JPH01212304A - Stripe scanning and shearing method - Google Patents

Stripe scanning and shearing method

Info

Publication number
JPH01212304A
JPH01212304A JP3691888A JP3691888A JPH01212304A JP H01212304 A JPH01212304 A JP H01212304A JP 3691888 A JP3691888 A JP 3691888A JP 3691888 A JP3691888 A JP 3691888A JP H01212304 A JPH01212304 A JP H01212304A
Authority
JP
Japan
Prior art keywords
transparent plate
light beam
shearing
preventing film
fringe scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3691888A
Other languages
Japanese (ja)
Inventor
Nobuo Banba
番場 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3691888A priority Critical patent/JPH01212304A/en
Publication of JPH01212304A publication Critical patent/JPH01212304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To perform stripe scanning and shearing easily and accurately, by dividing into two a light flux having a surface to be detected and, shifting sideways one of said divided fluxes with respect to the other. CONSTITUTION:A plane parallel transparent plate 1 provided with a reflection preventing film on one surface thereof and a reflecting surface member 2 having at least one plane not provided with a reflection preventing film are opposed in parallel and with a distance at respective planes not provided with a reflection preventing film. A light flux having a surface to be detected is entered with limited incident angles from the plane provided with the reflection preventing film of the transparent plate 1, so that the light flux is divided into two because of the reflection by the pair of the opposed planes not provided with the reflection preventing film. The optical path length is changed for stripe scanning by displacing the transparent plate 1 and the reflecting surface member 2 relatively in a manner to change the distance therebetween. Thus, the stripe scanning and shearing can be conducted easily and accurately.

Description

【発明の詳細な説明】 (技術分野) 本発明は、縞走査・シアリング方法に関する。[Detailed description of the invention] (Technical field) The present invention relates to a fringe scanning and shearing method.

(従来技術) 縞走査シアリング干渉測定方式は、被験波面の形状を精
度良く測定できる測定方式としてしられ。
(Prior art) The fringe scanning shearing interferometry method is known as a measurement method that can accurately measure the shape of a test wavefront.

非球面の形状測定やレンズ性能測定、あるいは表面粗さ
測定等に応用されている。
It is applied to aspheric shape measurement, lens performance measurement, surface roughness measurement, etc.

このような縞走査シアリング干渉測定方式では被験波面
を有する光束を2分割して互いに横ずらしするシアリン
グ様曙に高精度を要求され、種々のシアリング方式が提
案されている。
In such a fringe-scanning shearing interference measurement method, high precision is required for shearing, in which a light beam having a test wavefront is divided into two and laterally shifted from each other, and various shearing methods have been proposed.

(目  的) 本発明の目的は縞走査シアリング干渉測定方式に於いて
、縞走査とシアリングとを極めて簡易に且つ精度よく行
うことができる新規な縞走査・シアリング方法の提供に
ある。
(Objective) An object of the present invention is to provide a novel fringe scanning/shearing method that can perform fringe scanning and shearing extremely simply and with high precision in a fringe scanning shearing interference measurement method.

(構  成) 以下1本発明を説明する。(composition) One aspect of the present invention will be explained below.

本発明の縞走査・シアリング方法は、縞走査シアリング
干渉測定方式に於いて、被験波面を有する光束を2分割
するとともにシアリングによって一方の光束を他方の光
束に対して横ずらしし、且つ、縞走査のために一方の光
束の光路長を変化させる方法であって、以下の如き特徴
を有する。
The fringe scanning/shearing method of the present invention employs a fringe scanning shearing interference measurement method in which a light beam having a test wavefront is divided into two, one light beam is laterally shifted relative to the other light beam by shearing, and the fringe scanning and shearing method This is a method of changing the optical path length of one of the light beams for the purpose of the present invention, and has the following characteristics.

即ち、片面に反射防止膜を設けた平行平面透明板と、少
なくとも反射防止膜を設けていない平面を1面有する反
射面部材とを1反射防止膜の設けられていない面同士を
互いに間隙を隔して平行にせ、上記反射防止膜の設けら
れていない1対の対向平面での反射により上記光束を2
分割する。
That is, a parallel plane transparent plate provided with an antireflection film on one side, and a reflective surface member having at least one flat surface not provided with an antireflection film, are arranged so that the surfaces not provided with the antireflection film are separated from each other with a gap. The light flux is divided into two by reflection on a pair of opposing planes on which the anti-reflection film is not provided.
To divide.

そして上記平行平面透明板と上記反射面部材を、上記間
隙の大きさを変化させるように相対的に変位させること
により縞走査のための光路長変更を行う。
Then, by relatively displacing the parallel plane transparent plate and the reflective surface member so as to change the size of the gap, the optical path length for stripe scanning is changed.

本発明の方法を図面を参照してより具体的に説明すると
、第1図に於いて、符号1は平行平面透明板を、符号2
は反射面部材を、また符号3は圧電素子をそれぞれ示し
ている。
To explain the method of the present invention in more detail with reference to the drawings, in FIG.
indicates a reflective surface member, and numeral 3 indicates a piezoelectric element.

平行平面透明板1は両面を高度に平面仕上げされ、且つ
両面が高度に平行化された透明板であり。
The parallel plane transparent plate 1 is a transparent plate whose both sides are highly flat-finished and both sides are highly parallelized.

一方の面IAには反射防止膜が形成され、他方の面IB
は反射防止膜の形成を行っていない、この平行平面透明
板としては1例えば平行平面ガラスが利用できる。
An antireflection film is formed on one side IA, and the other side IB
For example, parallel plane glass can be used as the parallel plane transparent plate on which no antireflection film is formed.

反射面部材2は、第1図では、その形態が平行平面板で
あり、平行平面透明板1と同じ材質で形成されている。
In FIG. 1, the reflective surface member 2 is a parallel plane plate, and is made of the same material as the parallel plane transparent plate 1.

この反射面部材2の一方の面2Aには反射防止膜が形成
されていないが、他方の面2Bには反射防止膜が形成さ
れている。
An antireflection film is not formed on one surface 2A of this reflective surface member 2, but an antireflection film is formed on the other surface 2B.

平行平面透明板1と反射面部材2とは、従って反射防止
膜の設けられていない側の面IB、2Aを互いに対向さ
せ、間隙を隔して配備されている。
Therefore, the parallel plane transparent plate 1 and the reflective surface member 2 are arranged with the surfaces IB and 2A on the side where the antireflection film is not provided facing each other with a gap in between.

この図に示された例では、平行平面透明板1は測定装置
空間に固定的であり、反射面部材2の方は、上記装置空
間に固定された圧電素子3に固定されており、圧電素子
3によりその厚み方向へ微小距離ずつ段階的に移動され
る様になっている。
In the example shown in this figure, the parallel plane transparent plate 1 is fixed in the measuring device space, and the reflective surface member 2 is fixed to the piezoelectric element 3 fixed in the device space. 3, it is moved step by step by minute distances in the thickness direction.

被験波面Wを持つ光束を図示の如く平行平面透明板1に
1反射防止膜を設けた面IAの側から有限の入射角φで
入射させると、光束は面IAから入射し一部は面IBで
反射されて観測面8の側へ向かって進む、以下、この光
束を測定光束と呼び、その波面を被験波面Wとする。一
方平行平面透明板1を透過した光束は反射面部材2の面
2Aで反射され、平行平面透明板1を透過して同じく観
測面8の方向へ向かう、以下、この光束を参照光束と呼
び、その波面を参照波面W°と呼ぶ。
When a light beam having a test wavefront W is incident on a parallel plane transparent plate 1 at a finite angle of incidence φ from the side of the surface IA provided with one anti-reflection film as shown in the figure, the light beam enters from the surface IA and a part of it is incident on the surface IB. Hereinafter, this light flux that is reflected by the light beam and proceeds toward the observation surface 8 will be referred to as a measurement light flux, and its wavefront will be referred to as a test wavefront W. On the other hand, the light beam that has passed through the parallel plane transparent plate 1 is reflected by the surface 2A of the reflective surface member 2, passes through the parallel plane transparent plate 1, and similarly heads in the direction of the observation surface 8. This wavefront is called a reference wavefront W°.

測定光束と参照光束とは、観測面8上で干渉し干渉縞を
生ずる。被験波面Wと参照波面W°とは、原理的には同
一の波面形状であるが両者はシア量Sだけ互いに横ずれ
している。このシア量Sは、面IB、 2A間の間隙の
大きさを図の如くTとすると。
The measurement light flux and the reference light flux interfere with each other on the observation surface 8 to produce interference fringes. Although the test wavefront W and the reference wavefront W° have the same wavefront shape in principle, they are laterally shifted from each other by the shear amount S. This shear amount S is calculated by assuming that the size of the gap between surfaces IB and 2A is T as shown in the figure.

2Tsinφで与えられる。従ってシア量Sの調整は。It is given by 2Tsinφ. Therefore, adjust the shear amount S.

間隙の大きさTを変える(圧電素子の操作で容易に可能
)ことによって行うことも出来るし、あるいは入射角φ
を変える(平行平面透明板と反射面部材2と圧電素子3
とを一体として回転することにより達成できる)ことに
よって行うこともできる0反射を部材2の面2Bに反射
防止膜を設けるのは、この面2Bにより反射された光束
がノイズとして観測面8に到達するのを防ぐためである
。従っなとして、面2A以外の面からの反射光束が実質
的に観測面8に到らない様にすれば反射面部材への反射
防止膜の形成は省略することもできる。 また、面IB
、2Aはその反射率が互いに略等しく且つ数%程度とな
るように、平行平面透明板と反射胎部材の材質と入射角
φを設定するのが望ましい。
This can be done by changing the gap size T (easily possible by manipulating the piezoelectric element), or by changing the incident angle φ
(parallel plane transparent plate, reflective surface member 2 and piezoelectric element 3)
The purpose of providing an anti-reflection film on the surface 2B of the member 2 is to prevent the light flux reflected by this surface 2B from reaching the observation surface 8 as noise. This is to prevent this from happening. Therefore, if the reflected light flux from surfaces other than the surface 2A is substantially prevented from reaching the observation surface 8, the formation of an antireflection film on the reflective surface member can be omitted. Also, surface IB
, 2A, it is desirable to set the materials of the parallel plane transparent plate and the reflective element and the angle of incidence φ so that their reflectances are approximately equal to each other and are on the order of several percent.

これは観測面8上に発生する干渉縞のコントラストを高
くし、且つ高次の反射光の影響を除くためである。
This is to increase the contrast of interference fringes generated on the observation surface 8 and to eliminate the influence of high-order reflected light.

例えば、平行平面透明板1と反射曲部材2の材質がガラ
スであり、入射角φを例えば面IB、 2Aでの反射率
が4x程度となる様に設定すると、反射率Rとして、測
定光束と参照光束の振幅強度はそれぞれRと(I−R)
”、−Hに比例したものとなるが、これらの値はR=0
.04に対して、それぞれ0゜04.0.037となっ
て互いに略等しくなるので干渉縞のコントラストを高く
することができる。また1面IB、2A0、00006
となり測定光束、参照光束の強度に比して充分に小さく
なるのでノイズとして作用することがないのである。
For example, if the parallel plane transparent plate 1 and the reflective curved member 2 are made of glass, and the incident angle φ is set so that the reflectance at the surfaces IB and 2A is about 4x, then the reflectance R is equal to the measurement luminous flux. The amplitude intensity of the reference beam is R and (I-R), respectively.
”, -H, but these values are R=0
.. 04 and 0.04, respectively, and are substantially equal to each other, so that the contrast of the interference fringes can be increased. Also page 1 IB, 2A0, 00006
Therefore, the intensity is sufficiently small compared to the intensity of the measurement light flux and the reference light flux, so that it does not act as noise.

いる測定光束と参照光束との位相差は AW(x、y) =W(x、y)−W(x+S、y) 
# ldw(x)/dxl・Sとなる。従って (1/S)S  AW(x、y)dx=W(x、y)+
constなる積分演算によって被験波面Wを知ること
ができる。なお上の式でcons tは光軸上の波面W
(0,0)をとれば良い。
The phase difference between the measurement beam and the reference beam is AW (x, y) = W (x, y) - W (x + S, y)
#ldw(x)/dxl·S. Therefore (1/S)S AW(x,y)dx=W(x,y)+
The test wavefront W can be known by an integral operation const. In the above equation, cons t is the wavefront W on the optical axis.
Just take (0,0).

圧電素子3(具体的にはPZT)により反射面部材2を
移動させて参照光束の光路長を段階的に変化させ、各光
路長段階での干渉縞強度分布I(X、yI’%)をフー
リエ展開すると。
The reflective surface member 2 is moved by the piezoelectric element 3 (specifically PZT) to change the optical path length of the reference beam in stages, and the interference fringe intensity distribution I (X, yI'%) at each optical path length stage is determined. With Fourier expansion.

I (x、 y、 l、L)=a (x、 y)+b 
(x、 y)cos (k lΔW(x、y)−1J)
1%=λ・n/N、 (N=0.1,2.、、、、N−
1) 、に=2c/λとなる。但しλは光束の波長であ
る。
I (x, y, l, L) = a (x, y) + b
(x, y)cos (k lΔW(x, y)−1J)
1%=λ・n/N, (N=0.1,2.,,,,N-
1) , = 2c/λ. However, λ is the wavelength of the luminous flux.

1%での干渉縞強度1(x、y、IJから= b(x、
y)cos(k AW(x、y))= 、b (x、 
y) s in (kΔW(x、y))となり、これか
ら位相差ΔW(x、 y)はAW(x、y)=(1八)
jan’(Sl−層/C3)として求めることができる
Fringe intensity at 1% 1(x, y, from IJ = b(x,
y)cos(k AW(x,y))= ,b(x,
y) s in (kΔW(x, y)), and from this the phase difference ΔW(x, y) is AW(x, y) = (18)
jan' (Sl-layer/C3).

測定光束、参照光束はともに平行平面透明板1の略同じ
光路を通るので平行平面透明板1の歪みは殆ど測定精度
に影響しない、また、反射面部材2をガラス板とすれば
ガラス板の平面度はλ/20のものが容易に入手できる
から1反射面部材2の歪みを考慮しても1710以上の
精度が得られる。
Since both the measurement light beam and the reference light beam pass through substantially the same optical path of the parallel plane transparent plate 1, the distortion of the parallel plane transparent plate 1 has almost no effect on the measurement accuracy.In addition, if the reflective surface member 2 is a glass plate, the plane of the glass plate Since one having a degree of λ/20 is easily available, an accuracy of 1710 or more can be obtained even when the distortion of one reflective surface member 2 is taken into consideration.

(実施例) 以下、具体的な実施例を3例示す。(Example) Three specific examples are shown below.

第2図に示す実施例は、本発明を適用した。レンズの性
能を検査する装置である。符号12で示す部分が本発明
の縞走査・シアリング方法を実行するための部分で、第
1図に即して説明したものである。平行透明基板と反射
面部材とはガラス板により構成され反射防止膜の形成さ
れていない面の反射率が4%となるように入射角を設定
されている。
The embodiment shown in FIG. 2 applies the present invention. This is a device that tests the performance of lenses. A portion designated by the reference numeral 12 is a portion for carrying out the fringe scanning/shearing method of the present invention, and has been described with reference to FIG. The parallel transparent substrate and the reflective surface member are made of glass plates, and the angle of incidence is set so that the reflectance of the surface on which the antireflection film is not formed is 4%.

圧電素子としてはPZTを用いている。PZT is used as the piezoelectric element.

被験レンズ11はコリメートレンズであり1点光源10
からのレーザー光を透過させ、その透過光の波面を被験
波面として調べることにより被験レンズ11のコリメー
ト特性を測定する。測定光束、参照光束はともに結像レ
ンズ13を介して観測面たるエリアセンサー(CCDカ
メラ) 14の受光面上に導いて両者を干渉させる。
The test lens 11 is a collimating lens and one point light source 10
The collimation characteristics of the test lens 11 are measured by transmitting laser light from the lens 11 and examining the wavefront of the transmitted light as the test wavefront. Both the measurement light flux and the reference light flux are guided through an imaging lens 13 onto the light receiving surface of an area sensor (CCD camera) 14 serving as an observation surface, and are caused to interfere with each other.

第3図に示す実施例は、ポリゴンミラー等の超精密加工
面を被験面16とし、その面形状を測定する装置である
。平行レーザービームLをハーフミラ−15を介して被
験面16に照射し、その反射光をハーフミラ−15を介
して取り出し、その被験面を調べる。ハーフミラ−15
からとりだされた光束は第2図の実施例と同じく、本発
明の方法で縞走査・シアリングを行われ、測定光束、参
照光束は。
The embodiment shown in FIG. 3 is an apparatus that uses an ultra-precision processed surface such as a polygon mirror as a test surface 16 and measures the surface shape thereof. A parallel laser beam L is irradiated onto a test surface 16 via a half mirror 15, and the reflected light is taken out via the half mirror 15 to examine the test surface. Half mirror 15
The light beam taken out from is subjected to fringe scanning and shearing using the method of the present invention, as in the embodiment shown in FIG. 2, and the measurement light beam and reference light beam are

結像レンズ13を介して観測面たるエリアセンサー14
の受光面上に結像させて両者を干渉させる。
An area sensor 14 serving as an observation surface is connected through an imaging lens 13.
An image is formed on the light-receiving surface of the two to cause interference between the two.

第4図に示す実施例では、基板17上に形成された屈折
率既知の薄膜18の厚さが測定対象である。
In the embodiment shown in FIG. 4, the thickness of a thin film 18 of known refractive index formed on a substrate 17 is the object of measurement.

基板17の側から平行レーザー光束りを照射し、透過光
束に対し1本発明の方法で縞走査・シアリングを行う、
測定光束の波面と参照光束の波面とは観測面8上でシア
量Sだけずれ1位相差ΔWに対応した干渉縞が発生する
( ’I、 4 t5 (X))。
A parallel laser beam is irradiated from the side of the substrate 17, and the transmitted beam is subjected to fringe scanning and shearing using the method of the present invention.
The wavefront of the measurement light beam and the wavefront of the reference light beam are shifted by the shear amount S on the observation surface 8, and interference fringes corresponding to the phase difference ΔW of 1 are generated ('I, 4 t5 (X)).

薄膜18の膜厚をdとすると、上記位相差ΔWは基板1
7のみを透過した光と基板17と薄膜18とを透過した
光との位相差となり、薄膜の屈折率noを用いて Δ讐=(no−1)d で与えられる。一方、縞走査により知られる位相差ΔW
は前述の如<、 (1/k)jan’(SN/CS)で
あるから膜厚dは、 d=(λ/2π) ban−’(SN/CS) l/(
no−1)として知ることができる。
If the thickness of the thin film 18 is d, the phase difference ΔW is the same as that of the substrate 1.
This is the phase difference between the light that has passed only through the substrate 17 and the light that has passed through the substrate 17 and the thin film 18, and is given by Δen=(no−1)d using the refractive index no of the thin film. On the other hand, the phase difference ΔW known from fringe scanning
As mentioned above, since (1/k)jan'(SN/CS), the film thickness d is d=(λ/2π) ban-'(SN/CS) l/(
No. 1).

なお、薄膜18の厚さがλ以下であればシア量は干渉縞
を生じさせるに足るものであれば適当で良い、この場合
干渉縞は縞走査により干渉縞のコントラストによらず高
精度に測定できるので屈折率既知の薄膜の厚さを極めて
精度よく測定できる。
Note that if the thickness of the thin film 18 is λ or less, the amount of shear may be arbitrary as long as it is sufficient to generate interference fringes. In this case, the interference fringes can be measured with high precision by fringe scanning regardless of the contrast of the interference fringes. Therefore, the thickness of a thin film with a known refractive index can be measured with extremely high accuracy.

(効  果) 以上、本発明によれば新規な縞走査・シアリング方法を
提供できる。この方法は上記の如く構成されているので
、極めて簡素な装置で容易に、高精度のシアリングと縞
走査とを実現できる。
(Effects) As described above, according to the present invention, a novel stripe scanning/shearing method can be provided. Since this method is configured as described above, highly accurate shearing and fringe scanning can be easily achieved using extremely simple equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明を説明するための図、第2図は1実施
例を説明するための図、第3図は別実施例を説明するた
めの図、第4図は他の実施例を説明するための図である
。 111.平行平面透明板、2000反射面部材、300
.圧電素子 弗1 ご めZ圀
Figure 1 is a diagram for explaining one embodiment of the present invention, Figure 2 is a diagram for explaining one embodiment, Figure 3 is a diagram for explaining another embodiment, and Figure 4 is another embodiment. FIG. 111. Parallel plane transparent plate, 2000 Reflective surface member, 300
.. Piezoelectric element 1 Gome Z area

Claims (1)

【特許請求の範囲】 縞走査シアリング干渉測定方式に於いて、被験波面を有
する光束を2分割するとともにシアリングによって一方
の光束を他方の光束に対して横ずらしし、且つ、縞走査
のために一方の光束の光路長を変化させる方法であって
、 片面に反射防止膜を設けた平行平面透明板と、少なくと
も反射防止膜を設けていない平面を1面有する反射面部
材とを、反射防止膜の設けられていない面同士を互いに
間隙を隔して平行に対向させ、上記平行平面透明板の反
射防止膜を設けた側の面から、被験波面を有する光束を
有限の入射角で入射させ、上記反射防止膜の設けられて
いない1対の対向平面での反射により上記光束を2分割
し、 上記平行平面透明板と上記反射面部材を、上記間隙の大
きさを変化させるように相対的に変位させることにより
縞走査のための光路長変更を行うことを特徴とする、縞
走査・シアリング方法。
[Claims] In the fringe scanning shearing interference measurement method, a light beam having a test wavefront is divided into two, one light beam is laterally shifted relative to the other light beam by shearing, and one of the light beams is divided into two for fringe scanning. A method for changing the optical path length of a light beam, the method comprising: a parallel flat transparent plate having an anti-reflection film on one side; and a reflective surface member having at least one flat surface not provided with the anti-reflection film; The surfaces that are not provided are made to face each other in parallel with a gap between them, and a light beam having the test wavefront is made incident at a finite angle of incidence from the surface of the parallel plane transparent plate on which the antireflection film is provided. The light beam is divided into two by reflection on a pair of opposing planes not provided with an antireflection film, and the parallel plane transparent plate and the reflective surface member are relatively displaced so as to change the size of the gap. A fringe scanning/shearing method characterized by changing the optical path length for fringe scanning by
JP3691888A 1988-02-19 1988-02-19 Stripe scanning and shearing method Pending JPH01212304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3691888A JPH01212304A (en) 1988-02-19 1988-02-19 Stripe scanning and shearing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3691888A JPH01212304A (en) 1988-02-19 1988-02-19 Stripe scanning and shearing method

Publications (1)

Publication Number Publication Date
JPH01212304A true JPH01212304A (en) 1989-08-25

Family

ID=12483145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3691888A Pending JPH01212304A (en) 1988-02-19 1988-02-19 Stripe scanning and shearing method

Country Status (1)

Country Link
JP (1) JPH01212304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530564A (en) * 2000-04-12 2003-10-14 ナノ−オア テクノロジーズ インコーポレイテッド Spatial and spectral wavefront analysis measurement method and apparatus
CN102564740A (en) * 2011-12-28 2012-07-11 北京奥博泰科技有限公司 Variable-angle glass reflecting measurement device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530564A (en) * 2000-04-12 2003-10-14 ナノ−オア テクノロジーズ インコーポレイテッド Spatial and spectral wavefront analysis measurement method and apparatus
JP2013064741A (en) * 2000-04-12 2013-04-11 Icos Vision Systems Nv Method and apparatus for spatial and spectral wavefront analysis and measurement
CN102564740A (en) * 2011-12-28 2012-07-11 北京奥博泰科技有限公司 Variable-angle glass reflecting measurement device and method

Similar Documents

Publication Publication Date Title
JP5087186B1 (en) Iso-optical path interferometer
US11231269B2 (en) Arrangement and method for robust single-shot interferometry
US7466427B2 (en) Vibration-resistant interferometer apparatus
JP2003232608A (en) Device and method of measuring non-spherical surface with concave and hologram
JP2002250678A (en) Wave front measuring instrument and wave front measuring method
JP2000501508A (en) Interferometer for measuring thickness error of semiconductor wafer
JPH06300520A (en) Optical type displacement measuring device
US4932780A (en) Interferometer
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
CN112539920B (en) Method for measuring high reflectivity of laser optical element
JP2003240526A (en) Apparatus and method for measurement of surface
JPH01212304A (en) Stripe scanning and shearing method
JP2002286408A (en) Optical system for oblique-incidence interferometer and device using the same
JPH02132310A (en) Correcting method for shearing interferometer
TWI708040B (en) External reflection-type three dimensional surface profilometer
JP3461566B2 (en) Interferometer for measuring cone shape
JPS63241306A (en) Interferometer
JPS63148106A (en) Body position measuring instrument
JP2000097657A (en) Interferometer
JPS61202102A (en) Light wave interfering microscope
JPH01219605A (en) Method for measuring shear quantity in fringe scanning shearing interference measurement
JPS60211304A (en) Measuring instrument for parallelism
JPH11287612A (en) Interferometer
JPH02259512A (en) Integrated interference measuring instrument
JP2000097651A (en) Method and device for measuring shape of aspheric surface