JPH01213592A - Distance measuring instrument - Google Patents

Distance measuring instrument

Info

Publication number
JPH01213592A
JPH01213592A JP3745988A JP3745988A JPH01213592A JP H01213592 A JPH01213592 A JP H01213592A JP 3745988 A JP3745988 A JP 3745988A JP 3745988 A JP3745988 A JP 3745988A JP H01213592 A JPH01213592 A JP H01213592A
Authority
JP
Japan
Prior art keywords
signal
light
signals
pulse train
local oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3745988A
Other languages
Japanese (ja)
Other versions
JP2670795B2 (en
Inventor
Haruo Fukawa
府川 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkisha Co Ltd
Original Assignee
Sokkisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkisha Co Ltd filed Critical Sokkisha Co Ltd
Priority to JP63037459A priority Critical patent/JP2670795B2/en
Publication of JPH01213592A publication Critical patent/JPH01213592A/en
Application granted granted Critical
Publication of JP2670795B2 publication Critical patent/JP2670795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the measuring accuracy of the title instrument and at the same time, to measure a long distance with the instrument by changing the modulating signal of a signal generating source to pulse train modulating signals and increasing the short-time energy density of radiated light. CONSTITUTION:A distance measuring instrument is provided with a light emission driving section 3 and the section 3 changes the modulating signal from a signal generator 2 to pulse signals so that the modulated light radiated from a light emitting element 4 can become pulse trains. When an analog switch 6 is opened and closed by using the received pulse train signals, the voltage of the magnitude indicated by the black circles of local oscillation signals shown in figure (C) charges a hold capacitor 7. Therefore, the stepped signals indicated by the solid line of the figure (D) are outputted from a sample-hole circuit 8. When the analog switch 6 is closed by means of the received pulse train signals shown in figure (B) which have a time lag of Ts/n+1 (where the Ts is period) against the signals of figure (A), the signals shown by the broken line of figure (D) are outputted from the circuit 8. The time lags among these signals are enlarged to (n) times as long as the time lag of the received pulse train signals.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光波を使用して測距装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a distance measuring device using light waves.

(従来の技術) 従来の光波使用のn1距装置として、パルス走行時間方
式と位相比較方式が知られている。
(Prior Art) As conventional n1 distance devices using light waves, a pulse transit time method and a phase comparison method are known.

パルス走行時間方式は、目標物に向けてパルス光を放射
し、放射後反射パルス光を受光するまでの時間を測定し
、この光の往復時間がら目標物までの距離を求める方式
であり、位相比較方式は、目標物に向けて正弦波的に輝
度変調した光を放射し、放射光と反射光の位相差を測定
し、この位相差から目標物までの距離を求める方式であ
る。
The pulse transit time method is a method in which pulsed light is emitted toward a target, the time it takes to receive the reflected pulsed light after emission is measured, and the distance to the target is determined from the round trip time of this light. The comparison method is a method in which light whose brightness is modulated in a sinusoidal manner is emitted toward a target, the phase difference between the emitted light and the reflected light is measured, and the distance to the target is determined from this phase difference.

第4図は位相比較方式の一例を示す。FIG. 4 shows an example of a phase comparison method.

第4図において、aは基準信号発振器、bは信号発振器
である。信号発生器すは、基準信号発振器aの基準信号
をもとにしてPLL回路や分周回路を用いて基準信号に
対して所定の周波数f、を有する正弦波の局部発振信号
SL1これより任かに異なる周波数fSを有する正弦波
の変調信号Ss及び局部発振信号SLと変調信号s5の
周波数のIfL−fslに等しい周波数fRを有する矩
形波のリファレンス信号SRを出力する。該変調信号S
sは発光駆動部Cを介して発光索子dに加わり、発光素
子dは目標物に向けて変調光を放出するようになってい
る。
In FIG. 4, a is a reference signal oscillator and b is a signal oscillator. The signal generator 1 generates a sine wave local oscillation signal SL1 having a predetermined frequency f with respect to the reference signal using a PLL circuit or a frequency dividing circuit based on the reference signal of the reference signal oscillator a. A sine wave modulation signal Ss having a different frequency fS and a rectangular wave reference signal SR having a frequency fR equal to IfL-fsl of the frequency of the local oscillation signal SL and the modulation signal s5 are output. The modulated signal S
s is added to the light-emitting element d via the light-emitting driver C, and the light-emitting element d emits modulated light toward the target.

eは目標物からの反射変調光を電気信号に変換する受光
素子で、その出力は増幅器gを介して混合部りに入力す
るようになっている。
Reference numeral e denotes a light receiving element that converts reflected modulated light from the target object into an electrical signal, and its output is input to the mixing section via an amplifier g.

この混合部りは、前記局部発振信号SLと受光素子eの
出力信号s′sとを混合するもので、その出力から周波
数f+−l ft  fs l=1/nfs−flI 
(但し、n;時間拡大比)の測定信号s1を出力し、こ
のAPJ定信号51は位相差計数部iに入力する。該位
相差計数部iは測定信号S1のリファレンス信号SRか
らの位相遅れと、送光光路系からaPI 器機本体内部
の固定光路系lに切換えたときの受光索子eの出力信号
s′5のレファレンス信号SRからの位相遅れを測定す
る。マイクロコンピュータjは該両位相遅れの差を求め
、目標物までの距離を算出する。算出した距離は表示器
にで表示される。
This mixing section mixes the local oscillation signal SL and the output signal s's of the light receiving element e, and from the output, the frequency f+-l ft fs l=1/nfs-flI
A measurement signal s1 (where n is a time expansion ratio) is output, and this APJ constant signal 51 is input to a phase difference counter i. The phase difference counting section i calculates the phase delay of the measurement signal S1 from the reference signal SR and the output signal s'5 of the light receiving cable e when the light transmitting optical path system is switched to the fixed optical path system l inside the aPI device main body. Measure the phase delay from the reference signal SR. The microcomputer j determines the difference between the two phase delays and calculates the distance to the target. The calculated distance is displayed on the display.

前記受光素子eの出力信号s′sは目標物までの距離に
応じた位相遅れ(時間遅れ)を有し、alll定信号s
1は該出力信号S′sの遅れ位相角をそのまま受けつい
でおり、遅れ時間はn倍に拡大されているので、該測定
信号S、とレファレンス信号SRとを位相比較すると、
11′I11定信号の遅れ位相すなわち距離が精度良く
Δ−1定できる。
The output signal s's of the light receiving element e has a phase delay (time delay) depending on the distance to the target, and all constant signals s's
1 receives the delayed phase angle of the output signal S's as it is, and the delay time is expanded by n times, so when the phases of the measurement signal S and the reference signal SR are compared,
The delayed phase of the 11'I11 constant signal, that is, the distance, can be accurately determined by Δ-1.

(発明が解決しようとする課題) 従来のパルス走行時間方式は、目標物への光がパルス光
であるため、エネルギ密度の高い光を照射できるから、
目標点に反射プリズム等の反射光学部材を設置しなくて
も測定でき、遠距離API定が可能であるが、光を放射
した後反射光を受光するまでの時間が非常に短いため、
内挿パルスが入れにくく、どうしても測定精度が悪くな
る。
(Problems to be Solved by the Invention) In the conventional pulse transit time method, since the light to the target is pulsed light, it is possible to irradiate light with high energy density.
Measurement can be performed without installing a reflective optical member such as a reflective prism at the target point, and long-distance API determination is possible, but since the time from emitting light to receiving reflected light is very short,
It is difficult to insert interpolated pulses, and measurement accuracy inevitably deteriorates.

位相比較方式は、受信信号の周波数を変更して時間拡大
を行なうことができるから、分解能が優れ、71)J定
精度がよくなるが、エネルギ密度の高い放射光を出すに
は限界があるから、パルス走行時間方式と同様の遠距離
測定が困難である。また光のエネルギ密度がパルス走行
時間方式に比べて一般に小さいので、目標点に反射プリ
ズムを設置するのが一般である。
Since the phase comparison method can expand the time by changing the frequency of the received signal, it has excellent resolution and good J-determined accuracy, but there is a limit to the ability to emit synchrotron radiation with high energy density. It is difficult to perform long-distance measurements similar to the pulse transit time method. Furthermore, since the energy density of light is generally lower than that of the pulse transit time method, a reflecting prism is generally installed at the target point.

本発明は、従来の上記の三方式の欠点を解消し、測定精
度が高いと共に遠距離測定も可能な測距装置を得ること
をその目的するものである。
The object of the present invention is to eliminate the drawbacks of the above three conventional methods and to provide a distance measuring device that has high measurement accuracy and is capable of long-distance measurement.

(課題を解決するための手段) 上記の目的を達成するために、本発明の11t11距装
置は、発光素子と、該発光素子から変調光を放射させる
なめの変調信号、該変調信号とは異なる周波数の局部発
振信号及びリファレンス信号を出力する信号発生源と、
目標物からの反射変調光を電気信号に変換する受光素子
と、該受光素子の出力信号と前記局部発振信号とから両
信号の周波数の差の周波数を有する測定信号を得る変換
手段と、該測定信号のリファレンス信号に対する時間遅
れを測定する測定手段を備え、該時間遅れから目標物ま
での距離をal定するようにした測距装置において、前
記信号発生源の変調信号により前記発光素子から放射さ
れる変調光を光パルス列とし、前記変換手段は前記局部
発振信号を前記受光素子の出力信号である電気パルス列
によってサンプルホールドするサンプルホールド手段で
あることを特徴とするものであり、該変換手段は、前記
局部発振信号の出力回路に接続されたサンプルホールド
回路から成り、該サンプルホールド回路のスイッチは前
記受光素子の出力信号である電気パルス列によって開閉
されるようにしたものでもよく、また矩形波の前記局部
発振信号及び受光素子の出力信号である電気パルス列が
それぞれ入力信号及びクロックパルス信号として入力す
るフリップフロップから成るものでもよい。
(Means for Solving the Problems) In order to achieve the above object, the 11t11 distance device of the present invention includes a light emitting element, a modulation signal for emitting modulated light from the light emitting element, and a different modulation signal. a signal generation source that outputs a frequency local oscillation signal and a reference signal;
a light-receiving element that converts reflected modulated light from a target object into an electrical signal; a conversion means for obtaining a measurement signal having a frequency that is the difference between the frequencies of both signals from an output signal of the light-receiving element and the local oscillation signal; In a distance measuring device comprising a measuring means for measuring a time delay of a signal with respect to a reference signal, and determining a distance to a target from the time delay, emitted from the light emitting element by a modulated signal of the signal generation source is provided. The modulated light is an optical pulse train, and the converting means is a sample-holding means that samples and holds the local oscillation signal by an electric pulse train that is an output signal of the light receiving element, and the converting means includes: The sample-and-hold circuit may include a sample-and-hold circuit connected to the output circuit of the local oscillation signal, and the switch of the sample-and-hold circuit may be opened and closed by the electric pulse train that is the output signal of the light-receiving element. It may be constructed of a flip-flop to which the local oscillation signal and the electric pulse train, which is the output signal of the light-receiving element, are inputted as input signals and clock pulse signals, respectively.

(作 用) 信号発生源の変調信号をパルス列変調信号としたため、
放射光の短時間エネルギ密度を高くすることができるか
ら、従来のパルス走行時間方式と同様、遠距離測定を行
なうことができ、また近距離測定では反射プリズムが無
くても測定できる。
(Function) Since the modulation signal of the signal generation source is a pulse train modulation signal,
Since the short-time energy density of the synchrotron radiation can be increased, long-distance measurements can be made in the same way as the conventional pulse transit time method, and short-distance measurements can be made without a reflecting prism.

また局部発振信号を、受光素子から出力した該局部発振
信号より僅かに異なる周波数を有する電気パルス列によ
ってサンプルホールドしたので、従来の位相比較方式に
おけるn1定信号と同等の信号に変換され、高い測定精
度が得られる。
In addition, since the local oscillation signal is sampled and held using an electric pulse train having a slightly different frequency than the local oscillation signal output from the light receiving element, it is converted into a signal equivalent to the n1 constant signal in the conventional phase comparison method, resulting in high measurement accuracy. is obtained.

(実施例) 以下本発明の実施例を図面につき説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明のApl距装置の一例を示す。FIG. 1 shows an example of the Apl distance device of the present invention.

同図において、1は基準発振器、2は信号発生器、3は
発光駆動部、4は発光素子で、該発光駆動部3は、信号
発生器2から出力する変調信号とパルス列信号とし、こ
れによって発光索子4が放射する変調光を光パルス列に
なるようにしたものである。
In the figure, 1 is a reference oscillator, 2 is a signal generator, 3 is a light emitting driver, and 4 is a light emitting element. The light emitting driver 3 outputs a modulation signal and a pulse train signal from the signal generator 2. The modulated light emitted by the light-emitting cable 4 is made into a light pulse train.

前記信号発生器2は、従来の位相比較方式と同様に、正
弦波で周波数fLの局部発振信号S、周波数fRのリフ
ァレンス信号SR及び周波数f、の前記変調信号85を
出力するもので、各周波数fLSfR及びfsの間には
fL−f5 (1±l/n ) 、f R−1/n f
 sの関係を有する。
The signal generator 2 outputs a sine wave local oscillation signal S with a frequency fL, a reference signal SR with a frequency fR, and the modulation signal 85 with a frequency f, as in the conventional phase comparison method. Between fLSfR and fs, fL-f5 (1±l/n), f R-1/n f
It has a relationship of s.

局部発振信号SLの出力回路5には、アナログスイッチ
6及びホールドコンデンサ7から成るサンプルホールド
回路8及び低域フィルタ9が介入接続されており、該低
域フィルタ9の出力側とリファレンス信号SRの出力回
路IOはそれぞれ位相差計数部11に接続されている。
A sample-and-hold circuit 8 consisting of an analog switch 6 and a hold capacitor 7 and a low-pass filter 9 are connected to the output circuit 5 of the local oscillation signal SL, and the output side of the low-pass filter 9 and the output of the reference signal SR are connected. Each circuit IO is connected to a phase difference counting section 11.

該アナログスイッチ6は、コンパレータ12及びビデオ
アンプ13を介して受光素子14に接続され、受光索子
14から出力した受光パルス列信号によって開閉される
ようになっている。
The analog switch 6 is connected to a light receiving element 14 via a comparator 12 and a video amplifier 13, and is opened and closed by a light receiving pulse train signal output from the light receiving cable 14.

該コンパレータ■2はノイズ成分をカットするものであ
り、コンピュータ15及び表示器16は従来のものと同
じである。
The comparator (2) is for cutting noise components, and the computer 15 and display 16 are the same as the conventional ones.

第2図(A)に示す受光パルス列信号でアナログスイッ
チ6を開閉すると、第2図(C)に示す局部発振r=号
(便宜上鋸歯形波で示す)の黒丸で示す大きさの電圧が
ホールドコンデンサ7を充電するから、サンプルホール
ド回路8から、第2図(0)に実線で示す階段状の信号
が出力する。第2図(A)よりTs /nil (Ts
 :周期)だけ時間差を有する第2図(B)に示す受光
パルス列信号でアナログスイッチ6を開閉すると、第2
図(C)に示す局部発振信号の白丸で示す大きさの電圧
がホールドコンデンサ7を充電するから、サンプルホー
ルド回路8から第2図(0)に破線で示す段階状の信号
が出力する。この両段階状の信号の時間差はT L −
n/n+I T sであって受光パルス列信号の時間差
Tsハ+lのn倍に拡大される。
When the analog switch 6 is opened and closed using the received light pulse train signal shown in FIG. 2(A), the voltage of the magnitude shown by the black circle of the local oscillation r= (shown as a sawtooth wave for convenience) shown in FIG. 2(C) is held. Since the capacitor 7 is charged, the sample-and-hold circuit 8 outputs a step-like signal shown by the solid line in FIG. 2(0). From Figure 2 (A), Ts /nil (Ts
When the analog switch 6 is opened and closed using the received light pulse train signal shown in FIG.
Since the voltage of the local oscillation signal indicated by the white circle shown in FIG. 2(C) charges the hold capacitor 7, the sample-and-hold circuit 8 outputs a stepwise signal shown by the broken line in FIG. 2(0). The time difference between these two step signals is T L −
n/n+I T s, and the time difference Ts of the light-receiving pulse train signal is expanded to n times +l.

第1図示のサンプルホールド回路8は第3図示のように
、D型フリップフロップ17に置きかえることができる
。すなわち、D型フリップフロップ17のD入力端子に
矩形波の局部発振信号を入力させ、該フリップフロップ
17のクロック端子Cに受光素子14からビデオアンプ
13及びコンパレータ12を経て受光パルス列信号を人
力させて受光パルス列信号の立上りで局部発振信号をサ
ンプリングさせると、基準に対してTs/ni1だけ時
間差のある受光パルス列信号がクロック端子Cに入力し
たとき、Q出力端子からn/ nil T sの時間差
がある矩形波信号を出力する。
The sample and hold circuit 8 shown in the first diagram can be replaced with a D-type flip-flop 17 as shown in the third diagram. That is, a rectangular-wave local oscillation signal is input to the D input terminal of the D-type flip-flop 17, and a light-receiving pulse train signal is manually input from the light-receiving element 14 through the video amplifier 13 and comparator 12 to the clock terminal C of the flip-flop 17. When the local oscillation signal is sampled at the rising edge of the received light pulse train signal, when the received light pulse train signal with a time difference of Ts/ni1 from the reference is input to the clock terminal C, there is a time difference of n/nil Ts from the Q output terminal. Outputs a square wave signal.

(発明の効果) 本発明は、上述のように構成されているので、測距精度
が高いと共に遠距離測定が可能であるという効果を有す
る。
(Effects of the Invention) Since the present invention is configured as described above, it has an effect that distance measurement accuracy is high and long-distance measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明測距装置の回路のブロック図、第2図(
A)〜(D)はその作動説明図、第3図は本発明測距装
置の他側の回路のブロック図、第4図は従来のAlll
l蓋装置路のブロック図である。 2・・・信号発生器 4・・・発光素子 8・・・サンプルホールド回路 11・・・位相差計数回路 14・・・受光素子 15・・・マイクロコンピュータ 16・・・表示器 外 3 る 第1図 第2図 第3図 j        k
Figure 1 is a block diagram of the circuit of the distance measuring device of the present invention, and Figure 2 (
A) to (D) are explanatory diagrams of the operation, FIG. 3 is a block diagram of the circuit on the other side of the distance measuring device of the present invention, and FIG. 4 is the conventional All
1 is a block diagram of the lid device path; FIG. 2...Signal generator 4...Light emitting element 8...Sample and hold circuit 11...Phase difference counting circuit 14...Light receiving element 15...Microcomputer 16...Outside the display 3 Figure 1 Figure 2 Figure 3 j k

Claims (1)

【特許請求の範囲】 1、発光素子と、該発光素子から変調光を放射させるた
めの変調信号、該変調信号とは異なる周波数の局部発振
信号及びリファレンス信号を出力する信号発生源と、目
標物からの反射変調光を電気信号に変換する受光素子と
、該受光素子の出力信号と前記局部発振信号とから両信
号の周波数の差の周波数を有する測定信号を得る変換手
段と、該測定信号のリファレンス信号に対する時間遅れ
を測定する測定手段を備え、該時間遅れから目標物まで
の距離を測定するようにした測距装置において、前記信
号発生源の変調信号により前記発光素子から放射される
変調光を光パルス列とし、前記変換手段は前記局部発振
信号を前記受光素子の出力信号である電気パルス列によ
ってサンプルホールドするサンプルホールド手段である
ことを特徴とする測距装置。 2、前記変換手段は、前記局部発振信号の出力回路に接
続されたサンプルホールド回路から成り、該サンプルホ
ールド回路のスイッチは前記受光素子の出力信号である
電気パルス列によって開閉されるようにしたことを特徴
とする特許請求の範囲第1項記載の測距装置。 3、前記変換手段は、矩形波の前記局部発振信号及び受
光素子の出力信号である電気パルス列がそれぞれ入力信
号及びクロックパルス信号として入力するフリップフロ
ップから成ることを特徴とする特許請求の範囲第1項記
載の測距装置。
[Claims] 1. A light emitting element, a modulation signal for emitting modulated light from the light emitting element, a signal generation source that outputs a local oscillation signal and a reference signal of a frequency different from that of the modulation signal, and a target object. a light-receiving element that converts reflected modulated light from the light-receiving element into an electrical signal, a conversion means for obtaining a measurement signal having a frequency that is the difference between the frequencies of the two signals from the output signal of the light-receiving element and the local oscillation signal; In a distance measuring device comprising a measuring means for measuring a time delay with respect to a reference signal and measuring a distance to a target based on the time delay, modulated light emitted from the light emitting element by a modulated signal from the signal generation source. is an optical pulse train, and the converting means is a sample and hold means that samples and holds the local oscillation signal using an electric pulse train that is an output signal of the light receiving element. 2. The conversion means comprises a sample and hold circuit connected to the output circuit of the local oscillation signal, and the switch of the sample and hold circuit is opened and closed by the electric pulse train that is the output signal of the light receiving element. A distance measuring device according to claim 1. 3. The conversion means comprises a flip-flop to which the local oscillation signal of a rectangular wave and the electric pulse train which is the output signal of the light receiving element are respectively inputted as an input signal and a clock pulse signal. Distance measuring device described in section.
JP63037459A 1988-02-22 1988-02-22 Distance measuring device Expired - Fee Related JP2670795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037459A JP2670795B2 (en) 1988-02-22 1988-02-22 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037459A JP2670795B2 (en) 1988-02-22 1988-02-22 Distance measuring device

Publications (2)

Publication Number Publication Date
JPH01213592A true JPH01213592A (en) 1989-08-28
JP2670795B2 JP2670795B2 (en) 1997-10-29

Family

ID=12498110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037459A Expired - Fee Related JP2670795B2 (en) 1988-02-22 1988-02-22 Distance measuring device

Country Status (1)

Country Link
JP (1) JP2670795B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339655B2 (en) 2004-10-20 2008-03-04 Sokkia Co., Ltd. Electric optical distance wavelength meter
JP2011196924A (en) * 2010-03-23 2011-10-06 Panasonic Electric Works Co Ltd Obstacle detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339655B2 (en) 2004-10-20 2008-03-04 Sokkia Co., Ltd. Electric optical distance wavelength meter
JP2011196924A (en) * 2010-03-23 2011-10-06 Panasonic Electric Works Co Ltd Obstacle detection device

Also Published As

Publication number Publication date
JP2670795B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
JP3839851B2 (en) Electronic distance measuring instrument
US5054911A (en) Light wave distance measuring instrument of the pulse type
JP2909742B2 (en) Delay time measuring device
US7777865B2 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
JPH0763855A (en) Apparatus for optical measurement
JP2006521536A5 (en)
JP2002531837A (en) Device for distance measurement using semiconductor laser in the visible wavelength region by propagation time method
CN1187882A (en) FMCW distance measurement process
CA2356403C (en) Waveform measuring apparatus
JP2008524562A5 (en)
US20040051926A1 (en) Photoelectronic mixing device (pmd) system
EP1184669B1 (en) Waveform measuring method and apparatus
JP2001183458A (en) Distance sensor
JPH05232232A (en) Phase measuring device and distance measuring device
JPH01213592A (en) Distance measuring instrument
JP7330728B2 (en) light rangefinder
JP2004520582A (en) Level measurement device
RU2347235C2 (en) Method of formation coherent frequency modulated signal for radar stations with periodic fm modulation and device for its realisation
JPH0318784A (en) Fm-cw distance measuring method
JP2003224528A (en) Method for evaluating light waveform
JP2930740B2 (en) Servo slope type FM-CW radar
JPH0682552A (en) Electrooptical distance measurement
JP2001174549A (en) Radar device
SU690377A1 (en) Method and apparatus for measuring time delay of signal in a medium with velocity dispersion
RU1772764C (en) Method of determining phase shift of phase-shift keyed signal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees