JPH01215276A - Bioreactor - Google Patents
BioreactorInfo
- Publication number
- JPH01215276A JPH01215276A JP3924888A JP3924888A JPH01215276A JP H01215276 A JPH01215276 A JP H01215276A JP 3924888 A JP3924888 A JP 3924888A JP 3924888 A JP3924888 A JP 3924888A JP H01215276 A JPH01215276 A JP H01215276A
- Authority
- JP
- Japan
- Prior art keywords
- inner cylinder
- liquid
- cylinder
- flow
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 claims description 49
- 244000005700 microbiome Species 0.000 claims description 14
- 238000007667 floating Methods 0.000 claims description 10
- 230000014759 maintenance of location Effects 0.000 claims description 10
- 108090000790 Enzymes Proteins 0.000 claims description 6
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 230000000717 retained effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 6
- 238000013019 agitation Methods 0.000 abstract 1
- 238000005188 flotation Methods 0.000 abstract 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 8
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 8
- 239000000499 gel Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000000969 carrier Substances 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000005842 biochemical reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 239000004310 lactic acid Substances 0.000 description 4
- 235000014655 lactic acid Nutrition 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 3
- 238000013341 scale-up Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 244000199866 Lactobacillus casei Species 0.000 description 1
- 235000013958 Lactobacillus casei Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000235033 Zygosaccharomyces rouxii Species 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012531 culture fluid Substances 0.000 description 1
- 239000010269 danmu Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229940017800 lactobacillus casei Drugs 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 239000007218 ym medium Substances 0.000 description 1
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
(a業上の利用分野)
本発明は、固定化担体を用いた生物反応装置(以下バイ
オリアクタという)に関し、詳しくは固定化担体を損な
うことなく反応効率を向上でき、かつ大型のバイオリア
クタにおいてもスケール誤差なく反応を完結させること
ができるバイオリアクタに関する。Detailed Description of the Invention (A) Field of Application The present invention relates to a biological reaction device (hereinafter referred to as a bioreactor) using an immobilized carrier, and more specifically, a bioreactor that can improve reaction efficiency without damaging the immobilized carrier. The present invention also relates to a bioreactor that can complete a reaction without scale error even in a large bioreactor.
(従来の技術)
従来、固定化担体を用いたバイオリアクタとしては、容
器に充填した反応液に固定化担体を浮遊させて反応を行
なわせる方式のもの、あるいは固定化担体をカラム等に
密に充填し、これに外部から気体を通して気固液接触さ
せる方式のもの、あるいはカラムに外部ポンプでの循環
により反応液を循環させる(気)固液接触方式のもの、
などが知られている。(Prior art) Conventionally, bioreactors using immobilized carriers are those in which the immobilized carrier is suspended in a reaction solution filled in a container to carry out the reaction, or those in which the immobilized carrier is tightly packed in a column or the like. A type of gas-solid-liquid contact method in which the reaction liquid is circulated through the column using an external pump,
etc. are known.
しかしながら、例えば従来の固定化担体浮遊方式のもの
では、反応液の攪拌混合等の操作に伴なって浮遊した固
定化担体が互いに衝突し、該固定化担体が破損したり、
固定された酵素。However, for example, in the conventional immobilized carrier floating method, the floating immobilized carriers collide with each other during operations such as stirring and mixing the reaction solution, and the immobilized carriers are damaged.
immobilized enzyme.
微生物等が分離したりすることが多くあるという問題が
あった。There was a problem in that microorganisms and the like were often separated.
また固定化担体をカラム等に充填してこれに気体あるい
は反応液を通す方式のものでは、いずれも動力効率が悪
く、またバイオリアクタ内は完全な混合槽状態にはなり
難いために、実験室レベルでの反応結果を解析して工業
的な大型装置に応用するというスケールアップ化の手法
を採ることが難しいという問題があった。また更にこの
カラム充填型の装置では、気液接触効率が悪いために、
大量の空気曝気か、あるいは大容量の攪拌器を必要とす
るのが普通で、このために発泡や液の飛沫同伴が起こり
易いというような様々な問題が発生していた。In addition, methods in which the immobilized carrier is packed in a column or the like and gas or reaction liquid is passed through it have poor power efficiency, and the inside of the bioreactor is difficult to achieve a complete mixing tank state, so it is difficult to use in a laboratory. There was a problem in that it was difficult to adopt a scale-up method of analyzing the reaction results at the level and applying them to large-scale industrial equipment. Furthermore, this column packed type device has poor gas-liquid contact efficiency, so
They typically require large amounts of air aeration or large-capacity agitators, which can lead to various problems such as foaming and entrainment.
(発明が解決しようとする課題)
本発明は、上記した従来形式のバイオリアクタにおける
問題点を解消するために、微生物。(Problems to be Solved by the Invention) The present invention aims to solve the problems in the conventional bioreactor described above.
酵素を固定した固定化担体を適当な浮遊状態に維持でき
ると共に、該浮遊状態の固定化担体に対し反応液を十分
流通接触させることができる新規な構成のバイオリアク
タを提供するところにある。It is an object of the present invention to provide a bioreactor with a novel configuration in which an immobilized carrier on which an enzyme is immobilized can be maintained in a suitable floating state, and a reaction solution can be brought into sufficient flow contact with the immobilized carrier in the floating state.
また本発明の他の目的は、実験室レベルでの試験の解析
結果に基づいて、スケールアップした工業的な規模の装
置を設計することが容易な構造を有するバイオリアクタ
を提供するところにある。Another object of the present invention is to provide a bioreactor having a structure that makes it easy to design a scaled-up industrial-scale device based on analysis results of laboratory-level tests.
また更に本発明の別の目的は、生物学的に適した環境条
件1反応条件を選択、制御することが容易であるバイオ
リアクタを提供するところにある。Yet another object of the present invention is to provide a bioreactor in which biologically suitable environmental conditions 1 reaction conditions can be easily selected and controlled.
(課題を解決するための手段)
以上のような目的を実現するために、鋭意研究の結果創
成するに至った本発明のバイオリアクタの特徴は、上下
に開放した竪型筒状の内筒と、二〇内筒の周囲を十分t
t 311間を保って囲み、かつ該内筒が十分沈潜する
位置まで内部に液が充填される反応槽外殻としての外筒
と、上記外筒と内筒の間で、酵素又は微生物を固定化し
た固定化担体を浮遊状態で滞留保持可能に設けられた固
定化担体の滞留保持部と、上記内筒の筒内で充填液に内
筒軸方向の流れを生じさせ、この内筒軸方向の液流によ
り該内筒の筒内から湾外を回動する上下方向の循環流を
生じさせる液流発生手段とを備えたという構成をなすと
ころにある。(Means for Solving the Problems) In order to achieve the above objectives, the bioreactor of the present invention, which was created as a result of intensive research, is characterized by a vertical cylindrical inner cylinder that is open at the top and bottom. ,20Enough t around the inner cylinder
Enzymes or microorganisms are immobilized between the outer cylinder as the outer shell of the reaction tank, which is surrounded by a gap between t311 and filled with liquid to the point where the inner cylinder is sufficiently submerged, and the outer cylinder and the inner cylinder. The immobilization carrier retaining part is provided to be able to retain and retain the immobilized carrier in a floating state, and the filling liquid is caused to flow in the axial direction of the inner cylinder within the cylinder of the inner cylinder. and liquid flow generation means for generating a vertical circulation flow rotating from the inside of the inner cylinder to the outside of the bay by the liquid flow.
上記本発明のバイオリアクタは、その運転において、
a、外筒内の圧力をゲージ圧5 kg/crr?・G以
下で稼動すること、
b、外筒の内径りと内筒の内径dの比をd/D =0.
2〜0.6とすること、
C0内筒の内径dと内筒の軸長lの比をA/d≧6とす
ること
のa〜Cの条件の下で運転されることが好ましい場合が
多い。また生物学的反応が好気性条件を要求する場合に
は液中での大きな酸素溶解を与えることが好ましい。こ
のために上記aの条件で装置を運転することが適当する
。In the operation of the bioreactor of the present invention, the pressure inside the outer cylinder is set to a gauge pressure of 5 kg/crr?・It must operate at less than G. b. The ratio of the inner diameter of the outer cylinder to the inner diameter d of the inner cylinder is d/D = 0.
2 to 0.6, and the ratio of the inner diameter d of the C0 inner cylinder to the axial length l of the inner cylinder is A/d≧6. many. Also, when biological reactions require aerobic conditions, it is preferable to provide greater oxygen dissolution in the liquid. For this purpose, it is appropriate to operate the apparatus under the conditions a.
外筒内(装置内)の圧力条件は本発明におけるバイオリ
アクタにおいての本質的問題ではないが、5 kg/c
rr?・G以上では空気圧縮機、培養液等の送入ポンプ
に汎用性のものが使用できなくなる等の問題がある。Although the pressure conditions inside the outer cylinder (inside the device) are not an essential problem in the bioreactor of the present invention,
rr? - If the pressure exceeds G, there are problems such as the inability to use general-purpose air compressors, culture fluid delivery pumps, etc.
また上記外筒の内径りと内筒の内径dの比であるd/D
が0.2以下では内筒的流路が狭くなり吐出流量が抵抗
のために小さくなる問題があり、他方0.6以上では内
筒内に内蔵するインペラが大きくなり経済的でないとい
う問題があるため、装置は上記寸法範囲のものとして構
成されるのが好ましい場合が多い。Also, d/D is the ratio of the inner diameter of the outer cylinder to the inner diameter d of the inner cylinder.
If it is less than 0.2, there is a problem that the inner cylindrical flow path becomes narrow and the discharge flow rate becomes small due to resistance.On the other hand, if it is more than 0.6, the impeller built in the inner cylinder becomes large and there is a problem that it is not economical. Therefore, it is often preferable for the device to be constructed within the above size range.
更にまた内筒の内径dと内筒の軸長りの比である1/d
が6未満では、固定化担体の必要容量が少量になること
や、空気を吹込む際の酸素溶解量が低下する等の問題が
あるため好ましくない。Furthermore, 1/d is the ratio of the inner diameter d of the inner cylinder to the axial length of the inner cylinder.
If it is less than 6, it is not preferable because there are problems such as the required capacity of the immobilization carrier becomes small and the amount of dissolved oxygen decreases when air is blown into the carrier.
本発明において反応槽内に充填される液は、微生物が生
命を維持し、代謝産物の生産を活発に行なうために必要
な栄養源や原料かうなるものが使用される。In the present invention, the liquid filled in the reaction tank is a nutrient source or raw material necessary for microorganisms to maintain life and actively produce metabolites.
また内筒の筒内で充填反応液の内筒軸方向の流れを生じ
させる液流発生手段としては、例えば該内筒内に軸流ポ
ンプを配置する構成の例のものを好ましく例示すること
ができる。In addition, as a liquid flow generation means for generating a flow of the filled reaction liquid in the axial direction of the inner cylinder, a preferable example is one in which an axial flow pump is disposed within the inner cylinder. can.
内筒と外筒の間に形成される固定化担体の滞留部は、例
えばこれら内筒と外筒の間の上下位置に、担体は通過で
きないが液の流れは自由な多孔質板あるいは網体を配置
する等によって形成することができる。The retention area of the immobilized carrier formed between the inner cylinder and the outer cylinder is, for example, a porous plate or net that prevents the carrier from passing through but allows the liquid to flow freely between the inner cylinder and the outer cylinder. It can be formed by arranging, etc.
本発明において微生物又は酵素を担持する固定化担体は
、既知の種々のものを使用することができ、例えば微生
物の培養に使用される寒天培地、合成樹脂製のビーズ状
担体等を例示することができる。In the present invention, various known immobilization carriers supporting microorganisms or enzymes can be used, such as agar media used for culturing microorganisms, bead-shaped carriers made of synthetic resin, etc. can.
固定化担体の滞留部においては、該固定化担体を浮遊状
態として反応槽内の混合特性を完全混合の状態とするこ
とが好ましく、したがってこのためには、上記内筒の筒
内で充填反応液の内筒軸方向の流れを生じさせ、これに
より該内筒の筒内から筒外を回動するように生じさせる
上下方向の循環流を、上記滞留部においては上方に向う
液流として与えることがよい。In the retention section of the immobilized carrier, it is preferable to keep the immobilized carrier in a floating state so that the mixing characteristics in the reaction tank are completely mixed. A circulating flow in the vertical direction that generates a flow in the axial direction of the inner cylinder, thereby rotating from the inside of the inner cylinder to the outside of the cylinder, is provided as an upward liquid flow in the above-mentioned retention part. Good.
(作 用)
本発明は前記の構成をなすことによって、固定化担体と
培養液の接触頻度が効果的に確保でき、生物学的あるい
は生物化学的反応が促進される。また固定化担体の破損
がなく安定持続した反応を継続させることが可能となる
。(Function) By having the above-described structure, the present invention can effectively ensure the frequency of contact between the immobilization carrier and the culture solution, and promote biological or biochemical reactions. Furthermore, it is possible to continue a stable and sustained reaction without damaging the immobilization carrier.
また反応槽内の混合特性が完全混合の状態として得られ
、環境因子の制御、反応結果の解析に基づく装置のスケ
ールアップへの応用が容易化される。Furthermore, the mixing characteristics in the reaction tank can be obtained as a state of complete mixing, which facilitates application to scale-up of the device based on control of environmental factors and analysis of reaction results.
(実施例) 以下本発明を図面に示す実施例に基づいて説明する。(Example) The present invention will be described below based on embodiments shown in the drawings.
第1図は本発明よりなるバイオリアクタの構成概要を概
念的に示したものであり、第2図はこのバイオリアクタ
を二連式に連続させて構成した場合の装置概要を示した
ものである。Figure 1 conceptually shows the configuration of the bioreactor according to the present invention, and Figure 2 shows the outline of the device when two bioreactors are configured in series. .
これらの図で示される例において、バイオリアクタ1の
反応槽の外股を形成している外筒7の内部には、上下に
開放した筒状の内筒8が図示の如く固定的に内装され、
その内筒8の筒内部(以下どれを内側通路33という)
に液流発生装置としての軸流インペラ12が設置されて
いる。この軸流インペラ12の駆動により反応槽内には
図示矢印で示した上下に循環する液流が発生される。In the example shown in these figures, a cylindrical inner cylinder 8 that is open up and down is fixedly installed inside the outer cylinder 7 forming the outer leg of the reaction tank of the bioreactor 1 as shown in the figures. ,
The inside of the inner cylinder 8 (hereinafter referred to as the inner passage 33)
An axial flow impeller 12 as a liquid flow generating device is installed at. By driving this axial flow impeller 12, a liquid flow that circulates up and down as indicated by arrows in the figure is generated in the reaction tank.
反応槽は恒温装置4によって生物学的あるいは生物化学
的な反応を好適に行なわせるに適した環境温度に維持さ
れる。The reaction tank is maintained at an environmental temperature suitable for carrying out biological or biochemical reactions by a constant temperature device 4.
上記内筒8の筒外面と外筒7の内面の間には、上下位置
が多孔質板28で仕切られた微生物(あるいは酵素)の
固定化担体29を滞留保持するための滞留部2が区画形
成され、上記軸流インペラ12により発生された液流に
より該滞留部2には下方から上方に向かって液が流れ、
これにより固定化担体が浮遊して完全混合状態が実現さ
れる。したがって固定化担体(従って固定化された微生
物等)と充填液の接触が良好に確保されることになる。Between the outer surface of the inner tube 8 and the inner surface of the outer tube 7, there is defined a retention section 2 for retaining and retaining a microorganism (or enzyme) immobilization carrier 29, which is partitioned vertically by a porous plate 28. The liquid flows from the bottom to the top in the retention section 2 due to the liquid flow generated by the axial flow impeller 12,
As a result, the immobilized carrier floats and a completely mixed state is achieved. Therefore, good contact between the immobilization carrier (therefore, the immobilized microorganisms, etc.) and the filling liquid is ensured.
なお3は原液流入管、4は反応液の送出管である。また
30は反応槽内の液のpH状態を微生物等の至適環境に
維持するために設けられたpH調整液の注入管を示して
いる。Note that 3 is a stock solution inflow pipe, and 4 is a reaction liquid delivery pipe. Further, 30 indicates a pH adjustment liquid injection pipe provided to maintain the pH state of the liquid in the reaction tank to an optimum environment for microorganisms and the like.
以上の構成概要を有するバイオリアクタによれば、反応
槽内の外筒と内筒の間の通路(以下これを外側通路32
という)である滞留部に保持された微生物等の固定化担
体は、外筒と内筒の間のリング状の間隙部分に浮遊可能
に保持され、下方から上昇する液流により浮遊して完全
混合状態となって液と微生物等との良好な接触が図られ
るどういう効果が得られる。According to the bioreactor having the above configuration outline, the passage between the outer cylinder and the inner cylinder in the reaction tank (hereinafter referred to as the outer passage 32
The immobilized carriers, such as microorganisms, held in the retention part are held in a floating manner in the ring-shaped gap between the outer cylinder and the inner cylinder, and are suspended by the liquid flow rising from below and completely mixed. The effect of this is that good contact between the liquid and microorganisms is achieved.
第2図は上記単槽のバイオリアクタを、三つ連続して配
置した場合の構成を示したものであり、この形式によれ
ば単一種類の固定化された微生物等により生物学的(あ
るいは生物化学的)な反応を行なわせることができるだ
けでなく、必要に応じて異なる種類の微生物等を充填し
た反応槽の組合せとすることもできる特徴がある。Figure 2 shows a configuration in which three of the above-mentioned single-tank bioreactors are arranged in series. According to this format, biological (or Not only is it possible to carry out biochemical reactions, but it is also possible to combine reaction vessels filled with different types of microorganisms, etc., as necessary.
第3図は上記第1図で概念的に示した装置の具体的な構
成を示したものであり、第4図は同装置の液流発生装置
の構成を拡大して示した図、第5図は内筒上部の部分を
拡大して示した図である。Fig. 3 shows the specific configuration of the device conceptually shown in Fig. 1 above, Fig. 4 is an enlarged view of the structure of the liquid flow generating device of the same device, and Fig. 5 The figure is an enlarged view of the upper part of the inner cylinder.
これらの図で示された例のバイオリアクタ1は、竪型円
筒状の外筒フからなる反応槽の内部に、該外筒と同心円
的に上下に開放した竪型円筒状の内筒8が配置され、内
筒周方向に間欠配置された支持兼邪魔板9を介して外筒
フにより固定支持されている。The bioreactor 1 of the example shown in these figures has a vertical cylindrical inner tube 8 that is concentric with the outer tube and opened up and down inside a reaction tank consisting of a vertical cylindrical outer tube. It is fixedly supported by the outer cylinder via support/baffle plates 9 which are arranged intermittently in the circumferential direction of the inner cylinder.
本例の内筒8は、その上下の開放部においてその開放先
端側に向ってベルマウス状(又は円錐状)に形成された
顎部10.11が設けられ、該内筒を通る液流の流れを
スムースとするようにされている。The inner cylinder 8 of this example is provided with a jaw part 10.11 formed in a bell mouth shape (or cone shape) toward the open end side at the upper and lower open parts, and the jaw part 10.11 is formed in a bell mouth shape (or conical shape) to prevent the liquid flow through the inner cylinder. It is designed to make the flow smooth.
12は内筒8の筒内下部に配置された軸流インペラであ
り、槽外のモータ15により回転軸16により第4図の
矢印方向に回転されることで内筒を内を下方に流れる液
流を発生させるようになっている。またこの軸流インペ
ラ12は置型断面をもつ羽根13を備え、ボスの流入側
には流れ羽根にスムースに液を流すために半球状のキャ
ップ14が組付けられている。なお内筒8の内壁面とイ
ンペラの羽根の回転先端との間の間隙δ(第4図参照)
は、液の逆流を防止するために機械的設計において許容
される範囲で可及的に小さくすることが好ましく、具体
的には内筒8の内径dと上記インペラの羽根13の外径
daとの比は、d / d a≦1.01に選定される
ことがよい。Reference numeral 12 denotes an axial flow impeller disposed at the lower part of the inner cylinder 8, which is rotated by a motor 15 outside the tank in the direction of the arrow in FIG. It is designed to generate a flow. The axial flow impeller 12 also includes blades 13 having a flat cross section, and a hemispherical cap 14 is attached to the inflow side of the boss to allow liquid to flow smoothly through the flow blades. Note that the gap δ between the inner wall surface of the inner cylinder 8 and the rotating tip of the impeller blade (see Fig. 4)
is preferably made as small as possible within the allowable range in mechanical design in order to prevent backflow of liquid, and specifically, the inner diameter d of the inner cylinder 8 and the outer diameter da of the impeller blade 13. The ratio of d/d a≦1.01 is preferably selected.
内筒8の上記インペラを包囲する下方部分は、上部と別
体に準備したもの(例えば第4図の符合8′で示したも
の)をパツキン18を介してボルト締め接合等により一
体化する構造としてもよい、このようにすれば、インペ
ラの羽根13を内装する内筒の下方部分のみを精密加工
することで装置の加工等を容易化することができるから
である。なお第4図の符合17で示した部材は、内筒の
周方向に間欠的に配置された内筒支持のための支柱部材
である。The lower part of the inner cylinder 8 that surrounds the impeller has a structure in which a part prepared separately from the upper part (for example, the part indicated by reference numeral 8' in FIG. 4) is integrated by bolting or the like via a packing 18. This is because by doing so, only the lower part of the inner cylinder in which the impeller blades 13 are housed can be precision-machined, thereby facilitating the machining of the device. Note that the member indicated by the reference numeral 17 in FIG. 4 is a strut member for supporting the inner cylinder, which is disposed intermittently in the circumferential direction of the inner cylinder.
20は散気管であり、上記内筒の上部近傍の適当箇所に
配置されて、多数の散気孔からエアを噴出するようにな
っている。これは生物学的(あるいは生物化学的)な反
応が好気性雰囲気で行なわれることが必要な場合に利用
される。Reference numeral 20 denotes an air diffuser pipe, which is arranged at an appropriate location near the top of the inner cylinder and blows out air from a large number of air diffusers. This is used when biological (or biochemical) reactions need to be carried out in an aerobic atmosphere.
21は上記内筒8内の軸流インペラ12の上部位置に配
置された整流板である。この整流板は、この種装置では
渦流が発生し易くその渦流はポンプ効率を低下させるの
で、これを防止するために設けられている。Reference numeral 21 denotes a rectifying plate disposed above the axial flow impeller 12 within the inner cylinder 8. This baffle plate is provided to prevent vortices that tend to occur in this type of device and reduce pump efficiency.
3は反応槽上部の一部に接続された原液流入管、5は反
応槽の下部の一部に接続された反応液の送出管である。Reference numeral 3 designates a stock solution inflow pipe connected to a part of the upper part of the reaction tank, and 5 designates a reaction liquid delivery pipe connected to a part of the lower part of the reaction tank.
なお22は反応槽の天井部に設けられた脱気管であり、
絞り弁23を介して大気に開放されている。そして上記
原液流入管3の上流側に接続される不図示の送液ポンプ
からの送液圧力による加圧、送出管の下流側に接続され
た不図示の絞り弁の絞りにより与えられる液流出量、お
よび上記脱気管22に接続の絞り弁23の絞り程度のバ
ランスで、反応槽内の圧力状態が上述した5kg/cr
rl−G以下の適当な値に設定することができるように
なっている。Note that 22 is a degassing pipe installed on the ceiling of the reaction tank,
It is opened to the atmosphere via a throttle valve 23. Then, the liquid outflow amount is given by pressurization by liquid feeding pressure from a liquid feeding pump (not shown) connected to the upstream side of the stock solution inflow pipe 3, and by the restriction of a throttle valve (not shown) connected to the downstream side of the delivery pipe. , and the balance of the throttle valve 23 connected to the degassing pipe 22, the pressure state inside the reaction tank is 5 kg/cr as mentioned above.
It is possible to set it to an appropriate value below rl-G.
28は固定化担体29を滞留保持するための滞留部を形
成するためのリング状の形状をなしている多孔質板であ
り、外筒フと内筒8の間の上下位置に、仕切りとして配
置されている。この多孔質板は、固定化担体の流通は阻
止するが、液の流通はスムースに許容できる適当な孔が
多数形成されているものである。Reference numeral 28 denotes a ring-shaped porous plate for forming a retention part for retaining and retaining the immobilization carrier 29, and is arranged as a partition at the upper and lower positions between the outer cylinder flap and the inner cylinder 8. has been done. This porous plate has a large number of suitable pores formed therein to prevent the immobilized carrier from flowing through it, but to allow the liquid to flow smoothly therethrough.
なお本例のバイオリアクタにおいては、第5図に示す如
く外筒7内部と内筒8内部の適所の圧力状態を検出する
ためにマノメータ24.25が設置されている。マノメ
ータ24は、外側通路32の内筒上部顎部10と同高位
置の圧力を検出するように設置され、またマノメータ2
5は内筒8の内側通路内においてそ上端から該内筒の内
径d長さ寸法だけ下側に下った位置の圧力を検出するよ
うに設置されている。In the bioreactor of this example, manometers 24 and 25 are installed to detect the pressure conditions at appropriate locations inside the outer cylinder 7 and inside the inner cylinder 8, as shown in FIG. The manometer 24 is installed to detect the pressure at the same height as the inner cylinder upper jaw part 10 of the outer passage 32, and the manometer 24 is
5 is installed in the inner passage of the inner cylinder 8 so as to detect the pressure at a position downward from the upper end by the length dimension of the inner diameter d of the inner cylinder.
以上の構成のバイオリアクタにおいて、生物学的あるい
は生物化学的反応を行なわせるにあたって留意すべき点
は、第1には生化学反応の促進であり、第2には大涜量
を確保することである。In the bioreactor with the above configuration, the points to keep in mind when carrying out biological or biochemical reactions are, firstly, the promotion of the biochemical reaction, and secondly, ensuring a sufficient amount of be.
本例のバイオリアクタにおいてこれらの留意点を好適に
実現するには、例えば第3図における軸流インペラ12
が配置され従って液流の速い内筒8内に散気管20を配
置して、しかもインペラの方向に散気孔を開口させるよ
うにする構成が好ましく採用される。これにより液中に
導入されたエアが単に浮上するのではなく、液中におい
て攪拌作用等を迅速に受けて溶解し、大きな溶存酸素の
状態を確保することができるようになる。また溶存酸素
の量を多くするために反応槽内は加圧下とすることが好
ましい。In order to suitably realize these points in the bioreactor of this example, for example, the axial flow impeller 12 in FIG.
A configuration is preferably adopted in which the air diffuser tube 20 is arranged in the inner cylinder 8 where the liquid flows quickly, and the air diffuser holes are opened in the direction of the impeller. As a result, the air introduced into the liquid does not simply float to the surface, but quickly undergoes a stirring action and dissolves in the liquid, thereby making it possible to maintain a large amount of dissolved oxygen. Further, in order to increase the amount of dissolved oxygen, the inside of the reaction tank is preferably pressurized.
また担体に固定化された微生物等と液との接触を高効率
化するために、液の循環をスムースに行なわせることが
好ましく、このために内筒の開放端部を上述のようにベ
ルマウス(あるいは円錐状)とすることがよい、この内
筒端部のベルマウス等の開きの程度は、内筒下端と反応
槽底との間の距離、内筒上端と液面までの距離のhを、
内筒8の内径dに対し0.37倍以上に設定することが
好ましい場合が多い、 0.37倍以下である場合には
、循環流量がその部分を通過する際に圧力損失が大きく
かかる虞れがある等の問題がある。In addition, in order to improve the efficiency of contact between the microorganisms, etc. immobilized on the carrier and the liquid, it is preferable to circulate the liquid smoothly. The degree of opening of the bell mouth, etc. at the end of the inner cylinder (or a conical shape) is determined by the distance between the lower end of the inner cylinder and the bottom of the reaction tank, and the distance h between the upper end of the inner cylinder and the liquid level. of,
It is often preferable to set the inner diameter d of the inner cylinder 8 to 0.37 times or more. If it is 0.37 times or less, there is a risk that a large pressure loss will occur when the circulating flow rate passes through that part. There are problems such as
また流量を最大限に確保しつつ、効率をできるだけ高く
し動力を節減するには、上記第3図の構成のバイオリア
クタにおいてはインペラ12を高効率軸流インペラとし
て設計し、比速度(rpm −J (m”/win)
/ m ” )が 900〜3000(D置型断面を
有するものとすることがよい。In addition, in order to maximize efficiency and save power while ensuring maximum flow rate, the impeller 12 in the bioreactor configured as shown in Fig. 3 is designed as a high-efficiency axial flow impeller, and the specific speed (rpm - J (m”/win)
/m'') is preferably 900 to 3000 (having a D-type cross section).
実施例1
(スィートツルガム搾汁液からのし一乳酸の生a)(固
定化担体(ゲルビーズ)の調整)
ラクトバシルス カゼイ バラエティ カゼイ(Lac
tobacJllus casej var case
i )をブリックス(Br1gg5)培地で37℃、2
0時間嫌気培養し、その培養液1容に対し、アルギン酸
ナトリウム2.5を液9容を加え、塩化カルシウム5%
溶液に滴下して3〜4mmφの球状ゲルビーズとした。Example 1 (Preparation of lactic acid from sweet turgsum juice) (Preparation of immobilization carrier (gel beads)) Lactobacillus casei Variety casei (Lac
tobacJllus casej var case
i) in Brix (Br1gg5) medium at 37°C for 2
After culturing anaerobically for 0 hours, add 2.5 volumes of sodium alginate to 1 volume of the culture solution, and add 9 volumes of sodium alginate and 5% calcium chloride.
It was added dropwise to the solution to form spherical gel beads with a diameter of 3 to 4 mm.
(装置仕様)
第4図のバイオリアクタを第1図の仕様で、下記の通り
に構成した。(Device specifications) The bioreactor shown in Fig. 4 was configured as shown below with the specifications shown in Fig. 1.
1槽の容量 800aj!ゲルピース容量
150mA
ゲルピース空陳率 0.77
ゲルビース直径 3〜4mlφ軸流ボンプ:ゲ
ッチンゲン型3枚羽根
羽根径 40mm
回転数 0〜1100rp
運転条件:滞留時間 6.Ohr
H7
温度 35℃
以上の条件で乳酸の生成を行ないその結果を下記表1に
示した。Capacity of 1 tank: 800aj! Gel piece capacity 150mA Gel piece emptying rate 0.77 Gel bead diameter 3~4mlφ Axial flow pump: Göttingen type 3 blades Blade diameter 40mm Rotation speed 0~1100rp Operating conditions: Residence time 6. Lactic acid was produced under Ohr H7 temperature conditions of 35° C. or higher, and the results are shown in Table 1 below.
表 1
以上の結果を、軸流ポンプの周速と、L−乳酸生成速度
の関係として第6図に示した。Table 1 The above results are shown in FIG. 6 as a relationship between the circumferential speed of the axial flow pump and the L-lactic acid production rate.
軸流ポンプはポンプ相似則により周速と吐出量が比例す
ることから、ゲルビーズと培養液との接触回数が比例す
ることになり、上記表1および第6図からも、L−乳酸
生成速度は軸流ポンプの周速に略比例して定量的な制御
が可能なことが理解できる。Since the circumferential speed and discharge volume of an axial flow pump are proportional to each other according to the pump similarity law, the number of times of contact between the gel beads and the culture medium is proportional, and from Table 1 and Figure 6 above, the L-lactic acid production rate is It can be seen that quantitative control is possible in approximately proportion to the circumferential speed of the axial pump.
実施例2
(スィートツルガム搾汁液からのし一乳酸の生産)上記
実施例1に比べて、装置仕様を第2図の二連式に変更し
た以外は同様の条件でL−乳酸の生成を行なった。Example 2 (Production of L-lactic acid from sweet turgid juice) Compared to Example 1 above, production of L-lactic acid was carried out under the same conditions as in Example 1 except that the equipment specifications were changed to the dual system shown in Figure 2. I did it.
牛の結果を実施例1と対比して下記第2表に示した。The results for cattle are shown in Table 2 below in comparison with Example 1.
表 2
上記表2の通り、路間−の反応条件を保持させた場合に
おいては、はとんでし−乳酸生成速度は変化することな
く同一の性能が継続時間400h「に渡って得ることが
できた。Table 2 As shown in Table 2 above, when the reaction conditions during the reaction were maintained, the same performance could be obtained over a duration of 400 h without any change in the production rate of lactic acid. Ta.
このことより、単一楢の試験で性能を把握すればスケー
ルアップが容易に行なえることが分る。This shows that scale-up can be easily done if the performance is understood by testing a single oak.
このことは、従来、ジャーファーメンタでの性能試験を
確認してもパイロットテスト、コマーシャルテストがそ
れぞれの段階で必要とされていた、ことと比べて極めて
装置設計の容易なことを意味し、工業的規模での装置設
計を実験質レベルで十分確認できる利点と合せてその有
用性は極めて大きい。This means that equipment design is extremely easy compared to the conventional method, which required pilot tests and commercial tests at each stage even after confirming the performance test with Jarfermenta. Combined with the advantage that equipment design on a large scale can be fully confirmed at the experimental quality level, its usefulness is extremely large.
実施例3
(酵母:サツカロミセス ルキシー(鉦匹り皿と−ce
s rouxii ) :細胞の固定化菌体を用いた酢
酸の生産)
サツカロミセス ルキシー(旦匹■p
rouxii)をYM−培地で培養し、その培養液1容
に対し、実施例1と同様に球状ゲルビーズを調整した。Example 3 (Yeast: Satucharomyces luxii
s rouxii): production of acetic acid using immobilized bacterial cells) Saccharomyces rouxii (Danmu s rouxii) was cultured in YM-medium, and spherical gel beads were added to 1 volume of the culture solution in the same manner as in Example 1. adjusted.
次に、グルコース3%、硫酸アンモニウム0.5%、リ
ン酸二カリウム0.085%、リン酸−カリウム0.0
15%、硫酸マグネシウム0.05%、およびビタミン
、無機イオン等の微量成分からなる培地(p)15.
5)を使用し、実施例1の装置仕様で散気管20からエ
アを吹き込みながら酢酸の生産を行なった。その結果を
下記表3および第7図に示した。Next, glucose 3%, ammonium sulfate 0.5%, dipotassium phosphate 0.085%, potassium phosphate 0.0
Medium (p) consisting of 15% magnesium sulfate, 0.05% magnesium sulfate, and trace components such as vitamins and inorganic ions.15.
5), acetic acid was produced using the equipment specifications of Example 1 while blowing air from the aeration pipe 20. The results are shown in Table 3 below and FIG.
表 3
一般に、好気性菌を利用したバイオリアクタにおいては
、呼吸が溶存酸素(Do)の影響を受けることが多い。Table 3 Generally, in bioreactors using aerobic bacteria, respiration is often affected by dissolved oxygen (Do).
特に固定化反応系では、固定化材によって反応がD O
’IIA度に律速される傾向は一層大きくなる。In particular, in immobilized reaction systems, the immobilizing material inhibits the reaction
'The tendency to be rate-limited by IIA degrees will become even greater.
ところで上記表3および第7図で示された本実施例3の
結果からは、固定化酵母細胞を用いて酢酸の生成を行な
い、その反応槽内の圧力を変化させた場合に、圧力状態
に略比例して酢酸の生成が得られることが分る。By the way, the results of Example 3 shown in Table 3 and Figure 7 above show that when acetic acid is produced using immobilized yeast cells and the pressure inside the reaction tank is changed, the pressure state It can be seen that acetic acid is produced approximately proportionally.
これは溶存酸素濃度Doと圧力の関係をみると、その圧
力に対するDOの濃度勾配△CはΔC=C5−CI
で与えられ、ここで
Cs寓飽和り。This is because when looking at the relationship between dissolved oxygen concentration Do and pressure, the concentration gradient ΔC of DO with respect to that pressure is given by ΔC=C5-CI, where Cs is saturated.
C1−運転り。C1-Driving.
の式より、Csは反応槽内の圧力に比例して太きなるこ
とから、結果的に
酸素供給能力 ■ 圧力
となり、必然的にバイオリアクタ内に圧力に応じた量の
酸素を供給することができ、酢酸の生成速度が圧力に比
例することになるのである。According to the formula, Cs increases in proportion to the pressure inside the reaction tank, so as a result, the oxygen supply capacity becomes ■ pressure, and it is inevitable that an amount of oxygen can be supplied into the bioreactor according to the pressure. This means that the rate of acetic acid production is proportional to pressure.
本実施例3の結果からは、反応槽内の圧力を高くするこ
とにより、同一バイオリアクタで生産量を大きくするこ
とができることが分る他、第3図で示した例の装置では
、軸流インペラとエア吹き込み位置との関係を好適に設
定することで溶存酸素量を大きくできるようにしている
ので、吹き込み強度を大きくすることが不要ないしその
必要度合を小さくでき−1したがって従来装置において
問題となっていた発泡、飛沫同伴が可及的に少なくなり
、工業的装置として極めて有用性が高いものであること
を示している。The results of Example 3 show that the production volume can be increased in the same bioreactor by increasing the pressure inside the reaction tank. Since the amount of dissolved oxygen can be increased by setting the relationship between the impeller and the air blowing position appropriately, it is not necessary to increase the blowing strength, or the degree of necessity can be reduced. This shows that the foaming and droplet entrainment that had previously occurred have been reduced as much as possible, making it extremely useful as an industrial device.
(発明の効果)
以上述べた如く、本発明よりなるバイオリアクタは、微
生物、酵素を固定した固定化担体を反応液を攪拌流動さ
せる液流発生機構と固定化担体の滞留部が区画されてい
るため、固定下担体を損傷することなくこれを適当な浮
遊状態に維持して長期に安定した反応を行なわせること
ができ、また該浮遊状態の固定化担体に対し反応液を十
分流通接触させることかで包で反応容積効率が高いとい
う効果が得られる。(Effects of the Invention) As described above, the bioreactor according to the present invention is divided into a liquid flow generation mechanism that stirs and flows a reaction solution through an immobilized carrier on which microorganisms and enzymes are immobilized, and a retention area for the immobilized carrier. Therefore, it is possible to maintain the immobilized carrier in an appropriate floating state without damaging it and carry out a stable reaction over a long period of time, and also to allow the reaction solution to flow sufficiently into contact with the immobilized carrier in the floating state. The effect of high reaction volumetric efficiency can be obtained by using a large-sized container.
また、反応槽内の液の流動特性は、内筒に内で軸方向の
液流を発生させる液流発生機である例えば軸流ポンプの
相似則に支配されるので、小さなジャーファーメンタに
よる実験室レベルでの試験の解析結果を基づいて、スケ
ールアップした装置を設計することが容易であり、工業
的な規模の装置設計が容易かっ、精密に行なえるという
効果もある。In addition, the flow characteristics of the liquid in the reaction tank are governed by the law of similarity of an axial flow pump, which is a liquid flow generator that generates an axial liquid flow in an inner cylinder, so experiments using a small jar fermentor were conducted. It is easy to design a scaled-up device based on the analysis results of laboratory-level tests, and it also has the effect that it is easy to design an industrial-scale device and can be performed precisely.
また更に、本発明よりなる反応槽内の混合特性は、循環
混合流の完全混合槽であり、反応制御因子を同一条件に
調整することが容易で、微生物学的に適した反応条件を
選択するのに適しているという効果も得られる。Furthermore, the mixing characteristics in the reaction tank according to the present invention are that it is a complete mixing tank with a circulating mixed flow, and it is easy to adjust reaction control factors to the same conditions, and select microbiologically suitable reaction conditions. It also has the effect of being suitable for
第1図は本発明よりなるバイオリアクタの構成概要を概
念的に示したものであり、第2図はこのバイオリアクタ
を二連式に連続させて構成した場合の装置概要を示した
ものである。
第3図は上記第1図で概念的に示した装置の具体的な構
成を示したものであり、第4図は同装置の液流発生装置
の構成を拡大して示した図、第5図は内筒上部の部分を
拡大して示した図である。
第6図は実施例1におけるし一乳酸生成速度と軸流イン
ペラの回転数の関係を示した図、第7図は実施例3にお
ける酢酸生成速度と反応禮内圧力の関係を示した図であ
る。
1:バイオリアクタ 2:滞留部(間隙)3:流入管
4:恒温装置
5:送出管 6:絞り弁
7:外筒 8:内筒
9:支持兼邪魔板 10. jl:顎部12:軸流イ
ンペラ 13:羽根
14:半球状キャップ 15:モータ
16二回転軸 17:支柱部材18:パツキン
19:散気孔
20:散気管 21:整流板
22:脱気管 23:絞り弁
24.25:マノメータ 26:外側通路27:内側通
路 28:支持板
29:固定化担体 30: pH調整液注入管第
3図
鵬4図
第5図
g 遠C”7L/5ec)
第6図Figure 1 conceptually shows the configuration of the bioreactor according to the present invention, and Figure 2 shows the outline of the device when two bioreactors are configured in series. . Fig. 3 shows the specific configuration of the device conceptually shown in Fig. 1 above, Fig. 4 is an enlarged view of the structure of the liquid flow generating device of the same device, and Fig. 5 The figure is an enlarged view of the upper part of the inner cylinder. Figure 6 is a diagram showing the relationship between the lactic acid production rate and the rotation speed of the axial flow impeller in Example 1, and Figure 7 is a diagram showing the relationship between the acetic acid production rate and the pressure inside the reaction chamber in Example 3. be. 1: Bioreactor 2: Retention part (gap) 3: Inflow pipe
4: Constant temperature device 5: Delivery pipe 6: Throttle valve 7: Outer cylinder 8: Inner cylinder 9: Support and baffle plate 10. jl: Jaw 12: Axial flow impeller 13: Blade 14: Hemispherical cap 15: Motor 16 two-rotation shaft 17: Support member 18: Packing 19: Air diffuser hole 20: Air diffuser pipe 21: Straightening plate 22: Deaeration pipe 23: Throttle Valve 24, 25: Manometer 26: Outer passage 27: Inner passage 28: Support plate 29: Immobilization carrier 30: pH adjustment liquid injection tube
Claims (1)
を十分な隙間を保って囲み、かつ該内筒が十分沈潜する
位置まで内部に液が充填される反応槽外殻としての外筒
と、上記外筒と内筒の間で、酵素又は微生物を固定化し
た固定化担体を浮遊状態で滞留保持可能に設けられた固
定化担体の滞留保持部と、上記内筒の筒内で充填液に内
筒軸方向の流れを生じさせ、この内筒軸方向の液流によ
り該内筒の筒内から筒外を回動する上下方向の循環流を
生じさせる液流発生手段と、を備えたことを特徴とする
生物反応装置。 2 発生する液流が、固定化担体の滞留保持部内を下方
から上方に流れることを特徴とする請求項1に記載の生
物反応装置。[Claims] 1. A vertical cylindrical inner cylinder that is open at the top and bottom, surrounding this inner cylinder with a sufficient gap, and filled with liquid to the point where the inner cylinder is sufficiently submerged. an outer cylinder as an outer shell of a reaction tank, and an immobilization carrier retaining part provided between the outer cylinder and the inner cylinder so that the immobilization carrier on which enzymes or microorganisms are immobilized can be retained in a floating state. , causing the filling liquid to flow in the axial direction of the inner cylinder within the cylinder of the inner cylinder, and this liquid flow in the axial direction of the inner cylinder generates a vertical circulation flow that rotates from the inside of the inner cylinder to the outside of the cylinder. A biological reaction device characterized by comprising: a liquid flow generating means for generating a liquid flow. 2. The biological reaction device according to claim 1, wherein the generated liquid flow flows from below to above within the retention section of the immobilization carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63039248A JPH0659210B2 (en) | 1988-02-22 | 1988-02-22 | Bioreactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63039248A JPH0659210B2 (en) | 1988-02-22 | 1988-02-22 | Bioreactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01215276A true JPH01215276A (en) | 1989-08-29 |
JPH0659210B2 JPH0659210B2 (en) | 1994-08-10 |
Family
ID=12547830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63039248A Expired - Lifetime JPH0659210B2 (en) | 1988-02-22 | 1988-02-22 | Bioreactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0659210B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050823A1 (en) * | 2002-12-02 | 2004-06-17 | Council Of Scientific And Industrial Research | Porous vessel bioreactor |
CN114276979A (en) * | 2021-12-29 | 2022-04-05 | 上海日泰医药设备工程有限公司 | Animal cell culture method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023834A (en) * | 1983-07-19 | 1985-02-06 | Seiko Instr & Electronics Ltd | Production of matrix type multicolor display device |
JPS62269680A (en) * | 1986-05-16 | 1987-11-24 | Chiyoda Seisakusho:Kk | Cultivation apparatus |
-
1988
- 1988-02-22 JP JP63039248A patent/JPH0659210B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023834A (en) * | 1983-07-19 | 1985-02-06 | Seiko Instr & Electronics Ltd | Production of matrix type multicolor display device |
JPS62269680A (en) * | 1986-05-16 | 1987-11-24 | Chiyoda Seisakusho:Kk | Cultivation apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050823A1 (en) * | 2002-12-02 | 2004-06-17 | Council Of Scientific And Industrial Research | Porous vessel bioreactor |
US7198941B2 (en) * | 2002-12-02 | 2007-04-03 | Council Of Scientific And Industrial Research | Porous vessel bioreactor |
CN114276979A (en) * | 2021-12-29 | 2022-04-05 | 上海日泰医药设备工程有限公司 | Animal cell culture method |
CN114276979B (en) * | 2021-12-29 | 2024-05-14 | 上海日泰医药设备工程有限公司 | Animal cell culture method |
Also Published As
Publication number | Publication date |
---|---|
JPH0659210B2 (en) | 1994-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4978616A (en) | Fluidized cell cultivation process | |
US6001642A (en) | Bioreactor and cell culturing processes using the bioreactor | |
US4649114A (en) | Oxygen permeable membrane in fermenter for oxygen enrichment of broth | |
US5075234A (en) | Fermentor/bioreactor systems having high aeration capacity | |
RU2607782C1 (en) | Bioreactor for growing methane-recycling microorganisms | |
US7628528B2 (en) | Pneumatic bioreactor | |
RU2580646C1 (en) | Fermentation apparatus for methane-assimilating microorganisms | |
US4906574A (en) | Fermenting device for the culture of aerobic micro-organisms | |
CA1305681C (en) | Fluidized bioreactor and cell cultivation process | |
WO2003057818A2 (en) | Process and apparatus for performing a gas-sparged reaction | |
CN101985600A (en) | Turnover membrane bioreactor for use in micro-gravity environment | |
US4840905A (en) | Process for culturing biological material | |
WO2019162971A1 (en) | An improved aeration system for bioreactor, fermenter and process vessel | |
US8409854B2 (en) | Bioreactor provided with equipment with flexible walls | |
US4643972A (en) | Method and apparatus for multiphase contacting between gas, solid and liquid phases | |
US20120295248A1 (en) | Systems and methods for dynamic gas control in a disposable vessel | |
JP2776723B2 (en) | Stirred fermenter | |
JPH01215276A (en) | Bioreactor | |
CN217628345U (en) | Microbial high-density fermentation metering feed supplement distribution system | |
CN213447165U (en) | Integrated rotary stirring filter for cell culture | |
RU2363729C1 (en) | Apparatus for suspension cultivation of tissue or microorganism cells | |
RU2585666C1 (en) | Device for cultivation of methane-oxidising microorganisms | |
JP2775161B2 (en) | Liquid flow biochemical reactor | |
RU2099413C1 (en) | Apparatus for suspension cultivation of tissue cells or microorganisms | |
JPS6387971A (en) | Centrifugal membrane type fermentaion apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |