JPH01215297A - Production of l-alpha-amino acid - Google Patents

Production of l-alpha-amino acid

Info

Publication number
JPH01215297A
JPH01215297A JP3856688A JP3856688A JPH01215297A JP H01215297 A JPH01215297 A JP H01215297A JP 3856688 A JP3856688 A JP 3856688A JP 3856688 A JP3856688 A JP 3856688A JP H01215297 A JPH01215297 A JP H01215297A
Authority
JP
Japan
Prior art keywords
amino acid
acid amide
alpha
mycobacterium
methanolica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3856688A
Other languages
Japanese (ja)
Inventor
Masaharu Dotani
正晴 銅谷
Toshio Kondo
俊夫 近藤
Sadaji Uragami
貞治 浦上
Hiromi Koga
木我 浩美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3856688A priority Critical patent/JPH01215297A/en
Publication of JPH01215297A publication Critical patent/JPH01215297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the title compound for food additive, etc., by reacting a specific DL-alpha-amino acid amide with bacteria strains belonging to Mycobacterium.methanolica and having ability hydrolyzing only L-alpha-amino acid amide. CONSTITUTION:DL-alpha-amino acid amide (e.g., DL-valine amide) expressed by the formula [R is (substituted)lower alkyl, (substituted)phenyl, furyl, pyridyl, thiazolyl or imidazolyl] is reacted with bacterium cell of bacterium strain [e.g., Mycobacterium.methanolica BT-84 (FERM P-8823)] belonging to Mycobacterium.methanolica and having ability hydrolyzing only L-alpha-amino acid amide or treated product thereof to provide the corresponding and aimed L-alpha-amino acid.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、L−α−アミノ酸の製造法に関する。更に詳
しくは、本発明者らの中の一人が見出した新菌種である
ミコバクテリウlトメタノリ力を使用し、DI、−α−
アミノ酸アミドから対応するL−α−アミノ酸を製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing L-α-amino acids. More specifically, we used Mycobacterium luteum, a new bacterial species discovered by one of the inventors, to obtain DI, -α-
The present invention relates to a method for producing a corresponding L-α-amino acid from an amino acid amide.

L−α−アミノ酸は、医薬品、食品添加物、飼料添加物
、および各種工業薬品の中間体として重要なものである
L-α-amino acids are important as intermediates for pharmaceuticals, food additives, feed additives, and various industrial chemicals.

[従来の技術、発明が解決しようとする問題点]従来、
α−アミノ酸を有機合成的方法により製造する場合、得
られるα−アミノ酸がDL−体であることから、いかに
して工業的に有利に光学分割を行うかが大きな課題であ
った。
[Prior art, problems to be solved by the invention] Conventionally,
When α-amino acids are produced by organic synthetic methods, the resulting α-amino acids are in the DL-form, so it has been a major challenge how to optically resolve them in an industrially advantageous manner.

DL−α−アミノ酸の光学分割を行う方法としては、物
理化学的方法、生化学的方法等があり、これらの中で後
者に関しては例えば次の方法が実用化されている。
Methods for optically resolving DL-α-amino acids include physicochemical methods, biochemical methods, and the like, and among these methods, for example, the following method has been put into practical use regarding the latter.

1)  DL−α−アミノ酸のN−アシル体に微生物の
有するアシラーゼを作用させる方法。
1) A method of causing an acylase possessed by a microorganism to act on the N-acyl form of DL-α-amino acid.

N112    AC20NIIAC?シラーI  N
tlAc        Nll□(I R=C11C0011→R−CIIC0010−÷R−
CIICOOII + R−CIICOOII(DI、
−)     (DI、−)     (D−)   
  (L−)2)   DI、−α−アミノ酸のヒダン
トイン誘導体に微生物の有するヒダントイナーゼを作用
させる方法。
N112 AC20NIIAC? Schiller I N
tlAc Nll□(I R=C11C0011→R-CIIC0010-÷R-
CIICOOII + R-CIICOOII (DI,
-) (DI, -) (D-)
(L-)2) A method of causing a hydantoinase possessed by a microorganism to act on a hydantoin derivative of DI, -α-amino acid.

ヒダントイナーゼ              NlI
C0NI+2(D−) しかしながら、これらの方法は高価な原料を必要とし、
且つ反応系も複雑であることから経済的な不利は避は難
い、といった欠点を有している。
Hydantoinase NlI
C0NI+2(D-) However, these methods require expensive raw materials and
Moreover, since the reaction system is complicated, it has the disadvantage that economic disadvantages are inevitable.

一方、DL−α−アミノ酸アミドを基質として、これに
微生物が生産するアミダーゼを作用させ、対応するL−
α−アミノ酸をlj)る方法として、バチルス属、バク
テリジウム居、ミクロコツカス属、およびプレビバクテ
リジウム属のそれぞれに属する微生物が生産する酵素ア
ミダーゼを用いる方法(公表昭58−500319号)
、種々の酵母たとえばミコバクテリウム属に属する微生
物などの細菌類が生産する酵素アミダーゼを用いる方法
(特開昭57−13000号、同59−159789号
および同60−38446号)、エンテロバクタ−・ク
ロアッセイ(N−7901)またはシュードモナス 5
P(N−7131またはN−2211)が生産する酵素
アミダーゼを用いる方法(特開昭 62−55097号
)、等が知られている。
On the other hand, using DL-α-amino acid amide as a substrate, amidase produced by microorganisms is applied to the DL-α-amino acid amide, and the corresponding L-
As a method for producing α-amino acids, a method using enzyme amidase produced by microorganisms belonging to the genus Bacillus, Bacteridium, Micrococcus, and Previbacteridium (Publication No. 58-500319)
, a method using the enzyme amidase produced by bacteria such as various yeasts, such as microorganisms belonging to the genus Mycobacterium (Japanese Patent Application Laid-open Nos. 57-13000, 59-159789 and 60-38446), Enterobacter. Cloassay (N-7901) or Pseudomonas 5
A method using the enzyme amidase produced by P (N-7131 or N-2211) (Japanese Patent Application Laid-Open No. 62-55097) is known.

しかしながら、これらの方法では、いずれも用いられる
微生物菌体が有するアミダーゼ活性が弱く、DL−α−
アミノ酸アミドからL−α−アミノ酸の製造にこれら微
生物を用いたのでは、工業的に有利な製造法とはなり得
ない。
However, in all of these methods, the amidase activity of the microorganism used is weak, and DL-α-
Using these microorganisms to produce L-α-amino acids from amino acid amides cannot be an industrially advantageous production method.

また、ミコバクテリウム属に属する微生物には高い病原
性を有する微生物が多く、危険性が大きく実用に適さな
い。
Furthermore, many of the microorganisms belonging to the genus Mycobacterium are highly pathogenic, making them highly dangerous and unsuitable for practical use.

[問題を解決するための手段、作用] 本発明者らは、DL−α−アミノ酸アミドを基質として
、これらを効率良く対応するし一α−アミノ酸に転換す
る微生物を自然界から探索したところ、その目的に適す
る菌株を得ることができ、この菌株を使用する本発明を
完成した。
[Means and effects for solving the problem] The present inventors searched for microorganisms in nature that can efficiently convert DL-α-amino acid amide into monoα-amino acid using DL-α-amino acid amide as a substrate. We were able to obtain a strain suitable for the purpose, and completed the present invention using this strain.

この菌株は、ミコバクテリウム属に属する菌株であり、
本発明者らの中の一人が発見した新菌種であるミコバク
テリウム・メタノリカである。
This strain belongs to the genus Mycobacterium,
This is Mycobacterium methanolica, a new bacterial species discovered by one of the inventors.

本菌種が、アミダーゼ活性が強く、しかも、病原性が実
質的にないことを発見して、この発見に基ずいて本発明
に到達した。
It was discovered that this fungal species has strong amidase activity and is substantially free of pathogenicity, and based on this discovery, the present invention was achieved.

すなわち、本発明は、  H2 一般式が RCM  CONH2(ただし、式中Rは低
級アルキル基、置換低級アルキル基。
That is, in the present invention, the general formula of H2 is RCM CONH2 (wherein R is a lower alkyl group or a substituted lower alkyl group.

フェニル基、置換フェニル基、フリル基、ピリジル基、
チアゾリル基およびイミダゾリル基を示す)で示される
DL−α−アミノ酸アミドに、ミコバクテリウム・メタ
ノリカに属し、L−α−アミノ酸アミドのみを加水分解
する能力を有する菌株の菌体あるいはその処理物を作用
させ、対応するL−α−アミノ酸を得ることを特徴とす
るL−α−アミノ酸の製造法である。
Phenyl group, substituted phenyl group, furyl group, pyridyl group,
DL-α-amino acid amide (representing a thiazolyl group and an imidazolyl group) is treated with the cells of a strain of Mycobacterium methanolica that has the ability to hydrolyze only L-α-amino acid amide or its processed product. This is a method for producing L-α-amino acids, which is characterized in that the corresponding L-α-amino acids are obtained.

本発明の一般式で示されるDL−α−アミノ酸アミドの
Rの低級アルキル基には特に制限はないが、たとえばメ
チル、エチル、プロピル、イソプロピル、ブチル、イソ
ブチルおよび5ec−ブチルなどのC’ t ”””’
 C4の直鎖または分枝した低級アルキル基が好適であ
り、置換低級アルキル基についても同様である。 また
置換低級アルキル基、置換フェニル基のそれぞれに含ま
れる置換基は、たとえば、ヒドロキシ、メトキシ、メJ
レカプト、メチルメルカプト、アミノ、グアニル、カル
ボキシル、カルボフサミド、ハロゲン、フェニル、ヒド
ロキシフェニル、およびイミダゾリルなどである。
The lower alkyl group of R in the DL-α-amino acid amide represented by the general formula of the present invention is not particularly limited, but C' t ” such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and 5ec-butyl, etc. ""'
C4 straight or branched lower alkyl groups are preferred, and the same applies to substituted lower alkyl groups. In addition, the substituents contained in each of the substituted lower alkyl group and the substituted phenyl group are, for example, hydroxy, methoxy,
These include recapto, methylmercapto, amino, guanyl, carboxyl, carbofusamide, halogen, phenyl, hydroxyphenyl, and imidazolyl.

本発明の基質は一般式で示されるDL−α−アミノ酸ア
ミドであって、その代表例として、アラニンアミド(”
DL−”を省略。以下同様)、バリンアミド、ロイシン
アミド、イソロイシンアミド、セリンアミド、スレオニ
ンアミドシスティンアミド、シスチンアミド、メチオニ
ンアミド、リジンアミド、アルギニンアミド、アスパラ
ギンアミド、グルタミンアミド、−フェニルグリシンア
ミド、フェニルアラニンアミド、チロシンアミド、およ
びヒスチジンアミドなどがある。
The substrate of the present invention is a DL-α-amino acid amide represented by the general formula, and a representative example thereof is alanine amide (“
DL-" is omitted. The same applies hereinafter), valinamide, leucinamide, isoleucinamide, serine amide, threoninamide cysteinamide, cystinamide, methioninamide, lysinamide, argininamide, asparaginamide, glutamine amide, -phenylglycinamide, phenylalaninamide, These include tyrosinamide and histidineamide.

細菌の菌体またはその処理物によってこれらの基質を不
斉加水分解して、それぞれの基質に対応するL−α−ア
ミノ酸が得られる。
These substrates are asymmetrically hydrolyzed by bacterial cells or their processed products to obtain L-α-amino acids corresponding to the respective substrates.

本発明に用いられる細菌は、ミコバクテリウム・メタノ
リカに属し、一般式で示されるDL−α−アミノ酸アミ
ドを不斉加水分解し、対応するL−α−アミノ酸を生成
する能力を有する菌株であれば良く、特に制限はない。
The bacteria used in the present invention belong to Mycobacterium methanolica and may be any strain that has the ability to asymmetrically hydrolyze the DL-α-amino acid amide represented by the general formula to produce the corresponding L-α-amino acid. There are no particular restrictions.

ミコバクテリウム・メタノリカは本発明者らの中の一人
が発見した新菌種であるが、この新菌種に属する細菌の
うち代表的な菌株として。
Mycobacterium methanolica is a new bacterial species discovered by one of the inventors, and is a representative strain of bacteria belonging to this new bacterial species.

ミコバクテリウム・メタノリカ BT−84(微工研菌
寄第8823号)、同 BT−143(微工研菌寄第8
824号)、同 P−23(微工研菌寄第8825号)
、同 P−26(微工研菌寄第8826号)および同 
P−85(微工研菌寄第8827号)がある。
Mycobacterium methanolica BT-84 (Feweral Research Institute Bacteria No. 8823), Mycobacterium methanolica BT-143 (February Industrial Research Institute No. 8823)
No. 824), P-23 (Feikoken Bibori No. 8825)
, same P-26 (Feikoken Bibori No. 8826) and same
There is P-85 (Feikoken Bibori No. 8827).

本細菌(本発明で使用される細菌、以下同様)の培養に
使用される培地は、本細菌が資化し得る炭素源を少なく
とも含有している事を要し、さらに適量の窒素源および
無機塩などを含有する培地であれば良く、合成培地およ
び天然培地のどちらでも良く、特別な培地を必要としな
い。
The medium used for culturing this bacterium (the bacterium used in the present invention, hereinafter the same) must contain at least a carbon source that can be assimilated by this bacterium, and an appropriate amount of nitrogen source and inorganic salt. It may be a synthetic medium or a natural medium, and does not require any special medium.

炭素源としては1本細菌が資化し得る炭素源であれば良
く特に制限はなく、たとえば糖蜜。
The carbon source is not particularly limited as long as it can be assimilated by bacteria; for example, molasses.

パフ1〜ン、肉エキス、およびコーンステイープ・リカ
ーなとの天然物ならびにグルコース、フラクトース、シ
ュクロース、ソルビ1−−ル、グリセリンおよびマンニ
トールなどの糖類、メタノール、エタノールおよびn−
プロパツールなどのアルコール類などを用いることがで
きる。
Puffs, meat extracts, and natural products such as cornstarch liquor and sugars such as glucose, fructose, sucrose, sorbyl, glycerin, and mannitol, methanol, ethanol, and n-
Alcohols such as propatool can be used.

窒素源としては、たとえばアンモニウム塩、硝酸・塩な
どの無機窒素化合物および/または、たとえば尿素、コ
ーンステイープ・リカー、カゼイン、ペプトン、酵母エ
キスなどの有機性窒素含有物質が用いられる。
As nitrogen sources, inorganic nitrogen compounds such as ammonium salts, nitric acid salts, etc. and/or organic nitrogen-containing substances such as urea, cornstarch liquor, casein, peptone, yeast extract, etc. are used.

無機成分としては、たとえばカルシウム塩、マグネシウ
ム塩、カリウム塩、ナトリウム塩、リン酸塩、マンガン
塩、亜鉛塩、鉄塩、銅塩、モリブデン塩、コバルト塩、
はう素化合物およびよう素化合物が用いられる。
Inorganic components include, for example, calcium salts, magnesium salts, potassium salts, sodium salts, phosphates, manganese salts, zinc salts, iron salts, copper salts, molybdenum salts, cobalt salts,
Boron compounds and iodine compounds are used.

高い酵素活性を得るために培地へDL−α−アミノ酸ア
ミドを添加することも効果的である。
It is also effective to add DL-α-amino acid amide to the medium to obtain high enzyme activity.

この際、添加するD I、−α−アミノ酸アミドは本発
明の一般式で示されるDL−α−アミノ酸アミドであれ
ばいずれでもよいが、1」的とするL−α−アミノ酸に
対応するDL−α−アミノ酸アミドを用いることがなお
効果的である。
At this time, the DI, -α-amino acid amide to be added may be any DL-α-amino acid amide represented by the general formula of the present invention; It is still more effective to use -α-amino acid amides.

培養条件は、温度20〜42℃、好ましくは25〜40
℃、 pif 5〜9.好ましくは6〜8である。
The culture conditions are a temperature of 20 to 42°C, preferably 25 to 40°C.
°C, pif 5-9. Preferably it is 6-8.

増殖は悪くなるが、これらの条件を外して培養すること
を妨げない。
Growth will be poor, but this does not preclude culturing outside these conditions.

この様にして培養した細菌を一般式で示されるDL−α
−アミノ酸アミドに作用させるには、液体培地に微生物
を培養して得られた培養液、この培養液から分離した菌
体、菌体破砕物、または培養液もしくは菌体から分離し
た酵素(アミダーゼ)の粗製酵素、精製酵素、酵素含有
抽出物あるいはその濃縮物(以下菌体以外の物を″処理
物”と記すこともある)などの状態で作用させる。また
、菌体および酵素のそれぞれを担体で固定化して使用に
供することもできる(この固定化物も以下でパ処理物″
と記すこともある)。
The bacteria cultured in this manner are expressed by the general formula DL-α
- To act on amino acid amides, use a culture solution obtained by culturing microorganisms in a liquid medium, bacterial cells isolated from this culture solution, crushed bacterial cells, or an enzyme (amidase) isolated from the culture solution or bacterial cells. A crude enzyme, a purified enzyme, an enzyme-containing extract, or a concentrate thereof (hereinafter, substances other than bacterial cells may be referred to as "treated products") are used to act. In addition, each of the bacterial cells and enzymes can be immobilized on a carrier and used (this immobilized product will also be referred to as the processed material below).
).

この固定化に使用される担体としては、たとえばアルギ
ン酸、カラギーナン、コラーゲン。
Examples of carriers used for this immobilization include alginic acid, carrageenan, and collagen.

セルロース、アセチルセルロース、寒天、コンニャク、
セロファン、コロジオンなどの天然物またはポリアクリ
ルアマイド、ポリスチレン。
Cellulose, acetyl cellulose, agar, konnyaku,
Natural products such as cellophane, collodion or polyacrylamide, polystyrene.

ポリエチレングリコール、ポリプロピレングリコール、
ポリウレタン、ポリブタジェンなどの合成高分子物質な
どのような通常使用される担体を使用することができる
。固定化は、常法によって行おれるが、アミダーゼ活性
を損なうことのない条件下で行われる。
polyethylene glycol, polypropylene glycol,
Commonly used carriers such as synthetic polymeric materials such as polyurethane, polybutadiene, etc. can be used. Immobilization is performed by conventional methods, but under conditions that do not impair amidase activity.

本発明において、一般式で示されるDL−α−アミノ酸
アミドに、ミコバクテリウム・メタノリカの菌体あるい
はその処理物を作用させて不斉加水分解する反応条件と
して、反応温度は10〜90℃、好ましくは20〜70
℃であり、反応PHは5〜13、好ましくは6〜12で
ある。反応時間は、通常は0.5〜36時間程度であり
、1〜24時間程度が好適である。反応温度を高めたり
、菌体またはその処理物の使用量を増加させるなどによ
り、反応時間を短縮させることが可能である。
In the present invention, the reaction conditions for asymmetric hydrolysis of the DL-α-amino acid amide represented by the general formula by the action of Mycobacterium methanolica cells or a treated product thereof include a reaction temperature of 10 to 90°C; Preferably 20-70
℃, and the reaction pH is 5-13, preferably 6-12. The reaction time is usually about 0.5 to 36 hours, preferably about 1 to 24 hours. The reaction time can be shortened by raising the reaction temperature, increasing the amount of bacterial cells or their processed material, etc.

本発明において、微生物の使用量は、基質であるDL−
α−アミノ酸アミドに対し、乾燥菌体として重量比で0
.001〜IOの範囲、好ましくは0.01〜lの範囲
である。培養液または処理物を使用する場合には、乾燥
菌体の重量に換算してその使用量を決定すれば良い。
In the present invention, the amount of microorganisms used is the substrate DL-
Weight ratio of dry bacterial cells to α-amino acid amide is 0.
.. The range is from 0.001 to IO, preferably from 0.01 to l. When using a culture solution or a treated product, the amount to be used may be determined by converting it to the weight of dry bacterial cells.

基質であるDL−α−アミノ酸アミドの使用濃度は、原
料として使用したDL−α−アミノ酸アミドの飽和濃度
以下であれば一般に制限はないが、好ましくは1〜20
 wt%である。
The concentration of DL-α-amino acid amide used as a substrate is generally not limited as long as it is below the saturation concentration of DL-α-amino acid amide used as a raw material, but preferably 1 to 20
It is wt%.

本発明では、L−α−アミノ酸アミドの加水分解反応が
ほぼ終了した時点で、可及的速やかに反応を停止させた
後、反応生成液から目的物質であるL−α−アミノ酸と
未反応のD−α−アミノ酸アミドとをそれぞれ分離1回
収する。
In the present invention, when the hydrolysis reaction of L-α-amino acid amide is almost completed, the reaction is stopped as soon as possible, and then the target substance L-α-amino acid and unreacted D-α-amino acid amide and D-α-amino acid amide are each separated and recovered once.

この分離は、分別晶析、溶媒抽出、イオン交換、その他
公知の方法により容易に行うことができる。
This separation can be easily performed by fractional crystallization, solvent extraction, ion exchange, or other known methods.

なお、前記の不斉加水分解の操作において、基質中のD
−α−アミノ酸アミドは、菌体または処理物の作用を受
けにくいが、反応時間が過度に長くなると、菌体または
処理物の作用を受けて、D−α−アミノ酸を生成するこ
とがあるので、L−α−アミノ酸アミドの加水分解が終
了した時点で反応を速やかに停止させ、D−α−アミノ
酸を極力生成させないことが好ましい。
In addition, in the above-mentioned asymmetric hydrolysis operation, D in the substrate
-α-amino acid amide is not susceptible to the action of bacterial cells or treated substances, but if the reaction time is too long, D-α-amino acids may be produced by the action of bacterial cells or treated substances. It is preferable to stop the reaction immediately upon completion of hydrolysis of the L-α-amino acid amide and to prevent the production of D-α-amino acids as much as possible.

反応を停止させるには、たとえば反応生成液から菌体お
よび処理物を除去する、反応生成液からD−α−アミノ
酸アミドを除去する、反応生成液の1を変化させるおよ
び/または反応生成液の温度を変化させるなどの常法に
よることができる。
To stop the reaction, for example, the bacterial cells and the treated product are removed from the reaction product solution, the D-α-amino acid amide is removed from the reaction product solution, the reaction product solution is changed, and/or the reaction product solution is Conventional methods such as changing the temperature can be used.

また、未反応のD−α−アミノ酸アミドは、それ自体公
知の方法、たとえば酸あるいはアルカリで加水分解する
ことにより対応するD−α−アミノ酸を得ることができ
る。また、D−α−アミノ酸アミドを常法によりラセミ
化した後反応系へ循環することにより、DL−α−アミ
ノ酸アミドを全量L−α−アミノ酸とすることもできる
Further, unreacted D-α-amino acid amide can be hydrolyzed by a method known per se, for example, with an acid or an alkali, to obtain the corresponding D-α-amino acid. Alternatively, the entire amount of DL-α-amino acid amide can be converted to L-α-amino acid by racemizing the D-α-amino acid amide by a conventional method and then circulating it to the reaction system.

[実施例] 以下の実施例により本発明をさらに具体的に説明するが
、本発明はこれのみに限定されるものではない。   
     (犀下金舌〕実施例 1 グルコース Log、ポリペプトン Log、酵母エキ
ス logを純水IQに溶解し、p Hを7.0に調整
した培地10071112をIQ容三角フラスコに入れ
、1 kg/cJGで20分間殺菌した培地に、同様な
培地で前培養したミコバクテリウム・メタノリカの各菌
株の培養液をldlずつ植菌し、30℃でd5時間振と
う培養を行い、培養液を1800Orpmで10分間遠
心分離し、菌体を得た。
[Examples] The present invention will be explained in more detail with the following Examples, but the present invention is not limited thereto.
(Rhinoceros Golden Tongue) Example 1 Glucose Log, polypeptone Log, and yeast extract Log were dissolved in pure water IQ, and the pH was adjusted to 7.0.Pour medium 10071112 into an IQ Erlenmeyer flask, and mix at 1 kg/cJG. Into a medium that had been sterilized for 20 minutes, ldl of the culture solution of each strain of Mycobacterium methanolica precultured in the same medium was inoculated, cultured with shaking at 30°C for 5 hours, and the culture solution was incubated at 1800 rpm for 10 minutes. Centrifugation was performed to obtain bacterial cells.

DL−バリンアミドを5g含む純水100−に前記の菌
体を乾燥菌体重量換算で0.5g加え、pHを9に調整
したのち、40℃で60分間振とうしつつ反応を行った
。反応終了後、反応生成液を1800 Orpmで10
分間遠心し、上澄液を得た。この上澄液を高速液体クロ
マトグラフィで分析し、生成したL−バリンの収率およ
び光学純度を求めた。
0.5 g of the above-mentioned microbial cells (calculated as dry microbial weight) was added to 100% of pure water containing 5 g of DL-valinamide, the pH was adjusted to 9, and the reaction was carried out with shaking at 40° C. for 60 minutes. After the reaction is completed, the reaction product solution is heated at 1800 Orpm for 10 minutes.
Centrifugation was performed for a minute to obtain a supernatant. This supernatant liquid was analyzed by high performance liquid chromatography to determine the yield and optical purity of the produced L-valine.

なお、得られたL−バリンの比旋光度を測定したところ
、いずれも[α]乙’=+27.6〜28.2 であっ
た。 結果を表1に示す。
In addition, when the specific optical rotation of the obtained L-valine was measured, all of them were [α] O'=+27.6 to 28.2. The results are shown in Table 1.

実施例 2 培地を次の組成にした以外は実施例1と同様にして行っ
た。
Example 2 The same procedure as in Example 1 was carried out except that the culture medium had the following composition.

グルコース       10    gペプトン  
      5g 肉エキス        1g 酵母エキス       5g K I’I 2 P O41g M g S O4・7H200−4g F e So<・’IHxOO,01gM n C1!
 ” 4 H200、01gDL−バリンアミド   
5g 水               IQp)I    
       7 結果を表2に示す。
glucose 10 g peptone
5g Meat extract 1g Yeast extract 5g K I'I 2 P O41g M g S O4・7H200-4g F e So<・'IHxOO,01gM n C1!
” 4 H200, 01gDL-Valinamide
5g water IQp)I
7 The results are shown in Table 2.

実施例 3 グリセロール Log、肉エキス 5g、MKSO4・
7l−I20 0.1 g、 F e So<・7tI
200、01 g、 Mn SO,・4HzOO,Ol
 gCaC12・2H200,01g、ZnSO4・7
 Hzo  0 、001 g 、 D L−フェニル
アラニンアミド 2.5gを純水IQに溶解し、pHを
7.0に調整した培地100−をIQ三角フラスコに入
れ、1kg/ajG  で20分間殺菌した培地に、同
培地で前培養したミコバクテリウム・メタノリカ BT
−84の培養液111dlを植菌し、30℃で48時間
振どう培養を行い、培養液を1800Orpm  で1
0分間遠心分離し、菌体を得た。
Example 3 Glycerol Log, meat extract 5g, MKSO4・
7l-I20 0.1 g, Fe So<・7tI
200,01 g, MnSO,・4HzOO,Ol
gCaC12・2H200,01g, ZnSO4・7
Hzo 0, 001 g, DL 2.5 g of L-phenylalaninamide was dissolved in pure water IQ, the pH was adjusted to 7.0, and a medium 100- was placed in an IQ Erlenmeyer flask, and the medium was sterilized at 1 kg/ajG for 20 minutes. , Mycobacterium methanolica BT precultured in the same medium
-84 culture solution was inoculated, cultured with shaking at 30℃ for 48 hours, and the culture solution was inoculated at 1800 rpm.
Centrifugation was performed for 0 minutes to obtain bacterial cells.

DL−フェニルアラニンアミド0.5gを純水100s
jlに溶解した水溶液に前記の菌体を乾燥菌体重量換算
で0.03gを加え、pHを9.0に調整した反応液A
、B、をそれぞ九準備した。
DL-Phenylalanine amide 0.5g in pure water for 100s
Reaction liquid A in which 0.03 g of the above bacterial cells (calculated as dry bacterial weight) was added to an aqueous solution dissolved in Jl, and the pH was adjusted to 9.0.
, B, were prepared nine times.

反応液Aおよび反応液Bを用い、それぞれ40℃および
30℃で振とうしつつ反応を行い、1時間、2時間後に
おけるL−フェニルアラニンの収率を求めた。また、2
時間後の反応上澄液のL体/D体(モル比)を測定した
。 結果を表3に示す。
Using reaction solution A and reaction solution B, reactions were carried out with shaking at 40° C. and 30° C., respectively, and the yields of L-phenylalanine after 1 hour and 2 hours were determined. Also, 2
After a period of time, the L-form/D-form (molar ratio) of the reaction supernatant was measured. The results are shown in Table 3.

表3 実施例 4 反応原料にD L−ロイシンアミドを使用した以外は実
施@2と同様にして、ミコバクテリウム・メタノリカの
各菌株について反応を行った。
Table 3 Example 4 Each strain of Mycobacterium methanolica was reacted in the same manner as in Example 2 except that DL-leucinamide was used as the reaction raw material.

結果を表4に示す。The results are shown in Table 4.

実施例 5 ミコバクテリウム・メタノリカ BT−84を用い、反
応Jhj料に各種■〕■、−α−アミノ酸アミドを使用
した以外は、実施例2と同様に行った。
Example 5 The same procedure as in Example 2 was carried out, except that Mycobacterium methanolica BT-84 was used and various 1], 2, and -α-amino acid amides were used as reaction materials.

結果を表5に示す。The results are shown in Table 5.

[発明の効果」 本発明方法によって、DL−α−アミノ酸アミドから有
用な多くのL−α−アミノ酸を容易に、しかも効率よく
製造することが可能となった。
[Effects of the Invention] The method of the present invention has made it possible to easily and efficiently produce many useful L-α-amino acids from DL-α-amino acid amide.

特許出願人 王菱瓦斯化学株式会社 代表者 長野和書 代理人  弁理士  小 堀 貞 文Patent applicant Wangling Gas Chemical Co., Ltd. Representative: Nagano Washo Agent: Patent Attorney Sadafumi Kohori

Claims (1)

【特許請求の範囲】 一般式が▲数式、化学式、表等があります▼(ただし、 式中Rは低級アルキル基、置換低級アルキル基フェニル
基、置換フェニル基、フリル基、ピリジル基、チアゾリ
ル基およびイミダゾリル基を示す)で示されるDL−α
−アミノ酸アミドにミコバクテリウム・メタノリカに属
し、L−α−アミノ酸アミドのみを加水分解する能力を
有する菌株の菌体あるいはその処理物を作用させ、対応
するL−α−アミノ酸を得ることを特徴とするL−α−
アミノ酸の製造法。
[Claims] The general formula may be a mathematical formula, a chemical formula, a table, etc. (wherein R is a lower alkyl group, a substituted lower alkyl group, a phenyl group, a substituted phenyl group, a furyl group, a pyridyl group, a thiazolyl group, or DL-α (representing an imidazolyl group)
- The corresponding L-α-amino acid is obtained by reacting the amino acid amide with the cells of a strain of Mycobacterium methanolica that has the ability to hydrolyze only L-α-amino acid amide or a processed product thereof. L-α-
Method for producing amino acids.
JP3856688A 1988-02-23 1988-02-23 Production of l-alpha-amino acid Pending JPH01215297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3856688A JPH01215297A (en) 1988-02-23 1988-02-23 Production of l-alpha-amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3856688A JPH01215297A (en) 1988-02-23 1988-02-23 Production of l-alpha-amino acid

Publications (1)

Publication Number Publication Date
JPH01215297A true JPH01215297A (en) 1989-08-29

Family

ID=12528850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3856688A Pending JPH01215297A (en) 1988-02-23 1988-02-23 Production of l-alpha-amino acid

Country Status (1)

Country Link
JP (1) JPH01215297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686698A3 (en) * 1994-06-09 1997-05-02 Lonza Ag Biotechnological process for the production of cyclic S-alpha-aminocarboxylic acids and R-alpha-aminocarboxylic acid amides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686698A3 (en) * 1994-06-09 1997-05-02 Lonza Ag Biotechnological process for the production of cyclic S-alpha-aminocarboxylic acids and R-alpha-aminocarboxylic acid amides

Similar Documents

Publication Publication Date Title
EP0249188A2 (en) Process for the production of L-2-amino-4-(hydroxymethyl-phosphinyl)-butyric acid
EP0449648A2 (en) Process for producing R(-)-mandelic acid and derivatives thereof
US4211840A (en) Method for producing D-α-amino acid
EP0395124B1 (en) Process for producing L-phenylalanine
JP2950896B2 (en) Method for producing D-α-phenylglycine
GB2042531A (en) Process for preparing D-???-amino acids
US3767528A (en) Process for the manufacture of 3,4-disubstituted phenyl-l-alanines
JPH0499495A (en) Production of r(-)-mandelic acid
JPH01215297A (en) Production of l-alpha-amino acid
JP2670838B2 (en) Method for producing L-α-amino acids
JPS61274690A (en) Production of d-alpha-amino acid
Yamada Microbial reactions for the production of useful organic compounds
JPS61293394A (en) Production of l-alpha-amino acid
US5134073A (en) Microbiologically produced n-acetyl-2,3-didehydroleucine acylase
US5036004A (en) Process for producing L-serine
JPH01277499A (en) Production of l-alpha-amino acid
CA1201402A (en) Process for preparation of aspartylphenylalanine alkyl esters
US5212069A (en) Method of using N-acetyl-2,3-Didehydroleucine acylase for the preparation of D- or L-tryptophyl glycine, D- or L-tryptophyl-D-methionine or L-tryptophyl-D-cysteine
JP2674078B2 (en) Process for producing D-α-amino acid
JPH0479894A (en) Production of d-alanine
NAM et al. Enzymatic synthesis of phenoxymethylpenicillin using Erwinia aroideae enzyme
JP2674076B2 (en) Method for producing D-α-amino acid
JPS60184392A (en) Preparation of d-alpha-amino acid
JP2899106B2 (en) Method for producing D-proline
JPH0129560B2 (en)