JPH01214784A - Magnetism detector and bias-magnetic-field setting method for said detector - Google Patents

Magnetism detector and bias-magnetic-field setting method for said detector

Info

Publication number
JPH01214784A
JPH01214784A JP63040084A JP4008488A JPH01214784A JP H01214784 A JPH01214784 A JP H01214784A JP 63040084 A JP63040084 A JP 63040084A JP 4008488 A JP4008488 A JP 4008488A JP H01214784 A JPH01214784 A JP H01214784A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
bias
bias magnetic
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63040084A
Other languages
Japanese (ja)
Inventor
Shigemi Kurashima
茂美 倉島
Shinkichi Shimizu
信吉 清水
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63040084A priority Critical patent/JPH01214784A/en
Publication of JPH01214784A publication Critical patent/JPH01214784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To reduce an exclusive area for a signal processing circuits of magnetoresistance elements and a bias magnetic field and to make an apparatus compact and light, by providing the magnetoresistance elements and conductor patterns on a substrate incorporating a magnetic conductor for forming the bias magnetic field. CONSTITUTION:Magnetoresistance elements 11 are barber-pole type magnetoresistance elements utilizing a ferromagnetic thin film such as Permalloy or a pair of magnetoresistance elements utilizing the Hall effect of a semiconductor element. A substrate 12 is constituted by laminating the following materials: an insulating layer 22 of a heat oxide film or the like having insulating property; an aluminum material 211 having good heat conductivity as a heat radiating layer 21; and a ferrite material 200 that is thinly formed magnetic body 20. Conductor patterns 13 are signal processing circuits 131 of the magnetoresistance elements 11 comprising the following parts: a voltage amplifier for amplifying the changing part of magnetoresistance; its protecting circuit; a comparing and operating circuit for comparing a known amount and an amount to be measured; and the like. In this way, a magnetism detector can be made compact and light. Initial magnetization is made possible for a thinly formed magnetic body. An external magnetic field is fixed, and a desired bias magnetic field can be obtained.

Description

【発明の詳細な説明】 〔概要〕 磁気検出装置及びそのバイアス磁界設定方法。[Detailed description of the invention] 〔overview〕 Magnetic detection device and its bias magnetic field setting method.

特に、磁気カードの透磁率等の磁気を検出する磁気抵抗
素子とその動作点を設定するバイアス(は界を与える方
法に関し、 該磁気抵抗素子の信号処理回路及びバイアス磁界に係る
占有面積を少なくして、小型化、軽量化を図ることを目
的とし、 その装置をバイアス磁界を作る磁性体を含む基板上に、
磁気抵抗素子と、導体パターンとを具備することを含み
構成し、 その方法を磁気抵抗素子の動作点を設定するバイアス磁
界に、磁性体を外部磁界により磁化して成ることを含み
構成する。
In particular, regarding the magnetoresistive element that detects magnetism such as the magnetic permeability of a magnetic card, and the method of applying a bias (field) that sets its operating point, it is necessary to reduce the area occupied by the signal processing circuit of the magnetoresistive element and the bias magnetic field. With the aim of making the device smaller and lighter, the device is mounted on a substrate containing a magnetic material that creates a bias magnetic field.
The present invention includes a magnetoresistive element and a conductor pattern, and the method includes magnetizing a magnetic body with an external magnetic field in a bias magnetic field that sets an operating point of the magnetoresistive element.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気検出装置及びそのバイアス磁界設定方法に
関するものであり、磁気カードの透磁率等の磁気を検出
する磁気抵抗素子とその動作点を設定するバイアス磁界
を与える方法に関するものである。
The present invention relates to a magnetic detection device and a bias magnetic field setting method thereof, and more particularly, to a magnetoresistive element for detecting magnetism such as magnetic permeability of a magnetic card, and a method for applying a bias magnetic field to set the operating point of the magnetoresistive element.

〔従来の技術〕[Conventional technology]

第7図は、従来例の磁気抵抗素子のバイアス磁界に係る
説明図である。
FIG. 7 is an explanatory diagram regarding the bias magnetic field of a conventional magnetoresistive element.

同図(a)は、磁気検出装置の模式図であり、図におい
て、1は強磁性薄膜を利用したバーバーポール型磁気抵
抗素子、2a、2bは該磁気抵抗素子lにバイアス磁界
L+を与える磁石であり、永久磁石や電磁石等である。
FIG. 2(a) is a schematic diagram of a magnetic detection device. In the figure, 1 is a barber-pole magnetoresistive element using a ferromagnetic thin film, and 2a and 2b are magnets that apply a bias magnetic field L+ to the magnetoresistive element l. These are permanent magnets, electromagnets, etc.

なお、バイアス磁界Hblは数〔0,〕を越える検出方
向に垂直な磁界(被測定対象の検出方向磁界H,8)に
より磁気抵抗素子の出力が反転するのを防止し、その動
作点を設定するための磁界である。3は磁気を帯びてい
る被測定対象であり、例えば透磁率を有する磁気カード
等である。なお、磁気検出装置は磁気検出原理を利用し
て位置を検出したり、電流を検出したりする機能を存し
ている。
Note that the bias magnetic field Hbl prevents the output of the magnetoresistive element from being reversed due to a magnetic field perpendicular to the detection direction exceeding several [0,] (detection direction magnetic field H, 8 of the object to be measured), and sets its operating point. It is a magnetic field for Reference numeral 3 indicates a magnetic object to be measured, such as a magnetic card having magnetic permeability. Note that the magnetic detection device has a function of detecting a position or detecting a current using magnetic detection principles.

また、同図中の円内は磁気抵抗素子1の磁界分布を示す
ベクトル図である。図において、Moは磁気抵抗素子l
の自発磁化、Hb Iは磁石2a、2bの作るバイアス
磁界、H−は、被測定対象の作る検出方向磁界を示して
いる。なお、バイアス磁界H、、は自発磁化M0に対し
て平行(χ軸方向)に与えられる。
Furthermore, the circle in the figure is a vector diagram showing the magnetic field distribution of the magnetoresistive element 1. In the figure, Mo is a magnetoresistive element l
, Hb I represents the bias magnetic field created by the magnets 2a and 2b, and H- represents the detection direction magnetic field created by the object to be measured. Note that the bias magnetic field H, is applied parallel to the spontaneous magnetization M0 (in the χ axis direction).

また、磁気抵抗素子の原理は、自発磁化と電流のなす角
度により抵抗値が変化するもので、検出方向は界H,*
に略比例する電圧を出力するものである。
The principle of a magnetoresistive element is that the resistance value changes depending on the angle formed between spontaneous magnetization and current, and the detection direction is the field H, *
It outputs a voltage approximately proportional to .

同図(b)は、別の磁気検出装置の模式図であり、図に
おいて、4は半導体素子のホール効果を利用した一対の
磁気抵抗素子、5は磁石、6は被測定対象である。また
、同図の円内において、H,、は検出方向磁界、HbR
はバイアス磁界である。
FIG. 2B is a schematic diagram of another magnetic detection device. In the figure, 4 is a pair of magnetoresistive elements that utilize the Hall effect of a semiconductor element, 5 is a magnet, and 6 is an object to be measured. Also, in the circle in the same figure, H,, is the magnetic field in the detection direction, HbR
is the bias magnetic field.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来例によれば第7図に示すように磁気抵抗素
子1や4の動作点を設定するバイアス磁界Hbl+ H
bRは磁石2a、2b又は5により与えられ、磁気抵抗
素子1や4の信号処理は別に設けられた信号処理回路に
より行っている。
By the way, according to the conventional example, as shown in FIG.
bR is given by the magnets 2a, 2b, or 5, and signal processing of the magnetoresistive elements 1 and 4 is performed by a separately provided signal processing circuit.

このため、磁気抵抗素子にバイアス磁界Hb + +I
(bzを与える磁石やその信号処理回路の占を面積が多
くなり、全体として磁気検出装置の大型化。
Therefore, a bias magnetic field Hb + +I is applied to the magnetoresistive element.
(The area of the magnet that provides bz and its signal processing circuit increases, making the magnetic detection device larger as a whole.

重量化を招く。This results in weight gain.

これにより、従来例の構造では薄片化、軽量化ができな
いという問題がある。
As a result, there is a problem in that the structure of the conventional example cannot be made thinner or lighter.

本発明は、かかる従来例の問題点に鑑み創作されたもの
であり、磁気抵抗素子の信号処理回路及びバイアス磁界
に係る占有面積を少なくして、小型化、軽量化を図るこ
とを可能とする磁気検出装置及びそのバイアス磁界設定
方法の堤供を目的とする。
The present invention was created in view of the problems of the conventional example, and makes it possible to reduce the area occupied by the signal processing circuit and bias magnetic field of the magnetoresistive element, thereby making it possible to reduce the size and weight. The purpose is to provide a magnetic detection device and its bias magnetic field setting method.

〔課題を解決するための手段] 本発明の磁気検出装置及びそのバイアス磁界設定方法は
その原理図を第1図、その一実施例を第2〜6図に示す
ようにその装置をバイアス磁界H,,,H,,又はHb
Sを作る磁性体20を含む基板12上に、磁気抵抗素子
11と、導体パターン13とを具備することを特徴とし
、 その方法を磁気抵抗素子11の動作点を設定するバイア
ス磁界Hbx* Hha又はHbSに磁性体20を外部
磁界H0により磁化して成ることを特徴とし、上記目的
を達成する。
[Means for Solving the Problems] The magnetic detection device and the bias magnetic field setting method of the present invention are as shown in FIG. 1 for its principle diagram and in FIGS. ,,,H, or Hb
The method is characterized in that a magnetoresistive element 11 and a conductor pattern 13 are provided on a substrate 12 including a magnetic material 20 that creates a magnetic field S, and a bias magnetic field Hbx* Hha or The magnetic body 20 of HbS is magnetized by an external magnetic field H0, and the above object is achieved.

〔作用〕[Effect]

本発明の磁気検出装置によれば、磁気抵抗素子とその信
号処理回路等の導体パターンとは、バイアス磁界を作る
磁性体を含む基板上に設けられている。
According to the magnetic detection device of the present invention, the magnetoresistive element and its conductor pattern, such as a signal processing circuit, are provided on a substrate containing a magnetic material that creates a bias magnetic field.

このため、従来のバイアス磁界を与える永久磁石に比べ
てその占有面積を少なくすること、また磁性体を薄片化
することができる。これにより磁気検出装置を小型化、
軽量化することが可能となる。
Therefore, compared to conventional permanent magnets that provide a bias magnetic field, the occupied area can be reduced, and the magnetic material can be made into thin pieces. This makes the magnetic detection device smaller and
It becomes possible to reduce the weight.

また本発明のバイアス磁界設定方法によれば、バイアス
磁界は、磁性体を外部磁界によって磁化している。
Further, according to the bias magnetic field setting method of the present invention, the bias magnetic field magnetizes the magnetic body by an external magnetic field.

このため、薄く形成された磁性体に初am化をすること
や、外部磁界を固定化することにより従来と同様な所望
のバイアス磁界を得ることが可能となる。
For this reason, it is possible to obtain a desired bias magnetic field similar to the conventional one by subjecting a thinly formed magnetic body to initial atomization or by fixing the external magnetic field.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明をす
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1〜6図は、本発明の実施例に係る磁気検出装置及び
そのバイアス磁界設定方法の説明図であり、第1図は本
発明の実施例に係る磁気検出装置の原理図を示している 図において、11は磁気抵抗素子であり、パーマロイ(
NiFe)等の強磁性薄膜を利用したバーバーポール型
磁気抵抗素子やTnSb、 GaAs等の半導体素子の
ホール効果を利用した一対の磁気抵抗素子等である。
1 to 6 are explanatory diagrams of a magnetic detection device and its bias magnetic field setting method according to an embodiment of the present invention, and FIG. 1 shows a principle diagram of the magnetic detection device according to an embodiment of the present invention. In the figure, 11 is a magnetoresistive element, which is permalloy (
These include a barber-pole type magnetoresistive element that uses a ferromagnetic thin film such as NiFe, and a pair of magnetoresistive elements that utilize the Hall effect of a semiconductor element such as TnSb or GaAs.

12は、tIA縁層22、放熱層21及び磁気抵抗素子
の動作点を設定するバイアス磁界を与える磁性体20か
ら成る基板である。13は導体パターンであり、これ等
により磁気検出装置の原理を構成する。
Reference numeral 12 denotes a substrate consisting of a tIA edge layer 22, a heat dissipation layer 21, and a magnetic material 20 that provides a bias magnetic field to set the operating point of the magnetoresistive element. 13 is a conductor pattern, which constitutes the principle of the magnetic detection device.

第2図は本発明の第1の実施例に係る磁気検出装置の構
造図を示している。
FIG. 2 shows a structural diagram of a magnetic detection device according to a first embodiment of the present invention.

図において、基板12は絶縁性を有する熱酸化膜等の絶
縁It’!22と、放熱層21として熱伝達性の良いア
ルミ系材料211等と、薄く形成した磁性体20にフェ
ライト材料200 (保磁力1Ic3koe程度)を積
層することにより構成されている。なお他に磁性20に
は酸化鉄にBaやSrを含有したものがある。
In the figure, a substrate 12 is an insulating material such as a thermal oxide film having an insulating property. 22, an aluminum material 211 having good heat conductivity as the heat dissipation layer 21, and a ferrite material 200 (coercive force of about 1 Ic3 koe) layered on a thin magnetic body 20. In addition, there are other magnetic materials 20 containing Ba or Sr in iron oxide.

またアルミ系材料211は熱膨張等の関係からフェライ
ト材料200t−挟み込むサイドゥイチ構造を成し、磁
気抵抗素子11の抵抗体からの発熱に対する放熱特性の
向上を図っている。
Further, the aluminum material 211 forms a sidewall structure in which the ferrite material 200t is sandwiched between the aluminum material 211 due to thermal expansion, etc., in order to improve heat dissipation characteristics against heat generated from the resistor of the magnetoresistive element 11.

また、導体パターンBは、磁気抵抗素子11の信号処理
回路131等であり、例えば磁気抵抗の変化分を増幅す
る電圧増幅回路やその保護回路、その自発磁化M、を形
成する定電流回路、既知量と被測定量とを比較する比較
演算回路、温度等の測定条件を校正する校正回路等であ
る。
Further, the conductor pattern B is a signal processing circuit 131 of the magnetoresistive element 11, etc., and includes, for example, a voltage amplification circuit that amplifies a change in magnetoresistance, a protection circuit thereof, a constant current circuit that forms the spontaneous magnetization M, and a known These include a comparison calculation circuit that compares a quantity with a measured quantity, a calibration circuit that calibrates measurement conditions such as temperature, etc.

これ等により第1の実施例に係る磁気検出装置を構成す
る。
These components constitute the magnetic detection device according to the first embodiment.

第3図は、本発明の第2の実施例に係る磁気検出装置の
構成図を示している。
FIG. 3 shows a configuration diagram of a magnetic detection device according to a second embodiment of the present invention.

図において、11は第1の実施例と同様に磁気抵抗素子
である。また、基Fi、12は第1の実施例と異なり、
磁性体20及び放熱層21の両性質を兼ね備えた鉄系材
料121と、信号処理回路131を絶縁する絶縁M22
と、バイアス磁界を与える固定磁石14とにより構成さ
れている。なお、鉄系材料121と絶縁層22との二層
構造は、ホーロー材のような構造等である。
In the figure, 11 is a magnetoresistive element similar to the first embodiment. Moreover, the group Fi, 12 is different from the first example,
An insulator M22 that insulates the iron-based material 121 that has both the properties of the magnetic body 20 and the heat dissipation layer 21 and the signal processing circuit 131
and a fixed magnet 14 that provides a bias magnetic field. Note that the two-layer structure of the iron-based material 121 and the insulating layer 22 is a structure similar to enamel material.

また、固定磁石14は圧延性の良いFe−Cr−Co磁
石や加工性の良いAj2−Ni−Co磁石等である。な
お、信号処理回路131の機能は第1の実施例と同様で
ある。また、基板面積を調整することにより一様々なバ
イアス磁界を発生することができる。これ等により第2
の実施例に係る磁気検出装置を構成する。
Further, the fixed magnet 14 is a Fe-Cr-Co magnet with good rollability, an Aj2-Ni-Co magnet with good workability, or the like. Note that the function of the signal processing circuit 131 is the same as in the first embodiment. Moreover, various bias magnetic fields can be generated by adjusting the substrate area. Due to this, the second
A magnetic detection device according to an embodiment is constructed.

このようにして、磁気抵抗素子11とその信号処理回路
131等の導体パターン13とをバイアス磁界を作る磁
性体20を含む基板12上に設けている。
In this way, the magnetoresistive element 11 and its conductor pattern 13 such as the signal processing circuit 131 are provided on the substrate 12 that includes the magnetic body 20 that creates a bias magnetic field.

このため磁性体20を薄片化することによって、従来の
バイアス磁界を与える永久磁石に比べて占有面積を少な
くすることができ、磁気検出装置を小型化、軽量化する
ことが可能となる。
Therefore, by making the magnetic body 20 thin, it can occupy a smaller area than a conventional permanent magnet that provides a bias magnetic field, and the magnetic detection device can be made smaller and lighter.

第4図は、本発明の第1の実施例に係る磁気検出装置の
第1のバイアス磁界設定方法の説明図である。
FIG. 4 is an explanatory diagram of the first bias magnetic field setting method of the magnetic detection device according to the first embodiment of the present invention.

図において、磁気抵抗素子11のバイアス磁界Hb+は
まず、外部磁界11゜を有する磁石、例えば電61コイ
ル等に電流を通じて形成する電磁石等により例えば、I
ffff抗抵抗素子発磁化M0と平行(X軸方向)に磁
性体20を初期磁化する(同図(a))。
In the figure, the bias magnetic field Hb+ of the magnetoresistive element 11 is first generated by a magnet having an external magnetic field of 11°, such as an electromagnet formed by passing a current through an electric coil, etc.
ffff The magnetic body 20 is initially magnetized in parallel (in the X-axis direction) to the magnetization M0 of the anti-resistance element (FIG. 2(a)).

その後、電磁石等を取り去って、磁性体2oの保磁力H
0、すなわち磁気抵抗素子11に対するバイアス磁界H
b3とする。なお、HIIMは例えば透磁率μを有する
被測定対象15の作る検出方向磁界である。これにより
、磁気抵抗素子に従来と同様にバイアス磁界Hb3を与
えることができる。
After that, the electromagnet etc. are removed and the coercive force H of the magnetic body 2o is
0, that is, the bias magnetic field H for the magnetoresistive element 11
Let it be b3. Note that HIIM is, for example, a magnetic field in the detection direction created by the object to be measured 15 having magnetic permeability μ. Thereby, the bias magnetic field Hb3 can be applied to the magnetoresistive element in the same way as in the conventional case.

第5図は本発明の第1の実施例に係る磁気検出装置の第
2のバイアス磁界設定方法の説明図である。
FIG. 5 is an explanatory diagram of a second bias magnetic field setting method for the magnetic detection device according to the first embodiment of the present invention.

図において、第2のバイアス磁界設定方法は、第1のバ
イアス磁界設定方法と異なり、共通基板16上に設けら
れた固定磁石17により外部磁界H0を取り去ることな
く永続的に供給し、磁気抵抗素子11のバイアス磁界H
b4を得ている。これは、磁性体20の保磁力H0が小
さい場合に有効な手段である。
In the figure, unlike the first bias magnetic field setting method, the second bias magnetic field setting method permanently supplies the external magnetic field H0 without removing it by a fixed magnet 17 provided on the common substrate 16, and 11 bias magnetic field H
I got b4. This is an effective means when the coercive force H0 of the magnetic body 20 is small.

これにより第1のバイアス磁界設定方法と同様に、磁気
抵抗素子1にバイアス磁界H44を与えることができる
Thereby, the bias magnetic field H44 can be applied to the magnetoresistive element 1 similarly to the first bias magnetic field setting method.

第6図は本発明の第2の実施例に係る磁気検出装置のバ
イアス磁界設定方法の説明図である。
FIG. 6 is an explanatory diagram of a bias magnetic field setting method for a magnetic detection device according to a second embodiment of the present invention.

図において、例えばInSb等の半導体素子のホール効
果を利用した一対の磁気抵抗素子11の場合は被測定対
象15の検出方向磁界HIIXに対して、平行にバイア
ス磁界H□を与えている。なお、バイアス磁界)(bs
は、圧延可能なFe−Cr7C。
In the figure, in the case of a pair of magnetoresistive elements 11 that utilize the Hall effect of a semiconductor element such as InSb, a bias magnetic field H□ is applied in parallel to the detection direction magnetic field HIIX of the object to be measured 15. Note that the bias magnetic field) (bs
is rollable Fe-Cr7C.

磁石等を薄片化し、磁性体20を有する基板12に積層
して固定磁化することにより与えられる。
It is provided by making a magnet or the like into a thin piece, laminating it on the substrate 12 having the magnetic material 20, and fixing the magnetization.

これにより、磁気抵抗素子11にバイアス磁界Hいを与
えることが可能となる。
This makes it possible to apply a bias magnetic field H to the magnetoresistive element 11.

このようにして、バーバーポール型磁性FII+’2や
InSbの半導体素子の磁気抵抗素子11とその信号処
理回路等の導体パターン13とはバイアス磁界l(1,
〜Hいを作るCn性体20を含む基板12上に設けられ
ている。
In this way, the bias magnetic field l(1,
It is provided on a substrate 12 containing a Cn material 20 that produces ~H.

このため、例えばフェライト200や鉄系材料121等
の磁性体20を薄片化することによって、従来のバイア
ス磁界を与える永久In石に比べて、その占有面積を少
なくすることができ、磁気検出装置を小型化、軽量化す
ることが可能となる。
Therefore, by making the magnetic material 20, such as ferrite 200 or iron-based material 121, into a thin section, the area it occupies can be reduced compared to permanent indium stone that provides a conventional bias magnetic field, and the magnetic detection device can be It becomes possible to reduce the size and weight.

また、本発明のバイアス磁界設定方法によれば、バイア
ス磁界Hb3〜Hいは磁性体20を外部磁界H0によっ
て磁化している°。
Further, according to the bias magnetic field setting method of the present invention, the bias magnetic fields Hb3 to H or the magnetic body 20 are magnetized by the external magnetic field H0.

このため、藩く形成された磁性体20に初期磁化をする
ことや外部磁界H0を固定化することにより、従来と同
様な所望のバイアス磁界Hb3〜115.を得ることが
可能となる。
Therefore, by initial magnetizing the thinly formed magnetic body 20 and fixing the external magnetic field H0, the desired bias magnetic field Hb3 to 115. It becomes possible to obtain.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、磁気抵抗素子のバ
イアス磁界を導体パターンと磁性体とを含む基板により
与えることが可能となる。
As explained above, according to the present invention, it is possible to apply a bias magnetic field of a magnetoresistive element by a substrate including a conductor pattern and a magnetic material.

このため、磁気抵抗素子や信号処理回路を同一基板に構
成でき、これにより磁気検出装置の軽量化、小型化及び
薄片化を図ることが可能となる。
Therefore, the magnetoresistive element and the signal processing circuit can be formed on the same substrate, thereby making it possible to reduce the weight, size, and thickness of the magnetic detection device.

また本発明によれば放熱層にアルミ系材料を用いている
ので磁気抵抗素子の信号処理回路等の放熱特性を向上さ
せることが可能となる。
Further, according to the present invention, since an aluminum-based material is used for the heat dissipation layer, it is possible to improve the heat dissipation characteristics of the signal processing circuit of the magnetoresistive element, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る磁気検出装置の原理図
、 第2図は、本発明の第1の実施例に係る磁気検出装置の
構造図、 第3図は、本発明の第2の実施例に係るC〃磁気検出装
置構造図、 第4図は、本発明の第1の実施例の磁気検出装置の第1
のバイアス磁界設定方法に係る説明図、第5図は、本発
明の第1の実施例の磁気検出装置の第2のバイアス磁界
設定方法に係る説明図、第6図は、本発明の第2の実施
例の磁気検出装置のバイアス磁界設定方法に係る説明図
、第7図は、従来例の6n気抵抗素子のバイアス磁界に
係る説明図である。 (符号の説明) 1.4.11・・・磁気抵抗素子、 2a、2b、5,14.L7・・・In石(固定(n石
)、3.6.15・・・被測定対象、 12・・・基板、 13・・・導体パターン、 20・・・磁性体、 21・・・放熱層、 22・・・絶縁層、 121・・・鉄系材料、 131・・・信号処理回路、 200・・・フェライト材料、 211・・・アルミ系材料、 16・・・共通基板、 Hい〜Ls・・・バイアス磁界、 Mo・・・自発磁化、 Ho・・・検出方向磁界、 Ho・・・外部磁界。 侃ろ私51P1図      当44  図〔ニド−1
5 0ニー5 1でへろあ押固     =4 6   固在tqこi
’!fC!乞にへ46−T%f’、3ffiベイ17ス
JXk−*+=(k ’1SiE”l’EA第7図 ′
FIG. 1 is a principle diagram of a magnetic detection device according to an embodiment of the present invention. FIG. 2 is a structural diagram of a magnetic detection device according to a first embodiment of the present invention. C〃Magnetic detection device structure diagram according to Embodiment 2 of the present invention, FIG.
FIG. 5 is an explanatory diagram relating to the second bias magnetic field setting method of the magnetic detection device according to the first embodiment of the present invention, and FIG. FIG. 7 is an explanatory diagram of the bias magnetic field setting method of the magnetic detection device according to the embodiment, and FIG. 7 is an explanatory diagram of the bias magnetic field of the conventional 6n resistive element. (Explanation of symbols) 1.4.11... Magnetoresistive element, 2a, 2b, 5, 14. L7... In stone (fixed (n stone)), 3.6.15... Object to be measured, 12... Substrate, 13... Conductor pattern, 20... Magnetic material, 21... Heat radiation Layer, 22... Insulating layer, 121... Iron-based material, 131... Signal processing circuit, 200... Ferrite material, 211... Aluminum-based material, 16... Common substrate, H~ Ls...bias magnetic field, Mo...spontaneous magnetization, Ho...detection direction magnetic field, Ho...external magnetic field.
5 0 knee 5 Heloa press with 1 = 4 6 fixed tqkoi
'! fC! 46-T%f', 3ffi bay 17th JXk-*+=(k'1SiE"l'EAFig. 7'

Claims (4)

【特許請求の範囲】[Claims] (1)バイアス磁界(H_b_3、H_b_4又はH_
b_5)を作る磁性体(20)を含む基板(12)上に
、磁気抵抗素子(11)と、導体パターン(13)とを
具備することを特徴とする磁気検出装置。
(1) Bias magnetic field (H_b_3, H_b_4 or H_
A magnetic detection device characterized in that it comprises a magnetoresistive element (11) and a conductor pattern (13) on a substrate (12) containing a magnetic material (20) for making the magnetic material (b_5).
(2)前記基板(12)が絶縁層(22)と、磁性体(
20)と、放熱層(21)から構成され、導体パターン
(13)が前記磁気抵抗素子(11)の信号処理回路(
131)であることを特徴とする請求項1記載の磁気検
出装置。
(2) The substrate (12) has an insulating layer (22) and a magnetic material (
20) and a heat dissipation layer (21), the conductive pattern (13) is a signal processing circuit (20) of the magnetoresistive element (11).
131). The magnetic detection device according to claim 1.
(3)前記磁性体(20)が基板(12)を兼用し、該
基板(12)が鉄系材料(121)であり、固定磁石(
14)により磁化されていることを特徴とする請求項1
記載の磁気検出装置。
(3) The magnetic body (20) also serves as a substrate (12), the substrate (12) is made of iron-based material (121), and the fixed magnet (
Claim 1 characterized in that it is magnetized by 14).
The magnetic detection device described.
(4)磁気抵抗素子(11)の動作点を設定するバイア
ス磁界(H_b_3、H_b_4又はH_b_5)に磁
性体(20)を外部磁界(H_0)により磁化して成る
ことを特徴とする磁気検出装置のバイアス磁界設定方法
(4) A magnetic detection device characterized in that a magnetic body (20) is magnetized by an external magnetic field (H_0) in a bias magnetic field (H_b_3, H_b_4 or H_b_5) that sets the operating point of the magnetoresistive element (11). Bias magnetic field setting method.
JP63040084A 1988-02-23 1988-02-23 Magnetism detector and bias-magnetic-field setting method for said detector Pending JPH01214784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040084A JPH01214784A (en) 1988-02-23 1988-02-23 Magnetism detector and bias-magnetic-field setting method for said detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040084A JPH01214784A (en) 1988-02-23 1988-02-23 Magnetism detector and bias-magnetic-field setting method for said detector

Publications (1)

Publication Number Publication Date
JPH01214784A true JPH01214784A (en) 1989-08-29

Family

ID=12571031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040084A Pending JPH01214784A (en) 1988-02-23 1988-02-23 Magnetism detector and bias-magnetic-field setting method for said detector

Country Status (1)

Country Link
JP (1) JPH01214784A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011729A1 (en) * 1990-01-25 1991-08-08 Asahi Kasei Kogyo Kabushiki Kaisha Magnetoresistance sensor
JPH0526993A (en) * 1991-07-25 1993-02-05 Murata Mfg Co Ltd Magnetic sensor
WO1998038519A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Electronics Co., Ltd. Magnetic sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991011729A1 (en) * 1990-01-25 1991-08-08 Asahi Kasei Kogyo Kabushiki Kaisha Magnetoresistance sensor
US5227761A (en) * 1990-01-25 1993-07-13 Asahi Kasei Kogyo Kabushiki Kaisha Magnetoresistive sensor
JPH0526993A (en) * 1991-07-25 1993-02-05 Murata Mfg Co Ltd Magnetic sensor
WO1998038519A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Electronics Co., Ltd. Magnetic sensor
US6448768B1 (en) 1997-02-28 2002-09-10 Asahi Kasei Electronics Co., Ltd. Magnetic sensor with a signal processing circuit

Similar Documents

Publication Publication Date Title
US7786725B2 (en) Magnetic field detection apparatus for detecting an external magnetic field applied to a magnetoresistance effect element, and method of adjusting the same
US7054114B2 (en) Two-axis magnetic field sensor
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
JP4780117B2 (en) Angle sensor, manufacturing method thereof, and angle detection device using the same
US6882145B2 (en) Wheatstone bridge containing bridge elements, consisting of a spin-valve system and a method for producing the same
US7064937B2 (en) System and method for fixing a direction of magnetization of pinned layers in a magnetic field sensor
JP3623367B2 (en) Potentiometer with giant magnetoresistive element
US7733210B2 (en) Magnetic field detector and manufacturing method thereof
JP2020115404A (en) Magnetoresistive sensor
US6020738A (en) Device for magnetizing magnetoresistive thin film-sensor elements in a bridge connection
Kobayashi et al. Enhancement of low-field-magnetoresistive response of tunnel-type magnetoresistance in metal–nonmetal granular thin films
TW560095B (en) Magnetoresistive element, memory element having the magnetoresistive element, and memory using the memory element
KR20030018065A (en) Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring a magnetic field
JPH11354860A (en) Spin valve magnetic conversion element and magnetic head
JP2002357489A (en) Stress sensor
JP2008134181A (en) Magnetic detector and its manufacturing method
JPH11505966A (en) Magnetic field sensor with bridge circuit of magnetoresistive bridge element
JP2003502674A (en) Method for manufacturing magnetic sensor device
JP2005529338A (en) Sensor and method for measuring the flow of charged particles
Guo et al. Exchange-biased anisotropic magnetoresistive field sensor
KR100492040B1 (en) Magnetic detector
Ueberschär et al. Optimized monolithic 2-D spin-valve sensor for high-sensitivity compass applications
US6291993B1 (en) Magnetic field sensor and method for making same
US20170371006A1 (en) Magnetic sensor and current sensor
US20230066027A1 (en) Magnetoresistive sensor element having compensated temperature coefficient of sensitivity and method for manufacturing said element