JPH01212728A - Manufacture of shape memory alloy - Google Patents

Manufacture of shape memory alloy

Info

Publication number
JPH01212728A
JPH01212728A JP3740688A JP3740688A JPH01212728A JP H01212728 A JPH01212728 A JP H01212728A JP 3740688 A JP3740688 A JP 3740688A JP 3740688 A JP3740688 A JP 3740688A JP H01212728 A JPH01212728 A JP H01212728A
Authority
JP
Japan
Prior art keywords
alloy
shape memory
memory alloy
atomic percent
tinicu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3740688A
Other languages
Japanese (ja)
Other versions
JP2589125B2 (en
Inventor
Kiyoshi Yamauchi
清 山内
Hiroshi Ishikawa
洋 石川
Shinichi Kubo
久保 進一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63037406A priority Critical patent/JP2589125B2/en
Publication of JPH01212728A publication Critical patent/JPH01212728A/en
Application granted granted Critical
Publication of JP2589125B2 publication Critical patent/JP2589125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shape memory alloy having low hysteresis and excellent toughness by melting a Ti-Ni-Cu alloy, subjecting it to quenching and solidifying and suppressing the deposition of a TiCu phase from the mother phase of the alloy in the quenching stage. CONSTITUTION:The ingot of the Ti-Ni-Cu alloy is melted and is subjected to quenching and solidifying by spraying it onto the surface of a revolving cylinder to form into the state of a streak or wire. The deposition of TiCu from the mother phase of the Ti-Ni-Cu alloy is suppressed in the quenching stage. The compsn. of the alloy is constituted of, by atom, 49-51% Ti, 10-30% Cu, at least one kind among 0.01-5.0% V, Cr and Fe and the balance consisting of Ni. By this method, a shape-memory spring having low hysteresis can easily be manufactured and the shape memory alloy for an actuator, etc., having excellent toughness can be obtd. at low cost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チタン・ニッケル・銅基形状記憶合金の製造
に関するもので、特にしステリシスの小さい、且つ、低
温時と高温時の荷重差の大きい形状記憶合金の製造方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the production of titanium-nickel-copper-based shape memory alloys, and in particular, the invention relates to the production of titanium-nickel-copper-based shape memory alloys, which have a small steresis and a load difference between low and high temperatures. The present invention relates to a method for manufacturing large shape memory alloys.

[従来の技術] 一般にT1Ni合金が熱弾性型マルテンサイト変態の逆
変態に付随して顕著な形状記憶効果を示すことはよく知
られている。
[Prior Art] It is generally well known that T1Ni alloy exhibits a remarkable shape memory effect accompanying the reverse transformation of thermoelastic martensitic transformation.

また、特公昭61−54850号公報のようにNiの一
部をCuで置換したT i N i Cu合金が前記同
様の形状記憶効果を示し、かつ、組成に対し変態温度が
殆んど無関係であることはR11eleonらによって
見出されている。
Furthermore, as disclosed in Japanese Patent Publication No. 61-54850, a TiNiCu alloy in which part of Ni is replaced with Cu exhibits the same shape memory effect as described above, and the transformation temperature is almost unrelated to the composition. Something has been discovered by R11eleon et al.

更に、このT i N i Cu合金は、Cuの添加量
が増えるにつれ、マルテンサイト変態温度と逆変態温度
が近接し、マルテンサイト相は、T i N i2元合
金については、単斜晶であるのに対して、Cu1O原子
パ一セント以上のT i N i Cu合金では斜方晶
となることが重量らによって見出されている。(東北大
選研索報37 (1981) 79 )重量らによって
見出された特徴は、応力−温度しステリシスの小さなバ
ネ製作を可能にし、これまで自動車用バネ等に実用化さ
れている。
Furthermore, in this TiNiCu alloy, as the amount of Cu added increases, the martensitic transformation temperature and the reverse transformation temperature approach each other, and the martensitic phase is monoclinic for the TiNi binary alloy. On the other hand, Weight et al. found that a T i N i Cu alloy containing more than 1 atomic percent of Cu becomes orthorhombic. (Tohoku University Research Report 37 (1981) 79) The characteristics discovered by Weight et al. enable the production of springs with small stress-temperature steresis, and have been put to practical use in automobile springs and the like.

[発明が解決しようとする課題] T i N i Cu合金は、Cu添加量を10原子パ
ーセントから増加されるに従ってマルテンサイト相の結
晶楕遠の変化に仔いT i Cuが析出し始め、その結
晶構造の変化1の増加と伴に、T i Cuの析出量は
多くなる。このT i CuはT i N i Cu合
金を脆くさせるので、T i N i Cu合金の製造
を困難にさせている。このため、しステリシスの小さな
バネを得るためには、Cuを多く添加した方が良いが、
前記T1Cuの析出の増大によってT i N i C
u合金の製造は困難になり、これまでのT i N i
 Cu合金の製造方法ではT i N i合金の10原
子パーセントのCu添加が限度であった。
[Problems to be Solved by the Invention] In a TiNiCu alloy, as the amount of Cu added is increased from 10 atomic percent, TiCu begins to precipitate due to changes in the crystal ellipse of the martensitic phase. As the change 1 in the crystal structure increases, the amount of T i Cu precipitated increases. This T i Cu makes the T i N i Cu alloy brittle, making it difficult to manufacture the T i N i Cu alloy. Therefore, in order to obtain a spring with small steresis, it is better to add a large amount of Cu, but
Due to the increased precipitation of T1Cu, T i N i C
It has become difficult to manufacture u-alloys, and the conventional T i N i
In the manufacturing method of Cu alloy, the limit is 10 atomic percent Cu addition to TiNi alloy.

ここで云うこれまでの方法では、前記特公昭61−54
850号公報に記載されているものであって、黒鉛ルツ
ボ内でアルゴン雰囲気の誘導炉によって溶解し、黒鉛鋳
型に鋳遺し、900℃で焼鈍を繰り返しながら、約10
%ごとの加工を行う方法である。この加工方法によれば
、鋳造時の溶湯凝固過程でのT i Cu析出は避けら
れず、得′られたT i N i Cu合金材料は脆<
、Cu添加量が原子パーセント以上のT i N i 
Cu合金のfJji造後の加工工程すなわち、熱間およ
び冷間加工では素材にしビ・クラックが入り、所要の寸
法素材は得られないという欠点を有した。
In the conventional method mentioned here, the above-mentioned
It is described in Japanese Patent No. 850, and is melted in a graphite crucible in an induction furnace in an argon atmosphere, cast in a graphite mold, and repeatedly annealed at 900°C for about 10 minutes.
This is a method of processing by percentage. According to this processing method, TiCu precipitation during the molten metal solidification process during casting is unavoidable, and the obtained TiNiCu alloy material is brittle.
, T i N i in which the amount of Cu added is atomic percent or more
The processing steps after fJji fabrication of Cu alloys, that is, hot and cold working, have the drawback that cracks occur in the material, making it impossible to obtain a material with the required dimensions.

本発明は上記欠点に鑑みて行われており、バネ材料とし
てしステリシスの小さく、靭性のすぐれた形状記憶合金
1!!3m方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned drawbacks, and it is a shape memory alloy that can be used as a spring material with small steresis and excellent toughness! ! The purpose is to provide a 3m method.

[課題を解決するための手段] 本発明によればT i N i Cu合金インゴットか
ら溶融する溶融工程と、溶融状態の上記T i N i
Cu合金を急冷凝固する急冷工程とを有し、上記急冷工
程は上記T i N i Cu合金母相からT1Cu相
析出を抑制することを特徴とする形状記憶合金の製造方
法が得られる。
[Means for Solving the Problems] According to the present invention, a melting step of melting a T i N i Cu alloy ingot, and the above-mentioned T i N i in a molten state are performed.
A method for manufacturing a shape memory alloy is obtained, which comprises a quenching step of rapidly solidifying a Cu alloy, and the quenching step suppresses precipitation of a T1Cu phase from the T i N i Cu alloy matrix.

ここで、本発明においては、T i N i Cu合金
とはT150原子パーセント、N1を最低で15原子パ
ーセント、およびCuを10〜30原子パーセント、な
らびにCr、Feおよび■から選択した少なくとも1種
の元素を0.01〜5原子パーセントを含むT i N
 i Cu基形状記憶合金をいう、また、急冷工程は、
T i N i Cu合金母相からのT i Cuの析
出を抑え、このことにより所要寸法製作可能にし、さら
に溶融状態条または線状に急冷凝固させることが可能と
なる。
Here, in the present invention, the TiNiCu alloy is T150 atomic percent, N1 at least 15 atomic percent, Cu 10 to 30 atomic percent, and at least one selected from Cr, Fe, and ■. T i N containing 0.01 to 5 atomic percent of the element
i Cu-based shape memory alloy, and the quenching process is
Precipitation of T i Cu from the T i N i Cu alloy parent phase is suppressed, thereby making it possible to manufacture the desired dimensions and further making it possible to rapidly solidify into a molten state strip or linear shape.

本発明においては、形状記憶合金は一般的に次式によっ
て表わされる。
In the present invention, the shape memory alloy is generally represented by the following formula.

Ti  Ni   Cu  、およびT i 、、0−
、−。
Ti Ni Cu , and T i , 0-
,-.

50  50−x   X Cu  Y y yはCr、Fe、Vのうち少くとも1種で入は入;10
〜35の範囲内、yは0.5〜5.0の範囲内である。
50 50-x X Cu Y y y is at least one of Cr, Fe, and V; 10
~35, and y is within the range of 0.5 to 5.0.

ここで、本発明においてはCu添加量10原子パーセン
ト未満では、従来法によっても容易に合金は加工され、
かつ、本発明の目的であるしステリシスの小さい合金素
子を得ることはできない。
Here, in the present invention, when the amount of Cu added is less than 10 atomic percent, the alloy can be easily processed even by conventional methods.
Moreover, it is not possible to obtain an alloy element with small steresis, which is the object of the present invention.

また、Cu添加量が30原子パーセントを越えると、T
 i Cu析出は顕著に認めらないが、曲げ特性が悪く
なる。
Moreover, when the amount of Cu added exceeds 30 atomic percent, T
Although no significant Cu precipitation was observed, the bending properties deteriorated.

更に、本発明においては、Cr、Fe、およびV添加は
いずれも変態温度を低下される効果を有するが、5原子
パーセントを越えると、曲げ特性の劣化と同時に変態温
度が一100℃以下となり、バネ材料としては実用的で
はない。
Furthermore, in the present invention, the addition of Cr, Fe, and V all have the effect of lowering the transformation temperature, but when the addition exceeds 5 atomic percent, the transformation temperature decreases to 1100°C or less at the same time as the bending properties deteriorate. It is not practical as a spring material.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る形状記憶合金の3!!遠
方法を示す。
FIG. 1 shows shape memory alloy 3 according to an embodiment of the present invention. ! Show the distance method.

図のような片ロール装置で、アルゴン雰囲気中にて黒鉛
ノズル1中で表−1の化学組成の合金インゴット小片を
再溶解し、1.O気圧の噴出圧で、1000 r p 
mの速度で回転するステンレス製ロール3の表面に噴出
させ巾5閣厚さ0.02mの薄帯を製造した。
Using a single roll device as shown in the figure, a small piece of alloy ingot having the chemical composition shown in Table 1 was remelted in a graphite nozzle 1 in an argon atmosphere.1. 1000 r p with an injection pressure of O atmosphere
A thin strip having a width of 5 m and a thickness of 0.02 m was produced by jetting the mixture onto the surface of a stainless steel roll 3 rotating at a speed of 5 m.

以下余白 表−1 表2はこのように合金インゴット1〜19より得られた
薄帯10を室温で7字型に曲げ、■曲げ破断の有無を調
べた結果で、表2の薄帯試料番号は表1のインゴット番
号にそれぞれ対応している。
Margin table below - 1 Table 2 shows the results of bending the ribbon 10 obtained from alloy ingots 1 to 19 into a figure 7 shape at room temperature and examining the presence or absence of bending breakage. correspond to the ingot numbers in Table 1, respectively.

以下余白 表−2 臥下余日 表−2にように本発明の実施例の方法より得られた薄帯
番号1〜61番号8〜10.番号12〜13、番号16
〜18はいずれも破断は認められなかった。
As shown in Margin Table-2 Table-2 below, the ribbon numbers 1 to 61 and the numbers 8 to 10 obtained by the method of the embodiment of the present invention are shown in Table 2. Number 12-13, number 16
No breakage was observed in any of samples 1 to 18.

次に本発明の実施例の方法により得られた薄帯を示差走
査熱量計(DSC)によってマルテンサイト変態温度(
MS)、および逆変態温度(As)を測定した。その結
果を表−2に示す。
Next, the ribbon obtained by the method of the example of the present invention was measured using a differential scanning calorimeter (DSC) at the martensitic transformation temperature (
MS) and reverse transformation temperature (As) were measured. The results are shown in Table-2.

本発明により得られた合金は、薄帯試料1〜6゜薄帯試
料8〜10.薄帯12〜13.薄帯16〜18はいずれ
もマルテンサイト変態温度と逆変態温度の近接が認めら
れた。従って本発明の実施例による方法により得られた
形状記憶合金を感温素子として使用する場合、しステリ
シスの小さい素子の提供が可能である。また、T i 
Cu析出物の有無を調べるために、光学顕微鏡およびX
線マイクロアナライザーで形状記憶合金薄帯を調べたが
、いずれも顕著なT i Cuの析出は認められなかっ
た6表−2は、試料番号は表−1の合金の化学組成を示
す試料番号と同じでこの合金の試料は次のようにi遺さ
れた。
The alloy obtained according to the present invention was used for ribbon samples 1 to 6 degrees and ribbon samples 8 to 10 degrees. Thin strips 12-13. In all ribbons 16 to 18, it was observed that the martensitic transformation temperature and the reverse transformation temperature were close to each other. Therefore, when the shape memory alloy obtained by the method according to the embodiment of the present invention is used as a temperature-sensitive element, it is possible to provide an element with small steresis. Also, T i
To examine the presence or absence of Cu precipitates, optical microscopy and
The shape memory alloy ribbons were examined using a wire microanalyzer, but no significant TiCu precipitation was observed in any of them.6 In Table 2, the sample number is the same as the sample number indicating the chemical composition of the alloy in Table 1. A sample of this alloy was also prepared as follows.

高周波真空溶解によって溶融され、鉄板上に鋳込まれた
T i N i Cu合金インゴットを2分割した。一
方は本発明のための供試材とされた0表−1に実施に用
いられた合金インゴットの組成を示している。比較の為
に同様な方法により得られたT i N i Cu合金
インゴットの他方を従来法によって熱間加工および冷間
加工(900℃での焼なまし、および10%の冷間加工
率)し、加工性の良否判定した。
A T i N i Cu alloy ingot that was melted by high frequency vacuum melting and cast on an iron plate was divided into two parts. On the other hand, Table 0-1 shows the composition of the alloy ingot used as a test material for the present invention. For comparison, the other T i N i Cu alloy ingot obtained by the same method was hot worked and cold worked (annealed at 900 ° C. and cold working rate of 10%) by the conventional method. , the workability was judged.

すなわち、表−1に示される化学組成の合金インゴット
試料1〜19を900℃で2時間の均−化処理分、90
0℃の温度で熱間加工を行った。
That is, alloy ingot samples 1 to 19 having the chemical compositions shown in Table 1 were equalized at 900°C for 2 hours, and 90%
Hot working was carried out at a temperature of 0°C.

その結果、試料1.2は容易に加工された。試料3は耳
割れを生じたがかろうじて加工された。また試料4〜1
9は全く加工されなかった。
As a result, sample 1.2 was easily processed. Sample 3 developed edge cracking, but was barely processed. Also, samples 4 to 1
9 was not processed at all.

次に加工率10%毎に900°Cで30分間の焼なまし
を繰り返しながら0.02+m+の板厚まで加工された
。試料1,2は容易に加工されたが、試料3はかろうじ
て加工された。
Next, the plate was processed to a thickness of 0.02+m+ while repeating annealing at 900°C for 30 minutes at every 10% processing rate. Samples 1 and 2 were easily processed, but sample 3 was barely processed.

それらの結果を表2に示している。The results are shown in Table 2.

第2図は本発明の他の実施例に係る急冷凝固薄帯を得る
方法の説明図である。
FIG. 2 is an explanatory diagram of a method for obtaining a rapidly solidified ribbon according to another embodiment of the present invention.

この図において、黒鉛ノズル11中から実施例に係る形
状記憶合金の溶湯12を噴出させて、噴出した溶湯は、
1対のロール13及び13′間に挾まれて急冷凝固薄帯
となる。
In this figure, the molten metal 12 of the shape memory alloy according to the example is ejected from the graphite nozzle 11, and the ejected molten metal is as follows.
It is sandwiched between a pair of rolls 13 and 13' to form a rapidly solidified ribbon.

第3図は本発明のもう1つの実施例に係る急冷凝固薄帯
を得る方法の説明図である。
FIG. 3 is an explanatory diagram of a method for obtaining a rapidly solidified ribbon according to another embodiment of the present invention.

この図において、黒鉛ノズル1中から、本発明の実施例
に係る形状記憶合金の溶湯22を噴出させて、噴出した
溶湯は、回転するカップ状の内壁に反射して薄帯となる
In this figure, a molten metal 22 of a shape memory alloy according to an embodiment of the present invention is ejected from a graphite nozzle 1, and the ejected molten metal is reflected on the inner wall of a rotating cup shape to form a thin ribbon.

以上、本発明の実施例に係る形状記憶合金の製造方法は
、第1図〜第3図のようであるが、これらに限定されな
い。
As described above, the method for manufacturing a shape memory alloy according to an embodiment of the present invention is shown in FIGS. 1 to 3, but is not limited thereto.

[発明の効果] 以上説明したように、本発明によれば、TiNiCu合
金の溶融状態からの急冷工程によって、T i N i
 Cu合金母相がらしステリシスの小さな形状記憶バネ
を容易に製造でさるとともに、安価なアクチュエータ等
の靭性のすぐれた形状記憶合金の製造方法の提供が可能
である。
[Effects of the Invention] As explained above, according to the present invention, T i Ni
It is possible to easily manufacture a shape memory spring with a small steresis using a Cu alloy matrix, and also to provide a method for manufacturing a shape memory alloy with excellent toughness such as an inexpensive actuator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る形状記憶合金の急冷凝
固薄帯を製造する方法を示す説明図、第2図および第3
図は本発明の他の実施例に係る形状記憶合金の急冷凝固
薄帯を製造する方法を示す説明図である。 1・・・ノズル、2・・・溶湯、3.3′・・・ロール
、10.20.30・・・薄帯。
FIG. 1 is an explanatory diagram showing a method for producing a rapidly solidified ribbon of a shape memory alloy according to an embodiment of the present invention, and FIGS.
The figure is an explanatory diagram showing a method for producing a rapidly solidified ribbon of a shape memory alloy according to another embodiment of the present invention. 1... Nozzle, 2... Molten metal, 3.3'... Roll, 10.20.30... Thin ribbon.

Claims (1)

【特許請求の範囲】 1、TiNiCu合金インゴットを溶融する溶融工程と
、溶融状態の上記TiNiCu合金を急冷凝固する急冷
工程とを有し、上記急冷工程は上記TiNiCu合金母
相からのTiCuの析出を抑制することを特徴とする形
状記憶合金の製造方法。 2、上記急冷工程は、溶融状態の上記TiNiCu合金
を、回転する円筒面に噴出して急冷凝固して条又は線状
に成形する急冷工程とを有することを特徴とする第1の
請求項記載の形状記憶合金の製造方法。 3、上記TiNiCu合金インゴットは、49〜51原
子パーセントの範囲内のTi、10〜30原子パーセン
トの範囲内のCu、及び 0.01〜5.0原子パーセントの範囲内のV、Cr、
Feの少くとも1種、残部Niを有することを特徴とす
る第1又は第2の項記載の形状記憶合金の製造方法。
[Claims] 1. A melting process for melting a TiNiCu alloy ingot, and a rapid cooling process for rapidly solidifying the TiNiCu alloy in a molten state, and the rapid cooling process prevents precipitation of TiCu from the TiNiCu alloy matrix. A method for manufacturing a shape memory alloy characterized by suppressing the shape. 2. The quenching step includes a quenching step in which the molten TiNiCu alloy is injected onto a rotating cylindrical surface and rapidly solidified to form a strip or line. A method for producing shape memory alloys. 3. The TiNiCu alloy ingot contains Ti within the range of 49 to 51 atomic percent, Cu within the range of 10 to 30 atomic percent, and V, Cr within the range of 0.01 to 5.0 atomic percent,
2. The method for producing a shape memory alloy according to the first or second item, characterized in that the shape memory alloy contains at least one type of Fe and the remainder is Ni.
JP63037406A 1988-02-22 1988-02-22 Manufacturing method of shape memory alloy Expired - Fee Related JP2589125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037406A JP2589125B2 (en) 1988-02-22 1988-02-22 Manufacturing method of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037406A JP2589125B2 (en) 1988-02-22 1988-02-22 Manufacturing method of shape memory alloy

Publications (2)

Publication Number Publication Date
JPH01212728A true JPH01212728A (en) 1989-08-25
JP2589125B2 JP2589125B2 (en) 1997-03-12

Family

ID=12496644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037406A Expired - Fee Related JP2589125B2 (en) 1988-02-22 1988-02-22 Manufacturing method of shape memory alloy

Country Status (1)

Country Link
JP (1) JP2589125B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092616B2 (en) 2004-03-11 2012-01-10 Japan Science And Technology Agency Method for producing a giant magnetostrictive alloy
CN116005035A (en) * 2022-12-30 2023-04-25 西安理工大学 Shape memory alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104459A (en) * 1982-12-07 1984-06-16 Sumitomo Electric Ind Ltd Preparation of shape memory alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104459A (en) * 1982-12-07 1984-06-16 Sumitomo Electric Ind Ltd Preparation of shape memory alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092616B2 (en) 2004-03-11 2012-01-10 Japan Science And Technology Agency Method for producing a giant magnetostrictive alloy
CN116005035A (en) * 2022-12-30 2023-04-25 西安理工大学 Shape memory alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2589125B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JP4128614B2 (en) Formation of metallic glass containing beryllium
JP2005504882A (en) Method for improving bulk solidified amorphous alloy composition and castings made therefrom
EP1308528A1 (en) Alfa-beta type titanium alloy
JP2005502782A (en) Method for forming molded article of amorphous alloy having high elastic limit
JPS6159390B2 (en)
CN110484886B (en) Nickel-rhenium alloy rotary tubular target containing trace rare earth elements and preparation method
CN114990382B (en) Ultra-low-gap phase transition induced plasticity metastable beta titanium alloy and preparation method thereof
US2768915A (en) Ferritic alloys and methods of making and fabricating same
EP0093487B1 (en) Nickel-based alloy
Sergueeva et al. Mechanical response of Zr-based metallic glass
JPH01212728A (en) Manufacture of shape memory alloy
JP2005097689A (en) Component material made of heat resistant alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPH10324961A (en) Iron-based amorphous alloy sheet strip excellent in soft magnetic property, and its manufacture
JPS6324047A (en) Iron/chromium/cobalt type alloy
JP2732934B2 (en) Constant temperature forging die made of Ni-base alloy with excellent high-temperature strength and high-temperature oxidation resistance
US7645350B1 (en) High-density metallic glass alloys
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance
JPS6253585B2 (en)
JP2697242B2 (en) Continuous casting mold material made of Cu alloy having high cooling ability and method for producing the same
WO2023243533A1 (en) Fe-Mn ALLOY, HAIRSPRING FOR WATCH, AND METHOD FOR PRODUCING Fe-Mn ALLOY
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS6033329A (en) Ni based superplastic alloy and manufacture thereof
JPH05125499A (en) Aluminum-base alloy having high strength and high toughness
JP2691713B2 (en) Method for producing Cr-Ni-based stainless steel having excellent hot workability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees