JPH01215079A - Pulse laser oscillator - Google Patents

Pulse laser oscillator

Info

Publication number
JPH01215079A
JPH01215079A JP3955388A JP3955388A JPH01215079A JP H01215079 A JPH01215079 A JP H01215079A JP 3955388 A JP3955388 A JP 3955388A JP 3955388 A JP3955388 A JP 3955388A JP H01215079 A JPH01215079 A JP H01215079A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
preionization
discharge
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3955388A
Other languages
Japanese (ja)
Inventor
Koichi Yasuoka
康一 安岡
Toru Tamagawa
徹 玉川
Hiromichi Kono
広道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3955388A priority Critical patent/JPH01215079A/en
Publication of JPH01215079A publication Critical patent/JPH01215079A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce the residual inductance of a preionization circuit and then to shorten the charging time of a peaking capacitor for increasing a laser oscillation efficiency by connecting each preionization electrode to an inductance element, as well as to increase the preionization electron density and then to increase the stability of glow discharging for gaining a high output laser by making effective use of ultraviolet rays generated by spark discharging. CONSTITUTION:On the surface of one principal electrode 2 facing the other principal electrode 1, several holes 12 are made uniformly. Between the principal electrodes 1 and 2, a peaking capacitor 5 is connected. A high-speed high-voltage pulse generator and a preionization common electrode 10 are connected. Several preionization electrodes 3 are located at equal spaces 4, facing the common electrode 10. Each of the preionization electrodes 3 is connected to the capacitor 5 through a shunt inductance 6. Gas flow 9 circulates between the principal electrodes 1 and 2. On the inner area of the holes 12, high optical electron radiation efficiency material 13 is applied.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、パルスレーザ発振装置に係り、特に。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a pulsed laser oscillation device, and particularly to a pulsed laser oscillation device.

その電極構造に関するものである。This relates to its electrode structure.

(従来の技術) 一般にレーザ発振を得るためには、レーザ媒質中での空
間的に均一な放電の発生を必要とするが、TEACO□
レーザやTEMACO□レーザ等のパルスレーザ発振装
置では、その動作圧力が散気圧もの高圧力であるため、
上記の放電は集束し、アーク放電になりやすい、これを
防止するために、主放電に先立って予備電離を行うのが
普通である。
(Prior art) Generally, in order to obtain laser oscillation, it is necessary to generate a spatially uniform discharge in the laser medium, but TEACO□
In pulsed laser oscillation devices such as lasers and TEMACO□ lasers, the operating pressure is as high as the diffused pressure.
The above-mentioned discharge tends to focus and become arc discharge, and to prevent this, it is common to perform preliminary ionization prior to the main discharge.

第4図は、従来のパルスレーザ発振装置の一例を示すも
のであ0、第5図にその回路構成図を模式第4図に示し
たように、レーザ媒質中に配置される一方の主電極1に
対向する位置に、網状の他゛方の主電極2が配設され、
前記主電極2の背面に主電極長手方向に、複数個の予備
電離電極3が適当な間隔のギャップ4を隔てて直列に配
設され。
FIG. 4 shows an example of a conventional pulsed laser oscillation device, and FIG. 5 shows a schematic diagram of its circuit configuration. As shown in FIG. The other main electrode 2 in the form of a net is arranged at a position opposite to the main electrode 1,
A plurality of pre-ionization electrodes 3 are arranged in series on the back surface of the main electrode 2 in the longitudinal direction of the main electrode with gaps 4 at appropriate intervals.

また、前記予備電離電極3の列は主電極長手方向と直行
する方向に複数列(第4図では2列)、配設されている
。前記予備電離電極3の列は図示していない高速高電圧
パルス発生電源と分流用インダクタンス6を介しで接続
されており、他端はピーキングコンデンサ5に接続され
ている。またピーキングコンデンサ5は主電極1と網状
の主電極2の間に接続されている。レーデ発振装置の風
胴内にはレーザガス循環用の送風装置があって、これに
よりガス流9が生じ、主電極1と主電極2とで作る放電
空間を通過する。更に、対向する2つの主電極1.2の
長手方向両端部には図示していない光共振器が配設され
、レーザ光が出力される。
Further, a plurality of rows (two rows in FIG. 4) of the pre-ionization electrodes 3 are arranged in a direction perpendicular to the longitudinal direction of the main electrode. The row of pre-ionization electrodes 3 is connected to a high-speed, high-voltage pulse generation power source (not shown) via a shunt inductance 6, and the other end is connected to a peaking capacitor 5. Furthermore, the peaking capacitor 5 is connected between the main electrode 1 and the net-shaped main electrode 2. In the wind barrel of the Rade oscillator, there is a blower for circulating the laser gas, which generates a gas flow 9 that passes through the discharge space formed by the main electrodes 1 and 2. Furthermore, optical resonators (not shown) are disposed at both ends in the longitudinal direction of the two opposing main electrodes 1.2, and laser light is output.

この様に構成された従来のパルスレーザ発振装置の動作
を第5図により説明する。コンデンサC1を高電圧に充
電しておきスイッチ11を閉しると高速パルス電圧(=
HVパルス)が発生し、分流用インダクタンス6に印加
される0分流用インダクタンス6は、予備電離電極列が
複数個ある場合に電流が均等に分流する目的で取り付け
られている。
The operation of the conventional pulsed laser oscillation device configured in this way will be explained with reference to FIG. When capacitor C1 is charged to a high voltage and switch 11 is closed, a high-speed pulse voltage (=
The 0-division inductance 6, in which the HV pulse) is generated and applied to the diversion inductance 6, is installed for the purpose of equally dividing the current when there are a plurality of pre-ionization electrode arrays.

HVパルス電流は分流用インダクタンス6→予備電離電
極3→ギヤツプ4→ピーキングコンデンサ5の順に流れ
る。ピーキングコンデンサ5が充電される過程で、予備
電離電極3間のギャップ4でスパーク放電が点弧して紫
外線7が発生し、主電極1,2間のレーザガスを照射す
る。この紫外線によってレーザガスが光電離されて電子
が生成され、主電極1.2間が予備電離−れる、ピーキ
ングコンデンサ5の電圧はこの過程で上昇していくが、
主電極1,2間の電圧が、レーザガスの放電破壊電圧以
上になると主電極1.2間が放電破壊し、グロー放電8
が点弧する。このグロー放電8によりレーザガスは励起
されて、レーザ光が発生する。
The HV pulse current flows in the order of shunt inductance 6 → pre-ionization electrode 3 → gap 4 → peaking capacitor 5. In the process of charging the peaking capacitor 5, a spark discharge is ignited in the gap 4 between the pre-ionization electrodes 3 to generate ultraviolet rays 7, which irradiate the laser gas between the main electrodes 1 and 2. The laser gas is photoionized by this ultraviolet ray, electrons are generated, and the space between the main electrodes 1 and 2 is pre-ionized.The voltage of the peaking capacitor 5 increases during this process.
When the voltage between main electrodes 1 and 2 exceeds the discharge breakdown voltage of the laser gas, discharge breakdown occurs between main electrodes 1 and 2, and glow discharge 8
fires. This glow discharge 8 excites the laser gas and generates laser light.

(発明が解決しようとする課題) しかしながら、上述した従来のパルスレーザ発振装置に
おいては、 コンデンサC1とピーキングコンデンサ5
間のインダクタンスは1分流用のインダクタンス6以外
に直列接続した予備電離電極3列の残留インダクタンス
や、配線の残留インダクタンスによっても増し、ピーキ
ングコンデンサ5を充電するHVパルスの立ち上がり速
度が制限されていた。HVパルスの立ち上がり速度が遅
いと、ギャップ4が放電破壊して紫外線の照射が開始さ
れてからグロー放電8が点弧するまでの時間間隔が大き
くなり、この間に光電離によって生じた電子が再結合に
より失われて主放電開始時の電子密度が低いため、放電
電流の立ち上がり速度が低くなり、放電の励起強度が低
かった。また、網状の主電極2の開孔率を高めるほど、
主電極1.2間を照射する紫外線強度は増すが、グロー
放電電流が主電極2の表面上で大きく収縮されることに
なるので、グロー放電が収縮してアーク放電になる限界
電流値が低くなるという問題があった。
(Problem to be Solved by the Invention) However, in the conventional pulse laser oscillation device described above, the capacitor C1 and the peaking capacitor 5
In addition to the inductance 6 for the one-way shunt, the inductance between them increases due to the residual inductance of the three rows of pre-ionization electrodes connected in series and the residual inductance of the wiring, which limits the rise speed of the HV pulse that charges the peaking capacitor 5. If the rising speed of the HV pulse is slow, the time interval from when the gap 4 is destroyed by discharge and ultraviolet irradiation starts until the glow discharge 8 is ignited becomes long, and during this time, electrons generated by photoionization recombine. As a result, the electron density at the start of the main discharge was low, resulting in a low discharge current rise rate and a low discharge excitation intensity. Furthermore, the higher the porosity of the net-like main electrode 2, the more
Although the intensity of ultraviolet rays irradiated between the main electrodes 1 and 2 increases, the glow discharge current is greatly contracted on the surface of the main electrode 2, so the critical current value that causes the glow discharge to contract and become an arc discharge is low. There was a problem.

また、ピーキングコンデンサ5が充電されていく過程で
、陰極近傍の電子は、主電極1,2、間の電界により移
動し、陰極近傍の電子が欠乏するという問題があった。
Further, in the process of charging the peaking capacitor 5, electrons near the cathode move due to the electric field between the main electrodes 1 and 2, causing a problem that electrons near the cathode become depleted.

このため、主放電開始時に陰極近傍で放電不安定性が発
生し易かった。
Therefore, discharge instability was likely to occur near the cathode at the start of the main discharge.

以上述べた理由から、従来の方式では残留インダクタン
スによりレーザガスの励起強度が低いためレーザ発振効
率が低いだけでなく、放電不安定性によって、注入可能
電力が制限され大出力レーザ発振が行えないという問題
があった。
For the reasons mentioned above, in the conventional method, not only is the laser oscillation efficiency low because the excitation intensity of the laser gas is low due to residual inductance, but also the injectable power is limited due to discharge instability, making it impossible to perform high-output laser oscillation. there were.

そこで、本発明は以上の欠点を除去するために提案され
たもので、その目的は、予備電離回路の残留インダクタ
ンスを減少させて、ピーキングコンデンサの充電時間を
短縮させてレーザ発振効率を高め、また、スパーク放電
により発生する紫外線を有効利用して、予備電離電子密
度を高めてグロー放電の安定性を高め、大出力レーザ光
を得ることができるパルスレーザ電極を提供することに
ある。
Therefore, the present invention was proposed to eliminate the above-mentioned drawbacks, and its purpose is to reduce the residual inductance of the preionization circuit, shorten the charging time of the peaking capacitor, and increase laser oscillation efficiency. Another object of the present invention is to provide a pulsed laser electrode that can effectively utilize ultraviolet rays generated by spark discharge to increase the density of pre-ionized electrons, improve the stability of glow discharge, and obtain high-output laser light.

(発明の構成〕 (課題を解決するための手段) 本発明のパルスレーザ電極は、一方の主電極と対向する
位置に複数の開孔部を有する他方の主電極を配置し、前
記他方の主電極の裏面近傍に複数の予備電離電極を設け
、前記予備電離回路各々と高速高電圧パルス発生器との
間に分流用インダクタンスを接続しかつ前記開孔部を有
する主電極の厚み方向表面に光電子放射能率の大きい材
料を塗布する様に構成したものである。
(Structure of the Invention) (Means for Solving the Problems) A pulsed laser electrode of the present invention includes a main electrode having a plurality of openings disposed at a position facing one main electrode, and a pulse laser electrode of the present invention. A plurality of pre-ionization electrodes are provided near the back surface of the electrode, a shunt inductance is connected between each of the pre-ionization circuits and a high-speed high-voltage pulse generator, and photoelectrons are provided on the surface in the thickness direction of the main electrode having the opening. It is constructed to apply a material with high radioactivity.

(作用) 上のような構成を有する本発明によれば、前記高速高電
圧パルス発生器と前記予備電離電極間を多数の分流イン
ダクタンスで接続しているため回路の残留インダクタン
スが低減でき、主電極間に加ねるパルス電圧の周波数が
高くなって、放電が安定するだけでなく、前記主電極の
開孔部内面に塗布した光電子放射能率の高い材料の効果
によって予備電離電極間のギャップで発生した紫外線に
より多量の電子が主電極の近傍に生じ、主電極間に電圧
が印加される過程で電極近傍の電子欠乏がおこりにくく
安定した大電力パルス放電が可能になり、大出力レーザ
光を発生できる。
(Function) According to the present invention having the above configuration, since the high-speed high-voltage pulse generator and the pre-ionization electrode are connected by a large number of shunt inductances, the residual inductance of the circuit can be reduced, and the main electrode Not only does the frequency of the pulse voltage applied between the electrodes become higher, which stabilizes the discharge, but also pre-ionization occurs in the gap between the electrodes due to the effect of the material with high photoelectron emission efficiency applied to the inner surface of the opening of the main electrode. A large amount of electrons are generated near the main electrode by ultraviolet rays, and in the process of applying voltage between the main electrodes, electron depletion near the electrodes is unlikely to occur, making stable high-power pulse discharge possible and generating high-output laser light. .

(実施例) 以下本発明の一実施例を第1図、第2図および第3図に
基すい−て具体的に説明する。
(Example) An example of the present invention will be specifically described below with reference to FIGS. 1, 2, and 3.

本実施例においては、第1図に示したように、一方の主
電極1に対向する位置に他方の主電極2が配設され、主
電極2の表面には、複数の開孔部12が均等に開けられ
ている。主電極1.2間にはピーキングコンデンサ5が
接続される構成となっている0図示していない高速高電
圧パルス発生器と予備電離共通電極lOは接続され、こ
の予備電離共通電極10と等しいギヤツブ4間隔で複数
の予備電離電極3が対向配置されている。前記予備電離
電極3はそれぞれ分流用インダクタンス6を介してピー
キングコンデンサ5に接続されている。主電極1.2間
にはガス流9が循環する。第2図に主電極2の開孔部1
2近傍を拡大して詳細に示す。
In this embodiment, as shown in FIG. 1, the other main electrode 2 is disposed at a position opposite to one main electrode 1, and a plurality of openings 12 are formed on the surface of the main electrode 2. It is evenly opened. A peaking capacitor 5 is connected between the main electrodes 1 and 2. A high-speed high-voltage pulse generator (not shown) and a pre-ionization common electrode 10 are connected, and the same gear as the pre-ionization common electrode 10 is connected. A plurality of preliminary ionization electrodes 3 are arranged facing each other at four intervals. The pre-ionization electrodes 3 are each connected to a peaking capacitor 5 via a shunt inductance 6. A gas stream 9 circulates between the main electrodes 1.2. Figure 2 shows the opening 1 of the main electrode 2.
The two neighborhoods are enlarged and shown in detail.

即ち主電極2に複数ある開孔部12の内面上には光電子
放射能率の高い材料1例えば、Rb−Te系やCs1.
CsBrなどが塗布されている。
That is, on the inner surface of the plurality of openings 12 in the main electrode 2, a material 1 having high photoelectron radiation efficiency, such as Rb-Te, Cs1.
CsBr or the like is coated.

この様な構成を有する本実施例のパルスレーザ電極の作
用を第2図、及び第3図で説明する。第3図において、
 コンデンサC,を高電圧に充電しておきスイッチ11
を閉じると、高速高電圧パルスが主電極1と予備電離共
通電極10に加わる。Loは回路の残留インダクタンス
を表す、高速高電圧パルスが加わると、予備電離共通電
極lOと予備電離電極3との間のギャップ4でスパーク
放電が生じ紫外線7が発生する。各予備電離電極3に接
続された分流用インダクタンスの作用で、各ギャップ4
に等しい電流が流れ、主放電空間は主電極2上の開孔部
12を通過してきた紫外線により、主電極長手方向に均
等に照射される。ギャップ4に流れた電流はピーキング
コンデンサ5を充電し、主電極1.2間に電圧が加わる
。主電極1,2間の電圧が放電開始電圧以上になると放
電が開始し。
The operation of the pulsed laser electrode of this embodiment having such a configuration will be explained with reference to FIGS. 2 and 3. In Figure 3,
Charge the capacitor C to a high voltage and switch 11.
When closed, a fast high voltage pulse is applied to the main electrode 1 and the pre-ionization common electrode 10. Lo represents the residual inductance of the circuit. When a fast high voltage pulse is applied, a spark discharge occurs in the gap 4 between the pre-ionization common electrode lO and the pre-ionization electrode 3 and ultraviolet light 7 is generated. By the action of the shunt inductance connected to each preionization electrode 3, each gap 4
A current equal to 2 flows, and the main discharge space is uniformly irradiated in the longitudinal direction of the main electrode by ultraviolet rays that have passed through the apertures 12 on the main electrode 2. The current flowing through the gap 4 charges the peaking capacitor 5, and a voltage is applied between the main electrodes 1 and 2. When the voltage between the main electrodes 1 and 2 becomes equal to or higher than the discharge starting voltage, discharge starts.

グロー放電8が生ずる。予備電離電極3を多数個用いる
ことによって、分流インダクタンスの並列インピーダン
スは非常に小さくなり、ピーキングコンデンサ5の電圧
立ち上がり速度は早くなる。
A glow discharge 8 occurs. By using a large number of pre-ionization electrodes 3, the parallel impedance of the shunt inductance becomes extremely small, and the voltage rise speed of the peaking capacitor 5 becomes faster.

このため、紫外線照射から主放電開始までの時間間隔が
短くなり、再結合によって失われる電子数が少なく、主
放電開始時の電子数は高く保たれている。また、第2図
に示すように、ギャップ4で生じた紫外線7は開孔部1
2を通過して主放電空間内のレーザガスを照射して、予
備電離を行うだけでなく、開孔部の内面13を照射して
光電子放射能率の高い材料13の効果により電子eを開
孔部12の表面に多数発生させる。多孔式の主電極2の
極性を陰極にしておけば、開孔部12で生じた電子eは
主電極1.2間の電界によって引かれて主放電空間には
いる。ピーキングコンデンサ′5が充電されていく過程
で陰極近傍の電子は、主電極1,2間の電界により移動
し、陰極近傍の電子が欠乏するのが従来電極構造では起
こっていたが、本発明では光電子放射能率の高い材料1
3の効果により陰極近傍の電子欠乏が起こりにくく、主
放電開始時に放電不安定性が発生しない、また、光電子
放射材料を最適に選定すると、ギャップ4のスパーク放
電から発生する紫外線7だけでなく、よりエネルギーの
低い長波長の光によっても電子を生成できるので、紫外
線のみによりレーザガスを光電離させて予備電離する従
来方式に比較して、予備電離電子数は1桁以上多くなる
。よって放電安定性は高く、大電力密度放電が可能にな
る。
Therefore, the time interval from ultraviolet irradiation to the start of main discharge is shortened, the number of electrons lost due to recombination is small, and the number of electrons at the start of main discharge is kept high. In addition, as shown in FIG. 2, the ultraviolet rays 7 generated in the gap 4 are
2 and irradiates the laser gas in the main discharge space to not only perform preliminary ionization, but also irradiate the inner surface 13 of the aperture to generate electrons e by the effect of the material 13 with high photoelectron radiation efficiency. A large number of them are generated on the surface of 12. If the polarity of the porous main electrode 2 is set to cathode, the electrons e generated in the opening 12 are attracted by the electric field between the main electrodes 1 and 2 and enter the main discharge space. In the process of charging the peaking capacitor '5, electrons near the cathode move due to the electric field between the main electrodes 1 and 2, and electrons near the cathode become depleted in the conventional electrode structure, but in the present invention, this occurs. Materials with high photoelectron radioactivity 1
Due to the effect of 3, electron deficiency in the vicinity of the cathode is less likely to occur, and discharge instability does not occur at the start of the main discharge.In addition, if the photoelectron emitting material is optimally selected, not only the ultraviolet rays 7 generated from the spark discharge in the gap 4, but also the Since electrons can be generated even with low-energy, long-wavelength light, the number of pre-ionized electrons increases by one order of magnitude or more compared to the conventional method in which the laser gas is photoionized and pre-ionized using only ultraviolet rays. Therefore, discharge stability is high and high power density discharge is possible.

〔発明の効果〕〔Effect of the invention〕

以上のように1本発明のパルスレーザ発振装置によれば
、多数個の予備電離電極を並列接続しているので、予備
電離回路のインダクタンスが減少し、ピーキングコンデ
ンサの充電時間が短縮するのでレーザ発振効率が高まり
、また、スパーク放電により発生する紫外線およびより
長波長の光線を有効利用して陰極近傍の電子密度を高め
てグロー放電開始時の放電安定性を高め、効率よく大出
カレーザ光を得ることができるパルスレーザ発振装置を
提供することができる。
As described above, according to the pulsed laser oscillation device of the present invention, since a large number of pre-ionization electrodes are connected in parallel, the inductance of the pre-ionization circuit is reduced, and the charging time of the peaking capacitor is shortened, so that laser oscillation is possible. Efficiency is increased, and the electron density near the cathode is increased by effectively utilizing ultraviolet rays and longer wavelength light rays generated by spark discharge, increasing discharge stability at the start of glow discharge and efficiently obtaining large-scale laser light. It is possible to provide a pulsed laser oscillation device that can perform

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のパルスレーザ発振装置の一実施例を示
す斜視図、第2図は本発明のパルスレーザ発振装置の要
部の詳細を示す斜視図、第3図は同概略構成図、第4図
は従来のパルスレーザ発振装置を示す斜視図、第5図は
同概略構成図である。 1.2・・・主電極   3・・・予備電離電極4・・
・ギャップ  5・・・ピーキングコンデンサ6・・・
分流用インダクタンス  7・・・紫外光8・・・グロ
ー放電   9・・・ガス流lO・・・予備電離共通電
極  11・・・スイッチ12・・・開孔部     
13・・・光電子放射材料代理人 弁理士 則 近 憲
 佑 同  第子丸 健 第1図 第2図。 第3図 第4図 第5図
FIG. 1 is a perspective view showing an embodiment of the pulsed laser oscillation device of the present invention, FIG. 2 is a perspective view showing details of the main parts of the pulsed laser oscillation device of the present invention, and FIG. 3 is a schematic configuration diagram of the same, FIG. 4 is a perspective view showing a conventional pulse laser oscillation device, and FIG. 5 is a schematic configuration diagram thereof. 1.2... Main electrode 3... Pre-ionization electrode 4...
・Gap 5...Peaking capacitor 6...
Diversion inductance 7... Ultraviolet light 8... Glow discharge 9... Gas flow lO... Pre-ionization common electrode 11... Switch 12... Opening part
13...Photoelectron emission material agent Patent attorney Nori Ken Yudo Chika Ken Daishimaru Figure 1 Figure 2. Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  一方の主電極と、前記一方の主電極と対向して配置さ
れた複数の開口部を有する他方の主電極と、前記他方の
主電極裏面近傍に複数の予備電離電極を設けたものに於
て、前記予備電離電極それぞれにインダクタンス素子を
接続したパルスレーザ発振装置。
One main electrode, the other main electrode having a plurality of openings arranged opposite to the one main electrode, and a plurality of pre-ionization electrodes provided near the back surface of the other main electrode. , a pulsed laser oscillation device in which an inductance element is connected to each of the pre-ionization electrodes.
JP3955388A 1988-02-24 1988-02-24 Pulse laser oscillator Pending JPH01215079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3955388A JPH01215079A (en) 1988-02-24 1988-02-24 Pulse laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3955388A JPH01215079A (en) 1988-02-24 1988-02-24 Pulse laser oscillator

Publications (1)

Publication Number Publication Date
JPH01215079A true JPH01215079A (en) 1989-08-29

Family

ID=12556259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3955388A Pending JPH01215079A (en) 1988-02-24 1988-02-24 Pulse laser oscillator

Country Status (1)

Country Link
JP (1) JPH01215079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256391A (en) * 1991-02-08 1992-09-11 Toshiba Corp Pulse laser electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256391A (en) * 1991-02-08 1992-09-11 Toshiba Corp Pulse laser electrode

Similar Documents

Publication Publication Date Title
US4390992A (en) Plasma channel optical pumping device and method
US4509176A (en) Longitudinal-discharge-pulse laser with preionization obtained by corona effect
CA1168744A (en) Plasma-recombination laser having high power output
JPH01215079A (en) Pulse laser oscillator
JP2772147B2 (en) Pulsed laser electrode
JP2734191B2 (en) Laser device
JPH01151277A (en) Pulse laser electrode
JPS6321882A (en) Excimer laser
JPS6281077A (en) X-ray automatically preionizing, discharge type laser
JP2753088B2 (en) Pulse gas laser oscillator
JPH05121812A (en) Highly-repetitive pulse laser electrode
JP3432854B2 (en) Pulse gas laser oscillator
JPH0494180A (en) Gas laser oscillator
JPH0318752B2 (en)
JPH0254978A (en) Pulse laser oscillator
JP3190084B2 (en) Gas laser equipment
JPH02103979A (en) Pulsed-laser oscillating apparatus
JPS63227073A (en) Highly repetitive pulse laser electrode
JP2685930B2 (en) Gas laser device
JPH02105477A (en) Pulsed laser oscillator
JPH0263176A (en) Pulse laser oscillator
JPH057042A (en) Gas laser apparatus
JPH01152679A (en) Pulse laser electrode
JPS63229772A (en) Highly repetitive pulse laser oscillator
JPH05206553A (en) Pulsed laser electrode