JPH01213534A - Inside-cylinder pressure detector for internal combustion engine - Google Patents

Inside-cylinder pressure detector for internal combustion engine

Info

Publication number
JPH01213534A
JPH01213534A JP63039906A JP3990688A JPH01213534A JP H01213534 A JPH01213534 A JP H01213534A JP 63039906 A JP63039906 A JP 63039906A JP 3990688 A JP3990688 A JP 3990688A JP H01213534 A JPH01213534 A JP H01213534A
Authority
JP
Japan
Prior art keywords
output
cylinder pressure
operational amplifier
value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039906A
Other languages
Japanese (ja)
Inventor
Toshio Iwata
俊雄 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63039906A priority Critical patent/JPH01213534A/en
Priority to KR1019890001746A priority patent/KR920006455B1/en
Priority to DE3905824A priority patent/DE3905824A1/en
Publication of JPH01213534A publication Critical patent/JPH01213534A/en
Priority to US07/503,072 priority patent/US5062294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize signals corresponding to inside-cylinder pressure of an internal combustion engine by correcting the signals in accordance with the output value of a temperature detector. CONSTITUTION:The output electric charge of a piezo-electric type inside-pressure sensor 1 is converted into a voltage value by the feedback control of an operational amplifier 51. An electric current is made to flow from the output of the operational amplifier 51 to the inverted input of another operational amplifier 52 through a capacitor 54 and resistance 55 and, since the electrostatic capacity of the capacity is set sufficiently largely, the electric current made to flow to the capacitor 54 is decided by the output voltage of the amplifier 51 and the value of the resistance 55. The output voltage of the amplifier 52 is proportional to the output electric charge of the sensor 1 and its output signal corresponds to the inside- cylinder pressure itself, since the resistance value of the resistance 57 is set at a high level. Since the quantity of the output electric charge increases as the temperature rises, the quantity is corrected by means of a thermistor assembled in the sensor 1 in order to obtain correct inside-cylinder pressure. When the output signal of the sensor is inputted as a current value and temperature correction is performed by integrating the signals corresponding to the current value in such way, a stable inside-cylinder pressure signal can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内燃機関の燃焼気筒内の圧力情報を計測する
内燃機関の筒内圧力検出@に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to cylinder pressure detection of an internal combustion engine, which measures pressure information within the combustion cylinder of an internal combustion engine.

〔従来の技術〕[Conventional technology]

内燃機関の燃焼状態や回転サイクル毎の前作を計測する
ために一般に燃焼気筒内の圧力が測定される。この測定
に用いられる筒内圧力センサとして圧電形筒内圧センサ
がよく利用されている。この圧電形筒内圧センサは圧力
に感応して電荷を発生する圧電素子に直接的あるいは間
接的vc気筒内の圧力が印加されて、印加圧力に応じた
電荷酸を出力するものである。例えば、圧電形量内圧セ
ンサの一例を第4図に示す。第4図においてUυは圧電
素子、IJ”ar12枚の圧電素子にはさまれ、出力信
号をリードaI131に導く電極、Q4はセンサの内部
嘴造部品を覆うケースである。この圧電形筒内圧センサ
はリング状の形状をしており、第5図rC示すようにエ
ンジンの燃焼気筒の土壁をなすシリンダヘッド12)と
点火プラグ+31との間にgr層される。そして、燃焼
気筒内の圧力が点火プラグを通じて圧電形筒内圧センナ
、11の圧電素子1υに伝達され1間内圧力に応じた電
荷が出力される。
The pressure in the combustion cylinder is generally measured to measure the combustion state of the internal combustion engine and the previous work for each rotation cycle. A piezoelectric cylinder pressure sensor is often used as the cylinder pressure sensor used for this measurement. This piezoelectric cylinder pressure sensor outputs charged acid according to the applied pressure by directly or indirectly applying the pressure in the VC cylinder to a piezoelectric element that generates an electric charge in response to pressure. For example, an example of a piezoelectric internal pressure sensor is shown in FIG. In Fig. 4, Uυ is a piezoelectric element, an electrode that is sandwiched between IJ''ar12 piezoelectric elements and leads the output signal to lead aI131, and Q4 is a case that covers the internal beak part of the sensor.This piezoelectric cylinder pressure sensor has a ring-shaped shape, and as shown in Fig. 5rC, it is placed in a gr layer between the cylinder head 12), which forms the clay wall of the combustion cylinder of the engine, and the spark plug +31.Then, the pressure inside the combustion cylinder increases. is transmitted to the piezoelectric type cylinder pressure sensor, 11 piezoelectric elements 1υ, through the spark plug, and an electric charge corresponding to the cylinder pressure is output.

ところで、上記圧電形筒内圧センサの筒内圧力に対応す
る出力信号に電荷酸であるために、この電荷1it−?
[気的処理しやすh電圧値に変換する必要がある。そこ
で、電荷at電圧値に変換する手段として一般にチャー
ジアンプが用いられていた。第6図にチャージアンプの
基本回路を示す。第6図において、wnはオペアンプで
あり、(転)はコンデンサである。圧電形筒内圧センサ
+1+の出力はオペアンプ14υの反転入力に接続され
、コンデンサ(6)はオペアンプ(ロ)の反転入力と出
力との間に接続される。またオペアンプ0υの非反転入
力は接地されている。いま、オペアンプlυに反転及び
非反転の入力電圧が同レベルになるように出力制御する
ものであり、圧電形筒内圧センサ111から電荷Qが入
力されるとオペアンプ(6)V′i竜荷Qtすべてコン
デンサーVC充電するよう制御動作する。
By the way, since the output signal corresponding to the cylinder pressure of the piezoelectric cylinder pressure sensor is a charged acid, this charge 1it-?
[It is necessary to convert it to an h voltage value that can be easily processed. Therefore, a charge amplifier has generally been used as a means for converting charge at a voltage value. Figure 6 shows the basic circuit of the charge amplifier. In FIG. 6, wn is an operational amplifier, and wn is a capacitor. The output of the piezoelectric cylinder pressure sensor +1+ is connected to the inverting input of the operational amplifier 14υ, and the capacitor (6) is connected between the inverting input and the output of the operational amplifier (b). Further, the non-inverting input of the operational amplifier 0υ is grounded. Now, the output is controlled so that the inverting and non-inverting input voltages to the operational amplifier lυ are at the same level, and when the charge Q is input from the piezoelectric cylinder pressure sensor 111, the operational amplifier (6) V′i voltage Qt Control operation is performed to charge all capacitors VC.

従って、コンデンサ四の静電容量rCとするとv −Q
 / Cなる電圧がオペアンプ(財)の出力に現われる
。ここで電荷晰Qは筒内圧力と比例関係にあるため、オ
ペアンプ(6)の出力電圧Vは筒内圧力I/i:応じた
値となり、エンジン運転中には第7図に示すような燃焼
圧力信号を出力する0〔発明が解決しようとする課題〕 ところが、上述した圧電形筒内圧センサ111において
は圧カー電荷喰変換持性に温度変化があり、また、圧電
素子の温度変化に対してはパイロ効果と呼ばれる電荷発
生の特性がある。特に、第5図に示すように燃焼室内近
傍に設置される場合には、シリンダヘラ)r +21や
点火プラグ131の温度上昇や、燃焼室内温度の伝達に
よるサイクル毎の温度変化が大きいため、前述したチャ
ージアンプの出力信号波形は上記温度変化の影響を大き
く受け、正確な測定が不可能になるという課題があった
。・きた、何らかの形で温度補償を行おうとしてもチャ
ージアンプの回路では出力電荷をコンデンサーで直接−
電圧値に変換するため複雑になるという課題があった。
Therefore, if the capacitance rC of capacitor 4 is v -Q
A voltage of /C appears at the output of the operational amplifier. Here, since the electric charge Q is proportional to the cylinder pressure, the output voltage V of the operational amplifier (6) is a value corresponding to the cylinder pressure I/i, and during engine operation, the combustion [Problem to be Solved by the Invention] However, in the piezoelectric type cylinder pressure sensor 111 described above, the piezoelectric charge absorption property changes with temperature, and the piezoelectric element does not respond to temperature changes. has a characteristic of charge generation called the pyro effect. In particular, when it is installed near the combustion chamber as shown in Fig. 5, there is a large temperature change in each cycle due to the temperature rise of the cylinder spatula (r+21) and the spark plug 131, and the transmission of the temperature in the combustion chamber. The problem is that the output signal waveform of the charge amplifier is greatly affected by the temperature change, making accurate measurement impossible.・Now, even if you try to compensate for the temperature in some way, the charge amplifier circuit will directly transfer the output charge to the capacitor.
The problem was that it became complicated because it was converted into a voltage value.

本発明はこのような課題に犠みてなされたものであり、
筒内圧センサの出力信号から筒内圧力に対応する信号を
得る場合に、筒内圧センサの温度変化による影響を受け
ない正確な筒内圧力の計測を実現することを目的とする
The present invention has been made in view of these problems, and
It is an object of the present invention to realize accurate measurement of the cylinder pressure that is not affected by temperature changes of the cylinder pressure sensor when obtaining a signal corresponding to the cylinder pressure from the output signal of the cylinder pressure sensor.

〔課題を解決するための手段〕〔作用〕上記目的を達成
するために、本発明に係る内燃機関の筒内圧力検出装置
1は、筒内圧力検出器の出力信号から筒内圧力に応じた
11号を出力する筒内圧力信号出力回路の出力信号を上
記筒内圧力検出器の温度を測定する温度検出器の出力値
に心じて補正するものである。
[Means for Solving the Problem] [Operation] In order to achieve the above object, the cylinder pressure detection device 1 for an internal combustion engine according to the present invention detects the cylinder pressure according to the output signal of the cylinder pressure detector. The output signal of the in-cylinder pressure signal output circuit which outputs No. 11 is corrected in consideration of the output value of the temperature detector which measures the temperature of the above-mentioned in-cylinder pressure detector.

〔実施例〕〔Example〕

第1図に本発明の一実施例を示す。第1図において、 
511と櫻はオペアンプ、iii、 ’f1. +57
1は抵抗であシ、特に抵抗53は可変抵抗器であシ、制
御端子・喝の電圧によって抵抗値が変化する。筐た、I
と頓はコンデンサ%+61 ttlサーミスタ、(至)
は増幅器である。圧電形筒内圧センサil+の出力はオ
ペアンプIIυの反転入力に接続され、抵抗的はオペア
ンプ6υの反転入力と出力間に接続される。コンデンサ
間と抵抗頌は直列にオペアンプ)υの出力とオペアンプ
is5の反転入力との間に接続され、抵抗be)とコン
デンサ111は並列にオペアンプ、1カの反転入力と出
力との間に接続される。
FIG. 1 shows an embodiment of the present invention. In Figure 1,
511 and Sakura are operational amplifiers, iii, 'f1. +57
1 is a resistor, and in particular, the resistor 53 is a variable resistor, and the resistance value changes depending on the voltage at the control terminal. Keita, I
Toton is capacitor% + 61 TTL thermistor, (to)
is an amplifier. The output of the piezoelectric cylinder pressure sensor il+ is connected to the inverting input of the operational amplifier IIυ, and resistively connected between the inverting input and the output of the operational amplifier 6υ. The capacitor and the resistor 111 are connected in series between the output of the operational amplifier) υ and the inverting input of the operational amplifier is5, and the resistor be) and the capacitor 111 are connected in parallel between the inverting input and output of the operational amplifier 1. Ru.

また、オペアンプ5υ及びF1aの非反転入力はともに
接地される。
Further, the non-inverting inputs of the operational amplifier 5υ and F1a are both grounded.

また、サーミスタ161の出力は増幅器581に入力さ
れ、増幅器泗の出力は抵抗的のl1lal端子に人力さ
れる。
Further, the output of the thermistor 161 is input to an amplifier 581, and the output of the amplifier is input to the resistive l1lal terminal.

次に第1図に示した一実施例の動作を説明する。いま、
圧電形筒内圧センサ…の出力から筒内圧力に対応して’
[?1fTQが出力されると、オペアンプ50のフィー
ドバック制御によって、抵抗ら漫には−d5a、なる′
電流がオペアンプtillから出力される。そして、抵
抗−の電圧降下によってオペアンプ60の出力電圧V、
は砥抗頌の抵抗値R。
Next, the operation of the embodiment shown in FIG. 1 will be explained. now,
Corresponding to the cylinder pressure from the output of the piezoelectric cylinder pressure sensor...
[? When 1fTQ is output, the feedback control of the operational amplifier 50 causes the resistance to become -d5a.
A current is output from the operational amplifier till. Then, due to the voltage drop across the resistor, the output voltage V of the operational amplifier 60,
is the resistance value R of the abrasive.

とすると Q V、−−R,− t となる。すなわち、圧電形筒内圧センサの出力篭流鶴+
1が電圧値に変換されるものである。このオペアンプ5
9の出力電圧V、の信号成形を第2図の(&1に示す。
Then, Q V, -R, -t. In other words, the output of the piezoelectric cylinder pressure sensor is +
1 is converted into a voltage value. This operational amplifier 5
The signal shaping of the output voltage V of 9 is shown in (&1) in FIG.

この波形は筒内圧力を時間微分したものに相当する。This waveform corresponds to the time derivative of the cylinder pressure.

オペアンプ2a7カから その欠に、オペアノ F12+の反転入力VCはコンデ
ンサIと抵抗t5119に経て電流が流れる。
A current flows from the operational amplifier 2a7 to the inverting input VC of the operational amplifier F12+ via the capacitor I and the resistor t5119.

ここで、コンデンサ間は変流結合用として用いられるた
め静電容量に充分大きく設定され筒内圧力雪化による電
流変化率に対しインピーダンスが極めて小さくなるよう
になっている。それ故、そこに流れる電流工111−を
下式のように、オペアンプ心aの出力電圧V、と抵抗5
@の抵抗(iiiRxで決定される。
Here, since the space between the capacitors is used for current coupling, the capacitance is set to be sufficiently large so that the impedance becomes extremely small with respect to the rate of change in current due to pressure build-up in the cylinder. Therefore, the current flow 111- flowing there is expressed as the output voltage V of the operational amplifier core a, and the resistor 5 as shown below.
Resistance of @ (determined by iiiRx).

そして、オペアンプφ)2の出力からはフィードバック
制御によって一工雪の電流が流れる。ここで、抵抗67
1はオペアンプi+’4の出力電圧v1を長時間の時定
数で苓点復帰孕せるための抵抗であシ、その抵抗1崗R
sはコンデンサーrc流れる電流に対して無視できる程
度のa流となるような高抵抗1向に設置されている。従
って、オペアンプ葡の出力゛電圧V、は下式のように出
力電流−Isとコンデンサ醐の静it答tC雪によって
決定される。
Then, a current of one magnitude flows from the output of the operational amplifier φ)2 due to feedback control. Here, resistance 67
1 is a resistor for returning the output voltage v1 of the operational amplifier i+'4 to the zero point with a long time constant, and the resistor 1 is R.
The capacitor s is installed in one direction with high resistance so that the current a is negligible compared to the current flowing through the capacitor rc. Therefore, the output voltage V of the operational amplifier is determined by the output current -Is and the static response tC of the capacitor as shown in the following equation.

すなわち、オペアンプ5カの出力電圧v3は圧電形面内
圧センサ+l+の出力電荷Qに、比例するものであり、
第6図のlblに示すようにその出力信号は筒内圧力そ
のものに相当する。
In other words, the output voltage v3 of the five operational amplifiers is proportional to the output charge Q of the piezoelectric in-plane pressure sensor +l+,
As shown by lbl in FIG. 6, the output signal corresponds to the cylinder pressure itself.

このように、圧電形筒内圧センサの出力信号ケミ流愉と
して入力し、その入力嘔流偏に応じた1g @ t−補
元することによって、前回圧力1d号を得ることができ
る。
In this way, the previous pressure 1d can be obtained by inputting the output signal of the piezoelectric in-cylinder pressure sensor as the chemical flow and performing 1g@t-complementation according to the input flow bias.

ところで、圧電形部内圧センサ…の圧カー醸#臘変換係
数には正の温度特性があり、温度が篩くなると出力゛嘔
荷電が多くなる。そのため、オペアンプ511の出力信
号は第2(alの破線に示すように大さくなり、正確な
筒内圧力を得るには圧゛1杉筒内圧センサ111の温度
変化に対する補正が心安となる。そこで5本−′−%施
例Vこおいては第3図にボ丁ように圧電形量内圧センサ
山の内部にサーミスタ(6)金組み入れている。第3図
は第4図に対して、サーミスタ(61の他にIII極a
4と絶縁板061が追加されている。そしてサーミスタ
16)の抵抗変化量から温度変化量を検出している。
By the way, the pressure curve conversion coefficient of the piezoelectric internal pressure sensor has a positive temperature characteristic, and as the temperature decreases, the output and charge increase. Therefore, the output signal of the operational amplifier 511 increases as shown by the broken line of the second (al), and in order to obtain accurate cylinder pressure, it is safe to correct the temperature change of the cylinder pressure sensor 111. 5-'-% Example V In this case, a thermistor (6) is incorporated inside the piezoelectric internal pressure sensor mountain as shown in Fig. 3. Thermistor (III pole a in addition to 61)
4 and an insulating plate 061 are added. The amount of temperature change is detected from the amount of resistance change of the thermistor 16).

そして、増幅器−は入力に接続された抵抗値を電圧値に
変換するものであり、サーミスタ161の抵抗変化量を
電圧変化量に変換する。オペアンプillのフィードバ
ック用の抵抗心は増幅4帽の出力電圧に応じて抵抗値を
変化させる。それ故、圧電形筒内圧センサ…の温度が上
昇し、出力電荷瞳が増加することによってオペアンプ5
υの出力信号が第2図(!L1の破線のように大きくな
ろうとしても、サーミスタ(61の抵抗値変化によって
抵抗嗜の抵抗値が小さくなるため、圧電形筒内圧センサ
…の温度変化に拘らず、第2図IJLIの実線で示す信
号を得ることができ%第2図1b+に示すように常に安
定した筒内圧力信号を得ることができる。
The amplifier converts the resistance value connected to its input into a voltage value, and converts the resistance change amount of the thermistor 161 into a voltage change amount. The resistance value of the feedback resistor core of the operational amplifier Ill changes according to the output voltage of the amplifier 4 cap. Therefore, as the temperature of the piezoelectric cylinder pressure sensor increases and the output charge pupil increases, the operational amplifier 5
Even if the output signal of υ tries to increase as shown by the broken line in Figure 2 (!L1), the resistance value of the thermistor (61) decreases due to the change in the resistance value of the thermistor (61). Regardless, the signal shown by the solid line IJLI in FIG. 2 can be obtained, and a stable cylinder pressure signal can always be obtained as shown in FIG. 2 1b+.

なお、上記f施例においては温度測定器としてサーミス
タを用いたが、半導体や熱電対等の他の方法を用いるこ
ともできる。また、温度測定器は、筒内圧センサに内蔵
する以外に隣接して設置することもできる。
Although a thermistor was used as the temperature measuring device in the above embodiment f, other methods such as a semiconductor or a thermocouple may also be used. Moreover, the temperature measuring device can be installed adjacent to the in-cylinder pressure sensor instead of being built into the cylinder pressure sensor.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり1本発明によれば筒内圧センサに温
度変化が生じてもそれによる変化のない安定した筒内圧
力信号を得ることができる。
As explained above, according to the present invention, it is possible to obtain a stable cylinder pressure signal that does not change even if a temperature change occurs in the cylinder pressure sensor.

図は第1図の一実施例の動作説明図、第3図は第1図の
実施例における圧電形筒内圧センサの断面構造図、第4
図は圧電形筒内圧センサの断面構造図、第5図は圧電形
筒内圧センサの取付図、第6図は従来装置の回路図、第
7図は従来装置の出力波形図である。
The figures are an explanatory view of the operation of one embodiment of Fig. 1, Fig. 3 is a cross-sectional structural diagram of the piezoelectric cylinder pressure sensor in the embodiment of Fig. 1, and Fig.
5 is an installation diagram of the piezoelectric cylinder pressure sensor, FIG. 6 is a circuit diagram of a conventional device, and FIG. 7 is an output waveform diagram of the conventional device.

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関の燃焼気筒内の圧力を検出する筒内圧力
検出手段、この筒内圧力検出器の出力信号から筒内圧力
に応じた信号を出力する筒内圧力信号出力手段、上記筒
内圧力検出検出手段の温度を測定する温度検出手段、温
度検出手段の出力に応じて上記筒内圧力信号出力手段の
出力を補正する温度補正手段とを備えた内燃機関の筒内
圧力検出装置。
(1) In-cylinder pressure detection means for detecting the pressure in the combustion cylinder of an internal combustion engine; in-cylinder pressure signal output means for outputting a signal according to the in-cylinder pressure from the output signal of this in-cylinder pressure detector; A cylinder pressure detection device for an internal combustion engine, comprising a temperature detection means for measuring the temperature of the pressure detection means, and a temperature correction means for correcting the output of the cylinder pressure signal output means according to the output of the temperature detection means.
JP63039906A 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine Pending JPH01213534A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63039906A JPH01213534A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine
KR1019890001746A KR920006455B1 (en) 1988-02-22 1989-02-15 Cylinder pressure detecting apparatus
DE3905824A DE3905824A1 (en) 1988-02-22 1989-02-22 Device for detecting the pressure in a cylinder of an internal combustion engine
US07/503,072 US5062294A (en) 1988-02-22 1990-03-29 Apparatus for detecting pressure in cylinder of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039906A JPH01213534A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01213534A true JPH01213534A (en) 1989-08-28

Family

ID=12566000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039906A Pending JPH01213534A (en) 1988-02-22 1988-02-22 Inside-cylinder pressure detector for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01213534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229329A (en) * 2008-03-25 2009-10-08 Ngk Spark Plug Co Ltd Output correction device for cylinder pressure sensor and cylinder pressure detecting device provided therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009229329A (en) * 2008-03-25 2009-10-08 Ngk Spark Plug Co Ltd Output correction device for cylinder pressure sensor and cylinder pressure detecting device provided therewith

Similar Documents

Publication Publication Date Title
US5062294A (en) Apparatus for detecting pressure in cylinder of internal combustion engine
CN203037265U (en) Temperature compensating circuit
Ferrari et al. Oscillator-based interface for measurand-plus-temperature readout from resistive bridge sensors
US3181365A (en) Thermal noise investigation
JPH01213534A (en) Inside-cylinder pressure detector for internal combustion engine
JPS62267636A (en) Sensor
JP4809837B2 (en) How to operate a heat loss pressure sensor with resistance
JPS62168030A (en) Temperature compensating circuit for semiconductor pressure sensor
US4090151A (en) Temperature sensing device for producing alternating electric signals whose period is a function of a temperature
JP3410562B2 (en) Temperature / wind speed measurement device
JPS6248280B2 (en)
RU2082129C1 (en) Converter of pressure to electric signal
JPH0593736A (en) Piezo-electric type acceleration sensor
JPS5839397A (en) Compensation type spot sensor
JPH08226862A (en) Sensor and method for performing temperature compensation for measuring-range fluctuation in sensor thereof
JPH04307331A (en) Complex sensor
KR100443584B1 (en) Apparatus and Method for detecting a temperature
JP3519464B2 (en) Heat detector
SU1339413A1 (en) Temperature measuring device
JPH01213535A (en) Inside-cylinder pressure detector for internal combustion engine
JPS5912570Y2 (en) Flow rate measuring device
SU879481A1 (en) Device for measuring resistance increment
SU1247680A1 (en) Time-to-pulse converter or device for measuring temperature
SU1569742A1 (en) Transducer of signals of strain-gauge signals
JPH03220402A (en) Detecting circuit of strain of semiconductor