Date
JPH01299770A true JPH01299770A (en) 1989-12-04

Family

ID=14944087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12679388A Pending JPH01299770A (en) 1988-05-24 1988-05-24 Output control method for gas shielded arc welding power source

Country Status (1)

Country Link
JP (1) JPH01299770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322148A (en) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd Arc welding control method and arc welding machine
JP2014037004A (en) * 2012-07-18 2014-02-27 Daihen Corp Output control method for welding power source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240974A (en) * 1985-08-19 1987-02-21 Hitachi Seiko Ltd Welding control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240974A (en) * 1985-08-19 1987-02-21 Hitachi Seiko Ltd Welding control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322148A (en) * 2003-04-24 2004-11-18 Matsushita Electric Ind Co Ltd Arc welding control method and arc welding machine
JP4501355B2 (en) * 2003-04-24 2010-07-14 パナソニック株式会社 Arc welding control method and arc welding machine
JP2014037004A (en) * 2012-07-18 2014-02-27 Daihen Corp Output control method for welding power source

Similar Documents

Publication Publication Date Title
US5225660A (en) Consumable-electrode ac gas shield arc welding method and apparatus therefor
JP2006263757A (en) Method for controlling arc length in pulse arc welding
EP0715921B1 (en) Apparatus for controlling a consumable electrode pulsed-arc welding power source
CN111902234B (en) Method and device for controlling gas-shielded arc welding
JP3120142B2 (en) Output control device of consumable electrode type pulse arc welding machine
US20090120921A1 (en) Method and Apparatus for Welding
JP2000079479A (en) Method for controlling current waveform in consumable electrode gas shielded arc welding and its welding equipment
WO2020075791A1 (en) Arc welding control method
JPH01299770A (en) Output control method for gas shielded arc welding power source
JPS6316868A (en) Low electric current welding method
US20160332247A1 (en) Arc welding method
JPH0938772A (en) Ac self-shielded arc welding method
JPH10146673A (en) Alternating current self shield arc welding method
JPH01299769A (en) Output control method for gas shielded arc welding power source
JPH0259176A (en) Method for controlling output of consumable electrode arc welding power source
JPH08267239A (en) Output control method of power source for consumable electrode type gas shielded pulsed arc welding
JPS60223661A (en) Arc welding method
JPH0613145B2 (en) Power source for arc welding
CN114682885B (en) Welding method, device, welding equipment and medium for consumable electrode gas shielded welding
JPS58224070A (en) Arc welding
US20010035399A1 (en) Method and apparatus for improved arc initiation
WO2022065187A1 (en) Welding control method
US20230041907A1 (en) Direct current arc welding control method
JPH0342149B2 (en)
JPS626908B2 (en)