JPH01214183A - Gas laser oscillation device - Google Patents

Gas laser oscillation device

Info

Publication number
JPH01214183A
JPH01214183A JP3850688A JP3850688A JPH01214183A JP H01214183 A JPH01214183 A JP H01214183A JP 3850688 A JP3850688 A JP 3850688A JP 3850688 A JP3850688 A JP 3850688A JP H01214183 A JPH01214183 A JP H01214183A
Authority
JP
Japan
Prior art keywords
laser
gas
discharge
discharge tube
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3850688A
Other languages
Japanese (ja)
Inventor
Shinichiro Kosugi
伸一郎 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3850688A priority Critical patent/JPH01214183A/en
Publication of JPH01214183A publication Critical patent/JPH01214183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress fluctuation of laser output and to improve efficiency by setting the neighboring two out of discharge tubes which are divided into an even number, by enabling laser gas to flow from both edges of the two discharge tubes toward the center, and by enabling laser gas to be discharged in the direction of diameter from a diffuser provided at the center. CONSTITUTION:A discharge tube is divided into two in this case and is installed on the laser optical axis. A discharge box 7 is provided between these two discharge tubes 1 and a discharge duct 7a, disc-like diffuser 7c, and a circular gas-collecting tube 7d are installed at a box 7. Mirror boxes 5 and 6 are installed at the outer edge of the discharge tube 1. Laser gas flows into boxes 5 and 6 from discharge pipes 5a and 6a and the flow is controlled at gas reservoirs 5b and 6b. Then, laser gas is supplied from the boxes 5 and 6 to the discharge tube 1 which is divided into 2. And gas within the discharge tube 1 is excited by discharged caused by an electrode 2. Laser gas heated by discharge is collected at the box 7 and is discharged through the disc-shaped diffuser 7c.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えば、レーザ溶接やレーザ切断に使用され
る大出力のガスレーザ発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a high-output gas laser oscillation device used for, for example, laser welding or laser cutting.

(従来の技術) 第6図は例えば特開昭62−200780に示された従
来のガスレーザ発振装置である。発振装置内部にはレー
ザガスが封入され、ブロワ−10によりレーザガスは循
環している。ブロワ−10からのレーザガスは熱交換機
12をとおりレデューサ13により加速され放電管1に
流入する。放電管を通過したレーザガスはディフューザ
ー14で減速され熱交換機11をとおリブロワーにもど
る。放電管1の外側にはレーザガスの通過方向と直交す
る方向に対向するように2枚の電極2が設置されている
。この2枚の電極2間には高周波の交流電圧が印加され
、放電管1の内部で放電がひきおこされる。この放電に
よって放電管1を流れているレーザガスが励起され、反
射鏡3と4によってレーザ光が取出される。放電管1の
前後には熱交換機11と12が設けられている。熱交換
機11は放電によって高温になったレーザガスを冷却す
るため、熱交換機12はブロワ−によって温まったガス
を冷却するために設けられている。
(Prior Art) FIG. 6 shows a conventional gas laser oscillation device disclosed in, for example, Japanese Patent Laid-Open No. 62-200780. A laser gas is sealed inside the oscillation device, and the laser gas is circulated by a blower 10. Laser gas from the blower 10 passes through a heat exchanger 12, is accelerated by a reducer 13, and flows into the discharge tube 1. The laser gas that has passed through the discharge tube is decelerated by the diffuser 14 and returns to the reblower through the heat exchanger 11. Two electrodes 2 are installed on the outside of the discharge tube 1 so as to face each other in a direction perpendicular to the direction in which the laser gas passes. A high-frequency AC voltage is applied between the two electrodes 2, and a discharge is caused inside the discharge tube 1. This discharge excites the laser gas flowing through the discharge tube 1, and the laser beam is extracted by the reflecting mirrors 3 and 4. Heat exchangers 11 and 12 are provided before and after the discharge tube 1. The heat exchanger 11 is provided to cool the laser gas heated to a high temperature by discharge, and the heat exchanger 12 is provided to cool the gas heated by the blower.

(発明が解決しようとする課題) 従来のレーザ発振装置ではディフューザー14の角度は
10°前後にとられていた。これはディフューザーを急
に拡大するとレーザ出力が変動しレーザ加工に悪影響を
及ぼすためである。レーザ出力の変動によりレーザ溶接
ではとけこみの不良、レーザ切断では切断面が粗くなる
などの不良が生じる。一方、ディフューザー14の角度
が10°前後と小さい場合にはディフューザーの長さは
急拡大した場合に比べると長くなる。レーザガスはレー
ザ光を出す一方で吸収もする。吸収の割合いはレーザガ
スの温度が高いほど大きく、低いほど小さいので放電管
で高温になったレーザガスが流れるディフューザーが長
いとレーザ光がこの部分で吸収されてしまい、レーザ効
率を悪化させる。レーザ効率を悪化させないために角度
が10”のディフューザーの長さを短くすると、レーザ
ガスがながれずらくなり、ガスを流すために必要な動力
が増えてしまう。
(Problem to be Solved by the Invention) In a conventional laser oscillation device, the angle of the diffuser 14 was set at around 10°. This is because if the diffuser is suddenly expanded, the laser output will fluctuate, which will have an adverse effect on laser processing. Fluctuations in laser output cause defects such as poor melting in laser welding and rough cut surfaces in laser cutting. On the other hand, when the angle of the diffuser 14 is small, around 10 degrees, the length of the diffuser becomes longer than when it is suddenly expanded. While laser gas emits laser light, it also absorbs it. The rate of absorption increases as the temperature of the laser gas increases, and decreases as the temperature decreases, so if the diffuser through which the high-temperature laser gas flows in the discharge tube is long, the laser light will be absorbed in this portion, worsening laser efficiency. If the length of the diffuser with an angle of 10'' is shortened in order to prevent deterioration of laser efficiency, it becomes difficult for the laser gas to flow, and the power required to flow the gas increases.

本発明は、上述した事情に鑑みてなされたものであって
、レーザ出力の変動をおさえ、発振効率を高めたガスレ
ーザ発振装置を得ることを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to obtain a gas laser oscillation device that suppresses fluctuations in laser output and improves oscillation efficiency.

〔発明の構成〕 (課題を解決するための手段) 放電管を偶数個に分割し、そのうち隣合う2本を1組と
してその2本の両端から2本の中央に向かってレーザガ
スを流し、2本の放電管の中央部に円盤状のディフュー
ザーを設け、レーザガスを放電管の径方向に排出する。
[Structure of the Invention] (Means for Solving the Problem) A discharge tube is divided into an even number of parts, two of which are adjacent to each other as a set, and laser gas is flowed from both ends of the two towards the center of the two. A disc-shaped diffuser is provided in the center of the discharge tube, and the laser gas is discharged in the radial direction of the discharge tube.

それぞれの放電管では放電励起を行いレーザ光を取出す
Each discharge tube undergoes discharge excitation to extract laser light.

(作 用) 本発明によればレーザガスによるレーザ光の吸収による
発振装置の効率の低下が少なく、レーザ出力の変動が少
ないレーザ発振装置を得ることができる。
(Function) According to the present invention, it is possible to obtain a laser oscillation device in which the efficiency of the oscillation device is less reduced due to absorption of laser light by laser gas and the laser output is less fluctuated.

(実施例) 第1図に本発明のレーザ発振装置を示す、放電4vt1
は2分割され、レーザ光軸上に設置される。
(Example) Fig. 1 shows a discharge 4vt1 laser oscillation device of the present invention.
is divided into two parts and placed on the laser optical axis.

2本の放電管1の間には排気ボックス7が設置される。An exhaust box 7 is installed between the two discharge tubes 1.

排気ボックス7には排気ダクト7a、円盤状のディフュ
ーザー701円環状の集気管7dが装置されている。2
本の放電管1のもう一端にはそれぞれミラーボックス5
,6が取付けられる。それぞれのミラーボックスには反
射鏡3、半透過鏡4、ガス給気管5a、 6aがそれぞ
れ取付けられている。
The exhaust box 7 is equipped with an exhaust duct 7a, a disc-shaped diffuser 701, and an annular air collection pipe 7d. 2
The other end of the book discharge tube 1 has a mirror box 5, respectively.
, 6 are attached. A reflecting mirror 3, a semi-transparent mirror 4, and gas supply pipes 5a and 6a are attached to each mirror box, respectively.

さらにそれぞれのミラーボックスにはガスだめ5b。Furthermore, each mirror box has a gas reservoir 5b.

6bが設けられている。6b is provided.

レーザガスはミラーボックス5,6に給気管5a。The laser gas is supplied to the mirror boxes 5 and 6 through air supply pipes 5a.

6aからそれぞれ流入し、ガスだめ5b、 6bで一旦
整流される。2分割された放電管1には、ミラーボック
ス5,6からレーザガスが供給される。放電管の中のガ
スは電極2によってひきおこされる放電により励起され
る。放電により加熱されたレーザガスは排気ボックスに
集められ円盤状の流路のディフューザー70を通って排
出される。
6a, and are once rectified by gas reservoirs 5b and 6b. Laser gas is supplied to the two-divided discharge tube 1 from mirror boxes 5 and 6. The gas inside the discharge tube is excited by the electrical discharge caused by the electrodes 2. Laser gas heated by the discharge is collected in an exhaust box and discharged through a diffuser 70 having a disc-shaped flow path.

この実施例ではレーザ光を吸収する高温のレーザガスは
ディフューザーを円盤状にしたことによリレーザ光軸上
からはやく排出される。この構造では、高温のレーザガ
スは放電管1を出ると直ぐに径方向に排出されるので従
来例第6図の空間16のように高温のガスがたまる部分
がない、そのため、レーザ光を高温のレーザガスが吸収
してレーザ装置の効率を悪化させたリレーザ出力が変動
したりすることがない。これは以下の理由による。
In this embodiment, the high-temperature laser gas that absorbs the laser beam is quickly discharged from above the laser optical axis because the diffuser is shaped like a disk. In this structure, the high-temperature laser gas is immediately discharged in the radial direction after exiting the discharge tube 1, so there is no part where the high-temperature gas accumulates like the space 16 in FIG. 6 of the conventional example. There is no possibility that the relay laser output will fluctuate due to absorption of light, which deteriorates the efficiency of the laser device. This is due to the following reasons.

レーザガスでは温度が高いほどレーザ光の吸収率は富い
ため、レーザ光を吸収するとガスの温度と吸収率は同時
に高くなっていく、この実施例では放電により高温にな
ったレーザガスがレーザ光にさらされる時間が短いので
レーザ光の吸収によってガス温度が高くなり吸収率がま
すます高くなっていくことがなくレーザ光にさらされる
距離も短いので光吸収は最少限に押えられる。また、ガ
ス温度が高い従来例第6図の空間16でガス流が乱れて
いるとレーザ光の吸収によって局所的に温度の非常に高
い部分が生じる瞬間がある。すなわち長い間レーザ光に
さらされるガスとそうではないガスが流れの乱れにより
生じる。ガス温度の分布はこのため常に変動する。この
さい高温部でレーザ光が吸収されるのでレーザ出力に変
動が生じる。
In a laser gas, the higher the temperature, the higher the absorption rate of the laser beam, so when the gas absorbs the laser beam, the temperature and absorption rate of the gas increase simultaneously. In this example, the laser gas, which has become hot due to discharge, is exposed to the laser beam. Since the time is short, absorption of the laser light does not cause the gas temperature to rise and the absorption rate becomes higher and higher, and the distance exposed to the laser light is also short, so light absorption can be kept to a minimum. Furthermore, if the gas flow is disturbed in the space 16 of the prior art example shown in FIG. 6, where the gas temperature is high, there are moments when a region of very high temperature locally occurs due to the absorption of laser light. That is, some gases are exposed to the laser beam for a long time and others are not exposed to the laser beam for a long time, and this is caused by the flow disturbance. The gas temperature distribution therefore constantly fluctuates. At this time, since the laser light is absorbed in the high temperature part, fluctuations occur in the laser output.

本実施例ではこの様なことがない。これは実験的にも確
認した。また、ミラーボックスでガス流がいったん減速
されて乱れのエネルギーやブロワ−の圧力脈動が散逸し
たあと放電管に導かれるので放電管の流れには乱れが少
なく、放電管の中で出力変動の原因となるガスの不均一
と変動が生じることがない。
This does not happen in this embodiment. This was also confirmed experimentally. In addition, the gas flow is once decelerated in the mirror box and the turbulent energy and blower pressure pulsations are dissipated before being guided to the discharge tube, so there is less turbulence in the flow of the discharge tube, which is the cause of output fluctuations inside the discharge tube. There will be no non-uniformity and fluctuations in the gas.

さらに、高温のレーザガスが反射鏡に吹付けられないた
め反射鏡の表面にごみや放電によってできたイオンから
反射鏡が保護され、寿命が長くなる効果もある。
Furthermore, since high-temperature laser gas is not blown onto the reflector, the reflector is protected from dust and ions generated by discharge on the surface of the reflector, resulting in a longer service life.

この実施例を出力IKV炭酸ガスレーザに適用したとこ
ろ、レーザ効率が約0.5%向上し、出力の変動は2%
以内(p−p値/出力)と良好な値を示した。
When this example was applied to an output IKV carbon dioxide laser, the laser efficiency improved by about 0.5%, and the output fluctuation was reduced by 2%.
It showed a good value within (p-p value/output).

第2図、第3居は排気ボックス7の他の形状例である。The third box in FIG. 2 shows another example of the shape of the exhaust box 7.

第2図の例では円盤状のディフューザー7cは外径側は
どその幅がせまくなっている。この角度は図に示したよ
うに20°前後が通流損失が最も少なくなる。第3図は
ディフューザーを放電管の軸方向からみた断面図である
。ディフューザーの幅は第1図と同様に一定にしてかわ
りに7e、 7fのくさびを取付けて通流損失を低減し
ている。
In the example shown in FIG. 2, the disc-shaped diffuser 7c has a narrow width on the outer diameter side. As shown in the figure, when this angle is around 20 degrees, the flow loss is minimized. FIG. 3 is a sectional view of the diffuser viewed from the axial direction of the discharge tube. The width of the diffuser is kept constant as in Figure 1, and wedges 7e and 7f are attached instead to reduce the flow loss.

第4図は本発明による他の実施例である。この例では2
本の放電管1のガス流量のバランスを安定させるために
絞り8をミラーボックス5,6の入口に取付けている。
FIG. 4 shows another embodiment according to the present invention. In this example 2
In order to stabilize the balance of the gas flow rate in the discharge tube 1, a throttle 8 is installed at the entrance of the mirror boxes 5 and 6.

この部分に絞りを設けない場合ブロワ−から2つのミラ
ーボックス5,6までの配管の長さ、太さ等の形状は同
じでなければ放電管1の間でガス流量にアンバランスを
生じる事がある。ミラーボックス5.6に対して絞りを
取付けることでガス流量のバランスをとるとともにブロ
ワ−から発生する圧力脈動の放電管への伝播を減少させ
る事ができる。
If no throttle is provided in this part, the length, thickness, etc. of the piping from the blower to the two mirror boxes 5 and 6 must be the same, otherwise an imbalance in gas flow rate between the discharge tubes 1 may occur. be. By attaching a throttle to the mirror box 5.6, it is possible to balance the gas flow rate and to reduce the propagation of pressure pulsations generated from the blower to the discharge tube.

第5図は本発明による更に他の実施例である。FIG. 5 shows yet another embodiment of the present invention.

この例では放電管1を4本とし中央の2本の放電管には
給気ボックス9からガスを供給している。
In this example, there are four discharge tubes 1, and gas is supplied from an air supply box 9 to the two central discharge tubes.

このような構成をとることで何本でも放電管をつぎたせ
るので容易に大出力で効率がよく出力変動の小さいレー
ザ発振装置をうろことができる。
By adopting such a configuration, any number of discharge tubes can be connected, so that a laser oscillation device with high output, high efficiency, and small output fluctuation can be easily provided.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、放電管を偶数個に分割し
、そのうち隣合う2本を1組としてその2本の両端から
2本の中央に向かってレーザガスを流し、2本の放電管
の中央部に円盤状のディフューザーを設け、レーザガス
を放電管の径方向に排出するようにしたのでレーザ出力
の変動をおさえ、効率を高めたガスレーザ発振装置を得
ることができる。
As described above, according to the present invention, a discharge tube is divided into an even number, two of which are adjacent to each other are set as a set, and laser gas is flowed from both ends of the two toward the center of the two discharge tubes. Since a disc-shaped diffuser is provided in the center of the discharge tube and the laser gas is discharged in the radial direction of the discharge tube, fluctuations in laser output can be suppressed and a gas laser oscillation device with improved efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のレーザ発振装置を示す断面図、第2図
、第3図は本発明装置の排気ボックスを示す断面図、第
4図、第5図は本発明の他の実施例を示す断面図、第6
図は従来のレーザ発振装置を示す断面図である。 1・・・放電管      2・・・電極3・・・反射
鏡      4・・・半透過鏡5.6・・・ミラーボ
ックス 7・・・排気ボックス   8・・・絞り9・・・給気
ボックス   lO・・・ブロワ−11、12・・・熱
交換機   13・・・レデューサ−14・・・ディフ
ューザー 代理人 弁理士  則 近 憲 俗 間     第子丸   健 硬   く
FIG. 1 is a sectional view showing a laser oscillation device of the present invention, FIGS. 2 and 3 are sectional views showing an exhaust box of the device of the present invention, and FIGS. 4 and 5 are sectional views showing other embodiments of the present invention. Sectional view shown, No. 6
The figure is a sectional view showing a conventional laser oscillation device. 1...Discharge tube 2...Electrode 3...Reflector 4...Semi-transparent mirror 5.6...Mirror box 7...Exhaust box 8...Aperture 9...Air supply box lO...Blower 11, 12...Heat exchanger 13...Reducer 14...Diffuser agent Patent attorney Nori Chika Nori Sokuma Daishimaru Kenko Ku

Claims (1)

【特許請求の範囲】[Claims]  放電管を偶数個に分割し、そのうち隣合う2本を1組
としてその2本の両端から2本の中央に向かってレーザ
ガスを流し、2本の放電管の中央部に円盤状のディフュ
ーザーを設け、レーザガスを放電管の径方向に排出する
ことを特徴とするガスレーザ発振装置。
The discharge tube is divided into an even number, two of which are adjacent to each other as a set, and the laser gas is flowed from both ends of the two toward the center of the two, and a disk-shaped diffuser is installed in the center of the two discharge tubes. A gas laser oscillation device characterized in that a laser gas is discharged in a radial direction of a discharge tube.
JP3850688A 1988-02-23 1988-02-23 Gas laser oscillation device Pending JPH01214183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3850688A JPH01214183A (en) 1988-02-23 1988-02-23 Gas laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3850688A JPH01214183A (en) 1988-02-23 1988-02-23 Gas laser oscillation device

Publications (1)

Publication Number Publication Date
JPH01214183A true JPH01214183A (en) 1989-08-28

Family

ID=12527157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3850688A Pending JPH01214183A (en) 1988-02-23 1988-02-23 Gas laser oscillation device

Country Status (1)

Country Link
JP (1) JPH01214183A (en)

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
JPH03216287A (en) Laser beam cutting method
CN107046218B (en) Laser oscillator
JPS603170A (en) Silent discharge type gas laser device
JPH01214183A (en) Gas laser oscillation device
JP5985059B2 (en) Gas laser device
CN105098571A (en) Gas circulation type laser oscillator
JPH0274086A (en) Gas laser device discharge tube
Takenaka et al. Novel stable resonator for large‐volume TEM00 mode operation
US4152049A (en) Spatial filter having aerodynamic windows
JPS63110683A (en) Gas laser oscillator
JPS62106681A (en) Gas laser oscillator
JP3785877B2 (en) Laser oscillator
JP3785876B2 (en) Laser oscillator
JPS6310916B2 (en)
JPH034053Y2 (en)
WO2007032066A1 (en) Rod type solid state laser
JPH01292872A (en) Gas circulation type gas laser tube
JP3139103B2 (en) Axial laser oscillator
JPS6243605A (en) Waveguide for carbon dioxide laser light
JP2022069129A (en) Laser device
JPH0651235A (en) Laser machining optical system
JPH0537058A (en) Laser oscillator
JPH0335837B2 (en)
JPH01293583A (en) Axial-flow type gas laser pipe